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ABSTRACT Increasing demand for computational resource as services over the internet has led to the
expansion of datacenter infrastructures. Thus, datacenter authorities are striving to adopt optimal power
usage schemes to minimize costs, emissions and Service Level Agreement (SLA) violations in their task
scheduling for heterogeneous computation centers. One of the most effective strategies to reduce datacenter
energy consumption is to maximize the utilization of physical machines and shut down the idle ones.
This can be realized through two main algorithms, namely virtual machine placement and virtual machine
consolidation. The VM placement method is a dynamic process to put these virtual devices on physical
machines. The consolidation technique, however, tries to improve physical machine efficiency through
grouping and livemigration of dispersed virtualmachines on lower number of active physicalmachine. In this
paper, a novel approach is proposed for improving the physical machine efficiency. The approach employs
heuristics and meta-heuristic algorithms with eight performance criteria and is implemented on small to
medium scale data centers using simulated cloud module. The results indicates that the proposed method
showed up to 10.3%, 5.3%, and 12.5% the more significant efficiency rather best previous algorithms,
respectively, in terms of the energy consumption, number of SLA violation and number of VMs migration.

INDEX TERMS Green data centers, service level agreement, virtual machine placement, virtual machine
consolidation.

I. INTRODUCTION
During the past few years, computation technology has
attempted to adapt to the ever-increasing demand of high-
level computational services and equipment [1]. This evo-
lution has brought about novel computational ideas like
cloud computing. These systems have become awell-adopted
paradigm for hosting a multitude of computational service
providers. These services may include Platform as a Service
(PaaS), Software as a Service (SaaS) and Infrastructure as a
Service (IaaS). The computing systems thus access the com-
putational resources and deliver pay-per-demand services to
end users. Hence, a main feature of cloud computing, and
infrastructure-based services in particular, is the incorpora-
tion of virtualization technology [2].
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The issue of tremendous energy consumption by green
data centers caused by the increasing computational load has
become a critical research topic. As reported by Gartner in
2013, the average energy usage of a data center equals that of
around 25,000 households [3]. Also, another survey revealed
the federal could computing energy consumption in the US to
be around 100 million MWh with an associated cost making
up about 75% of the entire operating costs [4]. The estimated
annual energy consumption of US data centers in 2020 was
140 million MWh with a cost of $13 billion billed for cloud
consumers [5].

Thus, a significant amount of electricity cost is incurred
for these high-tech infrastructures while CO2 emissions also
escalate. As collateral, the high energy usage level will imply
higher cooling demand and costs. The other disvantage is the
wear and tear of computational devices through high tem-
peratures influencing their availability and reliability while

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 81787

https://orcid.org/0000-0001-6115-6090
https://orcid.org/0000-0002-3685-3879


B. Nikzad et al.: SLA-Aware and Energy-Efficient Virtual Machine Placement and Consolidation

causing high SLA (service level agreement) violations. SLA
is defined as the service level expected from the facility
vendor [6].

The focus of green cloud computing is on designing
data centers that reduce energy consumption by increas-
ing the efficiency of resources and physical machines.
One of the main approaches used for optimizing physical
machine utilization and reduction of energy consumption in
cloud data centers is to optimize the utilization of physical
machines (PMs) and switch the idle PMs to sleep mode
or scale down PM’s operating frequency to the lowest for
DVFS-enabled Cloud datacenters. Two main classes of algo-
rithms have been proposed to realize this approach: VM
placement algorithms and VM consolidation algorithms [7].

VM placement consists of the dynamic mapping of VMs
onto PMs in cloud datacenters, in a way to optimize resource
utilization [8]. Another potential way to enhance energy effi-
ciency is the VM workload consolidation strategy in which
energy consumption is minimized by consolidating higher
workload on lower number of PMs. VMs hosted on lightly
loaded PMs are live migrated and group-dispersed on a min-
imal number of active PMs While the idle PMs are turned
off. Optimization works on VM placement and consolidation
must deal with a diverse set of challenges. First and for
most, these problems are of NP-hard type requiring tremen-
dous amount of time and resources [5]. The second chal-
lenge involves taking care of the system performance while
attempting to reduce energy consumption. By shutting down
some of the physical machines, some VMsmay face resource
shortage especially during peak periods. As a consequence,
reliability and/or availability of the system is overshadowed
leading to lower-than-expected QOS levels. Effective VM
consolidation stipulates performance maintenance and SLA
violation restriction when dealing with unpredictable com-
putational demand [9]. Thus, the significance of establish-
ing a compromise between energy usage and performance
metrics in optimal resource management schemes is readily
inferred. This task is indeed among the main challenges to be
handled by providers of cloud services. Given the NP nature
of the problem and multiple contradictory objectives, the
proposed approach employs the multi-objective ant colony
optimization which yields solutions within Pareto front [5].
This paper proposes a two-phase energy- and SLA-aware
multi-objective VM placement and consolidation approach
which employs the DVFS technique aimed to achieve a trade-
off between energy consumption and SLA. In the first phase,
the MRAT-MACO VM placement algorithm is developed
which seeks to find optimal VM placement solutions in order
to minimize the total energy consumption, CPU wastage
and communication energy cost in a DVFS-enabled cloud
datacenter. The live VM migration which transfers a running
VM from a PM to another with no interruption in services
can be performed in the second phase i.e. MRAT-MACOVM
consolidation algorithm.

For the purpose of validating our proposed approach, test
beds generated by Cloudsim tool are utilized with diverse

series of configurations. In addition, the number of loads
and resources are varied to get a comprehensive analysis of
data center performance. The generated test beds are also
used to simulate a series of other single-objective methods
including DVFS, LR, FFD and ST as well as multi-objective
methods such as MGA and MACO-Feller to draw a per-
formance comparison against the proposed approach. The
performance assessment takes account of different metrics
including energy usage, percentage of resource wasting,
saved energy, cost of communication energy, level of VM
migration, SLA violation instances, execution period and
the number of active PMs. The results indicates that the
proposed method showed up to 10.3%, 5.3%, and 12.5% the
more significant efficiency rather best previous algorithms,
respectively, in terms of the energy consumption, number of
SLA violation and number of VMs migration.

Thus, the proposed approach in this paper offers the fol-
lowing contributions:

• A multi-objective QOS-aware and energy-aware
approach for cloud resource management is proposed
aimed at efficient energy consumption while achieving
a high QOS and SLA fulfillment.

• A thorough performance comparison is made between
the proposed approaches against six other single- and
multi-objective methods considering eight distinctive
metrics. This will help gain insight into the impacts
of considering each objective on the resulting energy
efficiency and SLA compliance. Further, a compara-
tive assessment is carried out between heuristic and
meta-heuristic methods and their performance in terms
of VM placement and consolidation efficiency.

The remaining parts of this paper are organized in five sec-
tions. Section 2 gives a review of the literature and ana-
lyzes the encountered limitations in the existing methods.
Section 3 elaborates on the proposed optimization scheme.
Simulation results of the proposed method and the related
performance analyses are presented in section 4. Finally,
section 5 draws the main conclusions.

II. RELATED WORK
This section discusses the main existing algorithms currently
employed for energy-efficient resource allocation based on
VM placement and consolidation within cloud data centers.

A. VM PLACEMENT STRATEGIES
VM placement is a dynamic method to map virtual machines
to physical machines enabling them to share resources in an
efficient way. Feller et al. [10] proposed an ant colony opti-
mization strategy in which VM placement is considered as a
multi-dimensional grouping problem. The primary objective
is to put all items within the minimum space. The approach is
weighed against the greedy approach of First Fit Decreasing
(FFD) algorithm. The results indicate superior performance
of ant colony approach compared to FFD in terms of lowering
the consumed energy.
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Gao et al. [11] employed multi-objective ant colony algo-
rithm for VM placement. The approach aims to yield a set of
solutions which concurrently minimize resource wastage and
power consumption.

The proposed algorithm is weighed against multi-objective
genetic algorithm, bin-packing approach and max–min ant
system (MMAS) method. The results indicate that their pro-
posed algorithm outperforms the mentioned methods.

Sarma et al. [12] used a combination of ant colony and
multi-objective genetic algorithm to obtain the optimal VM
placement solution. The simulation results verify that the
consolidation approach yields better outcomes and further
reduces costs and energy usage of the servers.

Shabeera et al. [13] utilized the meta heuristic algorithm
of ant colony optimization for optimal allocation of virtual
machines and data placement for data-intensive application
in the cloud. The main goal is to relieve network traffic and
bandwidth through optimal VM and data placement in phys-
ical machines in proximity. In fact, the algorithm attempts to
find proximate groups of physical machines for data place-
ment. The data are distributed among the storage elements of
the selected physical machines. Based on the PM processing
capacity, the required quantity of VMs is assigned to process
the stored data.

Sun et al. [14] proposed multi-population ant colony algo-
rithm for optimal VM placement. Their approach uses sev-
eral ant colonies with strategies for exchange of population
entropy data between the colonies as required for the diversity
of explored solutions and their convergence. The approach
is demonstrated to provide better solutions in comparison to
single-population AC method and efficiently lowers resource
wastage and energy consumption for high-demand virtual
machine deployment.

Liu et al. [15] proposed multi-objective Ant Colony Sys-
tem (ACS) algorithm for VM placement in data centers with
intense bandwidths. They attempt to obtain a set of optimal
Pareto solutions to maximize communication revenues and,
in the meantime, minimize the energy consumption of phys-
ical machines.

Further, a VM placement based on energy-efficient ant
colony algorithm is introduced by Qin et al. [16] in which
the number of active physical servers are minimized using
energy-efficient evolutionary computing techniques. Their
approach utilizes Ant Colony System (ACS) to achieve the
optimal results for VM placement.

Alharbi et al. [17] introduced an efficient optimization
method based on ant colony approach with novel exploration
algorithms. The efficiency of the proposed AC method is
demonstrated by application to various scales of data centers.
The results are weighed against those of two other methods
indicating that the proposed approach has better energy effi-
ciency for data centers on all scales. Also, the AC method
exhibits decent scalability commensurate with the problem
size.

Wang et al. [18] use energy-aware particle swarm opti-
mization (PSO) for VM placement in heterogeneous data

centers. In their proposed approach, a virtual replacement
system with lower energy consumption is introduced. The
results imply an energy saving of 13 to 23 percent.

Suseela et al. [19] proposed a multi-objective optimization
algorithm of ACO-PSO for VM placement in cloud comput-
ing. The algorithm attempts to minimize resource wastage
and energy consumption and balance load on the physical
servers.

Dong et al. [20] applied VM placement for optimal net-
work performance in cloud data centers. The authors pro-
pose a combination of Ant colony optimization and 2-opt
local search to accomplish optimization goal and attempt
to reduce the total communication traffic in the cloud
data center network. This is developed as a quadratic
assignment problem aimed at optimizing the network link
utilization.

Liu et al. [21] proposed a unified procedure based on ant
colony system for dynamic VM consolidation and live migra-
tion in cloud computing. In this method, adequate servers
are initially allocated to host VMs and are then gradually
reduced. The proposed method attempts to capture feasible
solutions with minimum VM migrations for any given num-
ber of servers.

Dong et al. [22] employed decentralized parallel genetic
algorithm (DPGA) for placement of VMs and their resetting
in cloud platform. In the first stage, the genetic algorithm is
executed in distributed manner on several selected physical
hosts in parallel. Then the algorithm continues to execute
the genetic algorithm in the second stage using first-stage
solutions as the initial population. The results show that
DPGA can guarantee acceptable QOS/SLA for users while
being more energy-efficient than other placement strategies
for cloud data centers.

Wu et al. [23] introduced a modified genetic algorithm for
VM placement in data centers. They use the server consolida-
tion techniques based on virtualization for improved energy
efficiency of both physical machines and communication
networks of a data center leading to enhanced overall system
performance.

Joseph et al. [24] also propose an approach for allocating
virtual machines using genetic algorithm. The results indicate
that the proposed approach is capable of lowering energy
consumption and migrations.

The authors propose a multi-objective function for
dynamic VM placement with live migration to minimize
the resource wastage, over commitment ratio and migration
energy all at the same time. Island NSGA-II optimization
algorithm adopts a novel evolutionary meta-heuristic method
based on an island population model to estimate the Pareto
optimal set of VM placements with acceptable accuracy and
diversity.

As demonstrated by the simulation results, this method
outperforms related methods by reducing the migration
energy [25].

In [26], authors propose a RAA-PI-NSGAII method for
resource allocation algorithm using the minimum number
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of physical machines used and the minimum distances of
resource performance and resource proportion.

In [27], the authors propose a NSGA-III method to achieve
optimal multi-objective virtual machine placement (MO-
VMP) based on by the minimizing the number of used
physical machines and the minimum distances of resource
performance and resource proportion.

In [52], authors propose two low-overhead heuristic algo-
rithms called Global Slack Aware Quality-level Allocator
(G-SLAQA) and Total Slack Aware Quality-level Allocator
(T-SLAQA) for problem of scheduling a real-time application
as a single DTG, where tasks may have multiple implementa-
tions designated as quality-levels, with higher quality-levels
producing more accurate results and contributing to higher
Quality-of-Service for the system. First, authors introduce
an optimal solution using Integer Linear Programming (ILP)
for a DTG with multiple quality-levels, to be executed on a
heterogeneous distributed platform.

As listed in Table 1, significant research has been con-
ducted to address various metrics and offer effective solu-
tions.

Several issues related to resource allocation in cloud com-
puting data centers have been discussed. Existing dynamic
VMs’ consolidation approaches allow the minimization of
resource wastage and the reduction of energy and power
consumption by switching unused PMs to idle mode. How-
ever, reducing energy consumption by means of resource
consolidation may degrade the system performance and lead
to SLAs’ violation. Therefore, the optimal resource allo-
cation technique should achieve a tradeoff between energy
and cloud data center performance. Many resource alloca-
tion approaches focused on maximizing performance without
considering energy consumption. However, even the energy-
aware approaches proposed have some limitations. Indeed,
if we turn off some physical servers for the purpose of saving
energy, some VMs cannot receive the required resources in
peak time. As a result, the system reliability and availability
will be reduced and the SLA cannot be achieved. The service
providers should avoid violations and keep a check while
providing services to the customers. To address this issue,
various researchers provide different solutions. Therefore,
multi-objective optimization approaches that evaluate vari-
ous parameters should be considered. Currently, the existing
approaches focus on achieving high speed or high scalabil-
ity, but did not address other important objectives, such as
resource utilization, consolidation cost, reliability, and avail-
ability. Moreover, in order to build a practical approach that
applicable in production environments, different parameters
should be considered by the resource management strategy
such as CPU, Memory, storage, and Network bandwidth.

B. VM CONSOLIDATION STRATEGIES
A massive amount of energy is consumed by cloud data
centers. Thus, these facilities also play a big role in high
CO2 emission [28]. One potential strategy to solve this issue
and optimize resource utilization in cloud data centers is

to consolidate more workload on lower number of PMs or
consolidate several VMs onto a PM and switch the idle PMs
to sleep mode with lowest level of frequency [29]–[31]. The
main feature that makes the VMC techniques interesting is
live VM migration from lightly loaded PMs to compara-
tively higher PMs with no interruption in services [32], [33].
VM consolidation can be accomplished in different ways
according to criteria, resources, objectives, and algorithmic
methods [34], [35], [38], [51]. Due to the importance of VM
consolidation, some research has been conducted to examine
this approach to lower energy consumption in cloud data
centers.

Jiang et al. [36] present the fast artificial bee colony based
on live VM consolidation policy along with a data-intensive
energy model or so-called DataABC. In this approach, a new
energy evaluation model with CPU and GPU utilization rates
is introduced. Also, two live VM consolidation techniques,
one for VM selection and the other for VM allocation, are
employed.

Mazumdar and Pranzo [39] propose a MILP mathematical
formulation based on snapshot solution for server consolida-
tion problem via liveVMmigration fromCloud infrastructure
provider. This method aims at reducing power expenses by
efficient consolidation of running server workloads and also
minimizing overhead by reducing the total number of VM
migrations.

Zheng et al. [40] propose a new solution to the vir-
tual machine consolidated placement problem called
VMPMBBO. The proposed VMPMBBO deals with virtual
machine consolidated placement problem in cloud data cen-
ters and utilizes an optimization algorithm based on biogeog-
raphy to optimize the virtual machine placement that mini-
mizes both the resource wastage and the energy consumption
at the same time. Extensive experiments have been conducted
using synthetic data obtained from literature as well as two
real datasets. The proposed method is compared with two
existing multi-objective VMcP optimization techniques and
is shown to have superior convergence characteristics and
more computationally efficient and robust.

In addition, a normalization-based VM consolidation tech-
nique (NVMC) is proposed in [41] with online placement of
VMs with the objective of minimizing energy consumption,
SLA violations and VM migrations. In this approach, the
overloaded hosts on a platform of virtualized cloud are iden-
tified through resource parameters. The capacity of Virtual
machines and hosts are monitored to detect overloaded hosts
and the cumulative available-to-total ratio (CATR) index
helps identify lightly loaded machines.

Aryania et al. [42] propose a distributed Ant Colony Opti-
mization System (ACOS) to save the energy consumption of
cloud data centers. In their study, a new algorithm to solve the
VMC problem aims to reduce the number of VMmigrations,
number of sleeping PMs, number of SLA violations, and
reduce CCS energy consumptions.

In [43], a centralized approach is proposed based on greedy
methods to solve VMC problem. The authors use the MBFD
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TABLE 1. Summary of VM placement techniques.

algorithm to allocate PMs to VMs. This algorithm enhances
the energy consumption and reduces SLAv, the number of
active PMs, and the number of VM migrations.

In [44], the authors propose an algorithm based on FF
and MBFD greedy algorithms to optimize VM-PM map-
ping. The authors propose a greedy approach for VM allo-
cation that can maximize the energy efficiency of the cloud.
The approach attempts to maximize VM consolidations on
each PM to achieve greater energy efficiency than previous
methods.

In addition, in [45], a greedy method is offered for place-
ment of VMswith commonmemory pages on a PM. Program
similarity across VMs is also considered as criteria to place
them on a common PM.

In [46], the authors propose an evolutionary algorithm
named Grey Wolf Optimization (GWO) for VM Place-
ment (VMP) phase of VMC. This approach reduces the num-
ber of active PMs, energy consumption, SLAv, the number of
migrations, and leads to the more efficient use of CPU and
RAM resources.

In [47], the authors present an algorithm as an ILP prob-
lem for reducing energy consumption along with optimizing
SLAv and performance. A similar method is proposed in [48]
where MILP algorithm is employed for reducing energy
consumption, SLAv and the number of migrations with a
more efficient use of CPU resources. As shown in Table 2,
significant research is conducted to address these metrics and
offer various solutions.

TABLE 2. Summary of VM consolidation techniques.

III. PROPOSED METHOD
In this paper, a multi-objective optimization based on ant
colony is proposed for energy- and SLA-aware VM place-
ment and consolidation. The proposedmethod delivers higher
efficiency and improves the Quality of Service. The place-
ment algorithm seeks optimal placement solutions by which
the total consumed energy, resource wastage as well as
the energy consumed by the traffic load of data exchange
between VMs of a data center are minimized. In addition, the
VM consolidation algorithm attempts to optimize resource
usage through VM displacements in a data center while
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TABLE 3. Definition of notations for proposed VM placement.

focusing on reducing the energy consumption of the data
center, lowering the VM displacements, minimizing SLA
violations, and minimizing the number of active physical
machines and achieving highest availability for users of these
resources.

A. OBJECTIVE FUNCTION FOR PROPOSED VM
PLACEMENT
In this section, standard definitions are presented for dif-
ferent concepts employed in our proposed method. These
include the system architecture, task model, resources, and
the multi-objective model for energy-aware task scheduling
in green could data centers. Symbols used in these models
proposed VM placement are listed in Table 3. In addition,
it is assumed that the VMs, PMs and data center resources
are heterogeneous and VMs are independent of each other.
Cloud data centers host a set of computational resources on
physical machines, which have been shared among a group
of virtual machines. In the proposed method, VM placement
task is considered as a multi-dimensional scheduling problem
aimed at minimizing energy consumption, resource wastage
and communication energy within a data center.

Objective 1: Minimizing power/energy consumption
Modern data centers contain a multitude of processors

manufactured by CMOS technology. The power consumption
in these devices can be categorized as dynamic and static
power consumption, as expressed in Eq.

P = Pdynamic + Pstatic (1)

Since the total power consumed to execute tasks also includes
computation power by processors, the static part of power
consumption can be ignored. The dynamic power consump-
tion of processors can be calculated through Eq. 2 [6]:

Pdynamic = ACv2f (2)

where A is the percentage of active logic gates, C is the
effective load capacitance, v is the supply voltage and f is
the frequency of processor.

Nowadays, DVFS-enabled processors are employed to
partly relieve the intensity of energy consumption in HPC
systems [6]. DVFS-enabled processors can execute tasks
using a discrete set of voltage and frequency pairs

(
vj, fj

)
.

Assume that each processor has k DVFS levels, that is,
k processing operating points. Hence, supply voltage and
frequency of processor j can be described by Eq. 3 where(
vkj, fkj

)
is the voltage and frequency of processor j at level

k. (
vj, fj

)
=

{ (
vlowj, flowj

)
=
(
v1j, f1j

)
<
(
v2j, f2j

)
<

. . . <
(
vkj, fkj

)
=
(
vhighj, fhighj

) }
(3)

In modern DVFS-equipped processors, the maximum power
consumption of processor Pproc.highest happens when it oper-
ates at maximum voltage vhighest and frequency fhighest . The
active power consumption of a processor under the voltage
and frequency set

(
vj, fj

)
is calculated through Eq. 4.

Pproc j = Pproc.highest ×
v2j × fj

v2highest × fhighest

Pproc.highest = ACv2highest fhighest (4)

Since the task scheduling is performed for n DVFS-enabled
processors, the total energy consumption can be calculated by
Eq. 5.

Pprocs.active =
∑n

i=1
Pproc.highest (

∑k

j=1

v2j × fj

v2highest × fhighest
)

Eprocs.active =
∑n

i=1
Pproc.highest (

∑k

j=1

v2j × fj

v2highest × fhighest

×et
(
ti, pm(vj, fj)

)
) (5)

In this model, N is the number of VMs, M is the number
of PMs while R represents the set of resources (processors)
required by each VM. The indicating variable yj denotes
wheter PMj is active or inactive while Xij indicates whether
or not VMi has been assigned to PMj. The main goal is
to minimize the data center’s energy consumption. For this
objective, the relation in [50] is expanded as Eq. 6:

Pj = (Pbusyj − P
idle

j
)× Ut

p

j
+ P

idle

j
(6)

where Utpj is the efficiency of processor Utpj ∈ [0, 1] while

Pbusyj and Pidlej are the mean power values consumed when the
j-th PM is active and idle, respectively. The overall consumed
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energy is given by Eq. 7 where RVMi,1 is the set of processors
required by VMi.

F1 = Min
∑j=1

M
PPMj =

∑j=1

M

[
yj

·

[
(Pbusyj − Pidlej )×

∑i=1

N
(xij · RVMi,1 )+ Pidlej

]]
(7)

Objective 2: Minimizing resource wastage
The other goal is to minimize resource waste in the data

center. For this purpose, the relation proposed in [38] is
expanded to define the related objective function. The pro-
cessors are assumed to be wasted if they are not used by
any virtual machine. Minimizing this waste of resources is
the second objective of VM placement as expressed in Eq.
8. Here, W is the processor waste of each PM, RPM is a set
of resources on PMj, and RVMi,1 indicates the set of processors
required by VMi.

F1 = Min
∑j=1

M
PPMj =

∑j=1

M

[
yj

·

[
(Pbusyj − Pidlej )×

∑i=1

N
(xij · RVMi,1 )+ Pidlej

]]
(8)

Objective 3: Minimizing energy cost of communication
Minimizing the energy cost of communication is the third

objective of VM placement optimization, modeled as Eq. 9.
A hierarchical topology is assumed between data center
resources and the ‘‘k shortest paths’’ algorithm is employed to
determine the network elements between two VMs. In Eq. 9,
Pbusys and Pidles are the energy consumption of the s-th network
element when it is busy and idle, respectively. Also, TNNi,1 is
the communication load matrix between VMI and VM1.

F3 = Min
∑s=1

S
PNEs =

∑s=1

S
[zs

·

[(
Pbusys − Pidles

)
×

∑i=1

N

(
xis · TNNi,1

)
+ Pidles

]]
(9)

Further, the following constraints are taken into account in
the energy-aware multi-objective optimization:

Constraint 1:
∑j=1

M xij = 1 meaning each VM can only be
hosted on one PM.

Constraint 2:
∑i=1

N RVMi,1 · xij ≤ RPMj,1 · yj This indicates
that the number of resources allocated to VMs are less than
or equal to the number of resources allocated to physical
machines hosting VMs.

Constraint 3: zs, yj, xij ∈ {0, 1}

1) ANT-COLONY-BASED MULTI-OBJECTIVE VM PLACEMENT
VM placement optimization in a cloud data center is a multi-
objective problem with several conflicting goals. These con-
flicting objectives may lead to a variety of solutions. Within
the set of optimal solutions, no single solution has a greater
overall performance than others. Multi-objective ant colony
algorithm is one of the most widely used heuristic optimiza-
tion methods which explore the feasible search space for
optimal Pareto solutions of an optimization problem with

conflicting goals. The AC algorithm employs principles such
as elite selection and diversity maintenance across genera-
tions thus collecting the set of non-dominated solutions as the
optimal Pareto solutions. A solution enters the Pareto front
(or is called non-dominated) when the value of one objective
can’t be enhanced unless the value of another objective is
deteriorated.

In a multi-objective optimization, solution x(1) dominates
solution x(2) when both below conditions are met:
1. x(1) is not worse than x(2) for all objectives. Thus,

the solutions are compared to each other according to the
objective values (or based on the corresponding locations z(1)

and z(2) in the target space).
2. x(1) is properly better than x(2) for at least one objective.
This definition applies for the two solution vectors. The

dominance is however determined based on the objective
vectors of the two solutions. All points not dominated by any
other points are considered as Class 1 non-dominated points.
A major property of the non-dominated solutions is that if a
solution is superior to another for a given objective, the latter
would be superior for at least one other objective. Therefore,
none of these solutions can dominate the other thus being
put to the same class. This characteristic leads to a diverse
set of candidate points prior to selecting the final solution.
Together, the mentioned collection of points is called as the
non-dominated front.

The proposed multi-objective ant-colony-based placement
algorithm obtains a Pareto front which contains the set of non-
dominated solutions minimizing the overall multi-objective
function. At each stage of the algorithm, a candidate is
selected from a combination of the pheromones and newly-
explored points.

The probability of physical machine p hosting the virtual
machine v is given by Eq. 10. In this equation, τv,p is the value
of pheromone in the set of virtual and physical machines.

PVP :=

[
τv,p

]α
×
[
nv,p

]β∑[
τv,p

]α
×
[
nv,p

]β (10)

In Eq. 11, nv,p is the exploration element which yields solu-
tions with the lowest resource wastage and energy consump-
tion which is used in the decision formulae to obtain the
solution. This exploring element is indeed the inverse of the
difference between resource wastage and energy consump-
tion in the sense that the VM-PM map with lower waste of
resources and lower energy consumption has a higher nv,p
value. Parameter Cp indicates the capacity and bp denotes
the load of each physical machine based on resource usage.
Also, rv is the number of requests in Million Instructions Per
Second (MIPS) for VMs, Ej is the energy consumed by server
j, and Emax is the maximum energy used by each server.

nv,p :=
1∣∣Cp − (bp − rv)∣∣1 + 1∑j=1

p
Ej
Emax

(11)

The path defined by the pheromone series has a signifi-
cant impact in the optimality of the solutions achieved by
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TABLE 4. Parameters of the VM placement algorithm.

ant colony method. To find a new optimal solution, the
pheromone series is upgraded at each cycle. In Eq. 12, P is the
pheromone evaporation parameter and τv,p is used to simulate
the amount of evaporation to find the subset of solutions
which mimize energy consumption and resource wastage.

τv,p := (1− ρ)× τv,p +
1

f (Sbest)
, f (Sbest)

= Min
∑j=1

M
PPMj ×Min

∑j=1

M
WPM
j

×Min
∑s=1

S
PNEs (12)

Table 4 shows the parameters used in the simulations of
the proposed placement algorithm. Parameters α and β are
weighting factors assigned to pheromone and exploration
elements, respectively. The parameter values are selected
based on the performed simulations, the number of cycles
and the number of ants as well as the relative significance
of pheromone and exploration elements and the pheromone
evaporation coefficient.

B. OBJECTIVE FUNCTION FOR PROPOSED VM
CONSOLIDATION
Dynamic VM consolidation using dispersed VM grouping
into minimum number of physical machines and shutting
down the idle PMs within the cloud data centers will lead to
a more efficient energy consumption. The main question in
the VM consolidation problem pertains to which VMs should
migrate.

Once the virtual machines are initially allocated to physical
machines using the proposed VM placement method, the
consolidation algorithm is run to dynamically group VMs
into the least number of physical servers and thus achieve the
optimization objectives. While the placement algorithm per-
forms the initial assignment of VMs to PMs, the consolidation
algorithm attempts, through multi-objective ant colony algo-
rithm, to consolidate VMs to accomplish: 1) lowest energy
consumption by the data center PMs, 2) lowest number of
VMs, 3) minimum SLA violations, and 4) least number of
active PMs.

Symbols used in these models proposed VMConsolidation
are listed in Table 5.

Objective 1: Reduction of PM energy consumption
The first goal is to minimize the energy consumption of

physicalmachines in heterogeneous cloud data centers. Given
that the processors in a cloud data centers are heterogeneous
and also equipped with DVFS technology, the associated
energy consumptions can be obtained as Eq. 13.

F1 = Min
∑j=1

M
PPMj =

∑j=1

M

[
yj

TABLE 5. Definition of notations for proposed VM Consolidation.

·

[
(Pbusyj − Pidlej )×

∑i=1

N
(xij · RVMi,1 )+ Pidlej

]]
(13)

Objective 2: Minimizing Service Level Agreement vio-
lations

In cloud system, service providers oblige users for service
level agreement (SLA) to ensure utilization rate of resources.
In this agreement, different service level indices including the
minimum CPU, RAM and storage capacities as well as the
bandwidth. The number of SLA violations is a main criteria
to be evaluated for any VM placement and consolidation
approach and is calculated as [28]:

SLAV = SLATAH .PDM

SLATAH =
1
N
+

∑N

i=1

Tsi
Tai

AndPDM =
1
M
+

∑M

j=1

Cdi
Cri
(14)

where SLAV denotes SLA violation, SLATAH represents
SLA violation Time per Active Host, and PDM stand for
Performance Degradation due to Migrations. The following
equation can be used to calculate SLATAH and PDM.

where N is the number of physical machines, Tsi is the
time during which processors of physical machine i are 100%
utilized whereas Tai is the active time of physical machine
i. In Eq. 14, M is the number of VMs, Cdj is the estimated
performance degradation of VM j due to migration, and Crj
is the total capacity requested by the j.

Objective 3: Minimizing migration instances
Another important criterion that should be considered

while evaluating a VM Consolidation approach is the num-
ber of VM migrations. Higher number of VM migrations
leads to higher network load and energy consumption result-
ing in performance degradation. Eq. 15 can be used to
calculate the number of migrations during a given time
interval [28].

Migrations (F, t1, t2) =
∑s

x=1

∫ t2

t1
migx(F) (15)

where F represents the current placements of VMs, Migx(F)
shows the number of migrations of server SX within time
interval t1 − t2 for the placement F.
Objective 4: Minimizing active physical machines
An additional goal is to lower energy consumption through

minimizing the number of active physical machines.
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TABLE 6. Parameters of ant-colony-based VM consolidation algorithm.

1) MULTI-OBJECTIVE ANT COLONY OPTIMIZATION
ALGORITHM
VM consolidation based on multi-objective ant colony opti-
mization is based on Pareto method in which a set of non-
dominated solutions minimizing the four objective functions
are obtained. At each stage of the algorithm, a candidate
solution is nominated as a cross between pheromone and
exploration elements. The probabilistic decision making rule
is based on Eq. 11 and the exploration element is calculated
using Eq. 16.

nv,p :=
1∣∣Cp − (bp − rv)∣∣1 × SLAV (16)

In Eq. 16, Cp is the capacity of each physical machine and
Bp indicates its processor utilization. Also, rv is the MIPS
requested for VM and SLAV indicates the number of SLA
violations. This consists of the number of times the physical
machine reaches 100% utilization of the processor.

The parameters used in the simulation of the proposed ant
colony optimization algorithm are given in Table 6. Param-
eters α and β are weighting factors assigned to pheromone
and exploration elements, respectively. The parameter values
including the iteration number, ant population and weighting
factors have been selected based on several performed exper-
iments.

Fig.1 demonstrates the flowchart of the proposed algorithm
for the multi-objective ant-colony-based placement and con-
solidation algorithm.

Given that the proposed algorithm consists of two phases of
consolidation and placement, and in the proposed algorithm
for each virtual machine these two phases must be performed,
given that n is the number of virtual machines and m is the
number of physical machines and for each virtual machine
And for each k belonging to ant, the location of the virtual
machines that can be hosted is checked, so the number of
iterations is (|n| (|k| |n|)), and therefore the complexity of the
algorithm is equal to O(|n2k|).

C. PERFORMANCE ANALYSIS WITH SIMULATION
Cloudism R©is an open-source and accessible tool for mod-
eling and simulation of cloud computing and distributed
environments with resource provision capability. This tool
supports the system and behavior of cloud elements includ-
ing data centers, virtual machines and resource provision
policies. In addition, it provides possibility to implement
VM assignment techniques and policies in different could
computing scenarios. The performance of the proposed
MRAT-MACO algorithm is compared against those of single-
objective virtual machines, i.e. First Fit Decreasing, dynamic
voltage and frequency scaling and local regression, as well

FIGURE 1. Flowchart of the proposed algorithm.

as multi-objective algorithms including multi-objective ant
colony optimization and modified genetic algorithm.

For this purpose, the associated performance metrics
include energy consumption in kW of power consumed by
physical machines, resource wastage of processors on phys-
ical machines not used by any VM, number of active physi-
cal machines, communication energy cost resulting from the
traffic load between VMs, and finally the execution time (in
msec) of each algorithm.

D. PERFORMANCE ANALYSIS RESULTS FOR DIFFERENT
VM PLACEMENT ALGORITHMS
For a test scenario with 700 hosts, the FFD algorithm uses all
700 physical machines with 14000 kW power consumption.
For the same scenario, the multi-objective ant colony algo-
rithm uses only 238 PMswith 9000kWpower. In addition, the
proposed MRAT-MACO approach yields the use of 700 PMs
with 8700 kW power. The properties of the simulation envi-
ronment are shown in Table 7.
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TABLE 7. Properties of simulation environment.

Given the simulation results, it is seen that FFD and
modified GA have the worst performance in terms of
resource utilization while the multi-objective ant colony,
local regression, Dynamic Voltage Frequency Scaling and
MRAT-MACO deliver the best performances. In another
test case with 20 PMs, the resource wastage for FFD,
DVFS, LR and multi-objective ant colony, modified GA and
MRAT-MACO is 40%, 5%, 3%, 4% and 4%, respectively.
This means that in the worst case, 40% of the PM capacity
is utilized. Further, the multi-objective ant colony algorithm
achieves the best performance using all the capacity of PMs
for mapping. For this case, 15 PMs are completely utilized
for mapping. The results of performance analysis for different
VM placement algorithms are shown in Table 8.

E. PERFORMANCE ANALYSIS OF TRI-OBJECTIVE VM
CONSOLIDATION OPTIMIZATION
For the purpose of evaluating the proposed consolidation
algorithm based on multi-objective ant colony optimization,
the method is adjusted to be applied on a set of 700 PMs,
1000 VMs and 1500 tasks. The MRAT-MACO and multi-
objective ant colony methods are compared against two
single-objective VM consolidation methods, namely FFD
and single threshold as well as two multi-objective methods,
namely the modified GA and the multi-objective ant colony
optimization proposed by Feller [10].

The performance metrics include power consumption of
PMs in kW, number of displacements i.e. the number of PMs
displaced for resource integration, number of SLA violation
instances (that is the number of times a PM reaches 100%
processor capacity), the percentage of SLA violations (that is
the ratio of time where SLA violation persists to the total time
of PM activity), and the algorithm execution time (msec). The
first simulation set is executed focusing on three objectives,

FIGURE 2. Comparison of energy consumption between VM placement
algorithms.

namely energy consumption, resource wastage and the com-
munication energy cost. The simulation results for the test set
are given in Table 9.

F. PERFORMANCE ANALYSIS OF QUAD-OBJECTIVE VM
CONSOLIDATION OPTIMIZATION
The second simulation set is aimed at minimizing energy
consumption, resource wastage, communication energy cost
and the number of active physicalmachines. The simulation is
carried out for up to 580 physical machines. The performance
of the multi-objective ant colony and MRAT-MACO opti-
mization are weighed against two single- Objective VM con-
solidationmethods (FFD and single threshold) and twomulti-
objective algorithms (modified GA and the multi-objective
ant colony optimization approach by Feller). The perfor-
mance metrics are the energy consumption, number of VM
displacements, number of SLA violations and the number of
active PMs. The results of this set of simulations are shown
in Table 10. In these simulations, the number of VMs is twice
the number of hosts and each VM is dedicated to a given task.

G. PERFORMANCE ANALYSIS OF PROPOSED
MULTI-OBJECTIVE ANT COLONY OPTIMIZATION
ALGORITHM
After a thorough performance evaluation, it can be concluded
that the proposed algorithm employing the multi-objective
ant colony optimization does not always outperform other
techniques.

In Fig. 2, the six examined algorithms are assessed in
terms of the energy consumption metric. As the simu-
lations indicate, the FFD method consumes the highest
energy as it assigns each VM to the first PM with ade-
quate resources without considering other possible PMs. The
proposed MRAT-MACO algorithm, however, yields lower
energy usage with its VM placement decisions.

Figures 3 and 4 illustrate the methods’ comparison in terms
of the number of active PMs and resource wastage. The
results are indicative of a correlation between the number of
active host PMs and the energy consumption. The higher The
number of PMs used for hosting VMs, the greater the energy
usage used for operating these devices.
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TABLE 8. Performance analysis of different VM placement algorithms.

Figures 5 and 6 demonstrate the connection between
the communication energy and the percentage of the saved
energy. The proposed approach has a better performance
when the number of hosts is within 150 to 400 but it is
outperformed by the multi-objective ant colony optimization
for other cases. Also in terms of the percentage energy saved
in VM placement, the proposed method achieves 42% saving
while that of the modified GA is 25%.

The execution time of different VM placement algorithms
for a change of PM hosts from 20 to 700 is shown in Fig. 7.
The running time of the FFD algorithm remains nearly the
same duration of 8000 msec from 20 hosts up to 700 hosts.
Other placement techniques have longer running times with
the runtime increasing linearly with the number of hosts.

Since the multi-objective methods are more complicated that
the single-objective methods, their execution time is shorter
such that the dynamic voltage and frequency scaling as well
as the local regression methods terminate at nearly the same
duration which is much faster than the multi-objective ant
colony approach. The running times for 700 hosts using
MRAT-MACO, multi-objective ant colony, local regression
and dynamic voltage and frequency scaling are 250, 41, 750,
39, 500, 39, 500 and 37 msec, respectively.

Figure 8 compares the results of the VM consolidation
methods aimed to obtain the consumed energy. The FFD and
single threshold methods are shown to have higher energy
usage as compared to the modified GA, tri-objective ant
colony approach, Feller multi-objective ant colony approach,
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TABLE 9. Performance comparison between tri-objective VM consolidation algorithms.

and MRAT-MACO technique. As seen, the multi-objective
ant colony and MRAT-MACO techniques yield the lowest
energy consumption as they don’t consider VM placement
among physical machines whereas the meta-heuristic meth-
ods also take this into account.

In fig. 9, the algorithms are evaluated based on the number
of VM displacements. As shown, the FFD method leads
to higher VM displacements to achieve VM consolidation.
In essence, when the FFD method receives a new VM
displacement request, it attempts to find the first physical
machine with sufficient resources to assign to the VM. If it
does not find any active PM for VM allocation, it would
activate a new PM without further considering the currently
active VMs and PMs.

Fig. 10 draws a comparison between MRAT-MACO and
other algorithms in terms of the number of displacements and
migrations. The Feller multi-objective ant colony performs
close to MRAT-MACO in achieving the lowest migrations.
As indicated by the results, for a host count of 50 to 350,
the MRAT-MACO algorithm results in lower migrations than
multi-objective ant colony whereas for 350 to 700 hosts, the
multi-objective ant colony leads to lower migrations com-
pared to the proposed algorithm.

Figure 11 shows a comparison between the algorithms
in terms of the number of SLA violations. As shown, the
FFD method results in higher number of SLA violations as
it attempts to assign as higher number of VMs as possi-
ble to each PM. Thus, the processor utilization may reach

81798 VOLUME 10, 2022



B. Nikzad et al.: SLA-Aware and Energy-Efficient Virtual Machine Placement and Consolidation

TABLE 10. Performance comparison between quad-objective VM consolidation algorithms.

100 percent in some servers leading to higher number of
overloaded PMs and increased SLA violations.

Figure 12 presents the recorded number of SLA violations
for multi-objective ant colony, the modified GA and MRAT-
MACO. As observed, the multi-objective ant colony, the
modified GA and MRAT-MACO result in lower number of
SLA violations compared to the Feller multi-objective ant
colony approach. This is because themetric of SLA violations
is among the objectives in ant colony and modified GA
approach whereas it is overlooked in Feller’s algorithm.

Figures 13 and 14 shows the percentage of SLA violations
committed by each algorithm. As inferred from Fig. 13, the
multi-objective ant colony, modified GA and MRAT-MACO

reduce the SLA violations compared to the FFD and single
threshold approach. The percentage of SLA violations with
respect to the number of active hosts demonstrated in Fig. 14.

The energy consumption values for different consolidation
algorithms are shown in Fig. 15. Among these methods,
the single threshold leads to the highest energy usage as
it selects VMs and PMs in a random manner. In addition,
the multi-objective ant colony (tri- and quad-objective), the
proposed MRAT-MACO technique, and the modified GA
have a similar performance in terms of energy consumption.

A comparison of the algorithm performances regarding
VMmigrations is shown in Fig. 16. Given their static, single-
objective and single-solution nature, the single threshold and
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FIGURE 3. Comparison of number of active hosts between VM placement
algorithms.

FIGURE 4. Comparison of percentage of resource wastage between VM
placement algorithms.

FIGURE 5. Comparison cost of communication energy between VM
placement algorithms.

FFD methods unsurprisingly lead to higher migrations com-
pared to the multi-objective ant colony, modified GA and the
proposed MRAT-MACO approach.

As seen in Fig. 17, the modified GA has a similar per-
formance to the tri-objective ant colony algorithm with the
least possible migrations in cases with limited number of
hosts. However, as the number of hosts increases beyond,
say 150, the GA performance deteriorates in terms of the
migrations. For significant host numbers, the Feller’s multi-

FIGURE 6. Comparison percentage of energy savings between VM
placement algorithms.

FIGURE 7. Comparison execution time between VM placement
algorithms.

FIGURE 8. Comparison of energy consumption between VM
consolidation algorithms.

objective ant colony and the proposed MRAT-MACO and
the quad-objective ant colony approach demonstrate similar
performances with the lowest number of migrations. In this
case, the tri-objective ant colony optimization results per-
forms better than the quad-objective approach because of its
fewer achievable objectives.
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FIGURE 9. Comparison energy consumption between VM consolidation
algorithms.

FIGURE 10. Comparison number of migrations in different VM
consolidation algorithms.

FIGURE 11. Comparison number of SLA violation between VM
consolidation algorithms.

In addition, Fig. 18 compares the consolidation algorithms
in terms of SLA violation. The results show that the single-
objective algorithms, namely the single threshold and FFD
methods, lead to higher SLA violations as they don’t consider
SLA in their objective functions.

Figure 19 demonstrates that for higher number of hosts,
the tri-objective ant colony achieves solutions with lowest
SLA violation values. In addition, for a host number of 600,
the quad-objective ant colony results in lower SLA violations
than the modified GA approach. According to the obtained
results, the Feller multi-objective approach as well as the pro-
posed multi-objective ant colony and MRAT-MACO commit

FIGURE 12. Comparison number of SLA violation.

FIGURE 13. Comparison percentage of SLA violation between VM
consolidation algorithms.

FIGURE 14. Comparison percentage of SLA violation.

the highest SLA violations relative to the other three heuristic
methods. The Feller multi-objective ant colony does not even
consider SLA as an optimization objective.

In Fig. 20, the hosts used by the consolidation algorithms
are shown. Among these methods, the modified GA achieves
solutions with the lowest number of hosts. The results also
indicate that the tri- and quad-objective ant colony methods
yield lower number of hosts compared to the multi-objective
Feller ant colony, MRAT-MACO and FFD approaches. The
single threshold method requires higher number of hosts
given its pre-dictated utilization rates. The static threshold
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FIGURE 15. Comparison energy consumption between VM consolidation
algorithms (tri- and quad-objective).

FIGURE 16. Comparison number of migrations between VM consolidation
algorithms (tri- and quad-objective).

FIGURE 17. Comparison number of migrations between VM integrated
consolidation algorithms (tri- and quad-objective).

FIGURE 18. Comparison number of SLA violation between VM
consolidation algorithms (tri- and quad-objective).

results in significant waste of resources consequently leading
to further PM activations to meet VM demand.

FIGURE 19. Comparison number of SLA violation between VM
consolidation algorithms (tri- and quad-objective).

FIGURE 20. Comparison number of active host between VM
consolidation algorithms (tri- and quad-objective).

FIGURE 21. Comparison number of active host between VM
consolidation algorithms (tri- and quad-objective).

Figure 21 compares the performance of multi-objective
ant colony, modified GA and MRAT-MACO based on the
number of activated hosts. To get a figure of the active
hosts, simply the numbers of PMs (hosts) used by each
algorithm are counted. For instance, in a test scenario with
50 physical machines in a data center, MRAT-MACO gives
a consolidation solution with 34 active hosts while the Feller
multi-objective approach uses 47, the tri-objective ant colony
utilizes 48, the quad-objective ant colony employs 49 hosts,
and the modified GA activates all 50 hosts.

Figure 22 demonstrates the running duration of each
consolidation algorithm. As expected, the MRAT-MACO
method has gained better running time compared to the
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FIGURE 22. Comparison execution time between VM consolidation
algorithms.

tri- and quad-objective ant colony algorithms. In addition, it is
observed that the duration curves experience linear growth
with the number of hosts.

IV. CONCLUSION
The proposed VM consolidation approach was evaluated by
four metrics against two single-objective VM consolidation
methods. The results of evaluations indicate that the FFT
approach has the weakest performance in VM placement task
whereas the proposed MRAT-MACO outperforms the other
five approaches. Regarding the pursued objectives by the
consolidation methods, those considering multiple objectives
of energy saving, number of VM displacements and SLA
violations, perform better than single-objective methods such
as ST and FFT for all performance metrics.

Among the tri-objective metaheuristic methods, the
proposed MRAT-MACO approach has a superior per-
formance compared to the other three methods, i.e.
Feller multi-objective ant colony optimization, modified
GA, and multi-objective ant colony optimization yielding
lower energy consumption and least SLA violations. The
single-objective method of Single threshold delivers the
weakest performance in terms of all mentioned criteria.
Considering energy saving, the best-performing methods
are the multi-objective ant colony optimization followed by
the proposed MRAT-MACO and Feller’s multi-objective ant
colony methods. In terms of minimizing VM displacements
and SLA violations, the multi-objective ant colony optimiza-
tion and the proposed MRAT-MACO methods were the best-
performing techniques.

In addition, the metaheuristic ant-colony optimization-
based placement method performs better than the modified
GA in terms of energy and SLA metrics whereas these
techniques perform equally in terms of execution time for
VM consolidation. Thus, increasing the number of objectives
results in escalation of execution time and degraded perfor-
mance for some of the considered metrics. This is attributed

to the fact that these methods attempt to figure out solutions
that fulfill all the requirements at the same time.
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