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ABSTRACT Automatic Leukemia or blood cancer detection is a challenging job and is very much required
in healthcare centers. It has a significant role in early diagnosis and treatment planning. Leukemia is a
hematological disorder that starts from the bone marrow and affects white blood cells (WBCs). Microscopic
analysis of WBCs is a preferred approach for an early detection of Leukemia since it is cost-effective and less
painful. Very few literature reviews have been done to demonstrate a comprehensive analysis of deep and
machine learning-based Acute Lymphoblastic Leukemia (ALL) detection. This article presents a systematic
review of the recent advancements in this knowledge domain. Here, various artificial intelligence-based
ALL detection approaches are analyzed in a systematic manner with merits and demits. The review of these
schemes is conducted in a structured manner. For this purpose, segmentation schemes are broadly categorized
into signal and image processing-based techniques, conventional machine learning-based techniques, and
deep learning-based techniques. Conventional machine learning-based ALL classification approaches are
categorized into supervised and unsupervised machine learning is presented. In addition, deep learning-based
classification methods are categorized into Convolutional Neural Network (CNN), Recurrent Neural Net-
work (RNN), and the Autoencoder. Then, CNN-based classification schemes are further categorized into
conventional CNN, transfer learning, and other advancements in CNN. A brief discussion of these schemes
and their importance in ALL classification are also presented. Moreover, a critical analysis is performed
to present a clear idea about the recent research in this field. Finally, various challenging issues and future
scopes are discussed that may assist readers in formulating new research problems in this domain.

INDEX TERMS Acute Lymphoblastic Leukemia, blood cancer, classification, deep learning, machine
learning, segmentation.

I. INTRODUCTION

Leukemia is a blood cancer that affects white blood
cell (WBC) replication in the bone marrow. It causes an
increase in the number of abnormal WBCs, which leads
to a decrease in immunity [1]-[8]. WBC is an important
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component of blood like other two crucial components: Ery-
throcyte (Red Blood Cell) and platelet [1], [7], [9]-[11].
WBC contains a nucleus and cytoplasm, as presented in Fig.1.

Leukemia is classified mainly into two types: acute and
chronic [1], [2], [4], [6], [8], [10]-[12]. Acute Leukemia
develops very quickly and gets to the worse stage,
whereas chronic Leukemia takes comparably more time to
worsen. According to the French-American-British (FAB)
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FIGURE 1. Structure of WBC.

classification model, Acute Leukemia is further catego-
rized as ALL and Acute Myeloid Leukemia (AML) [8],
[10]-[12]. Similarly, chronic Leukemia is of two subtypes:
Chronic Lymphocytic Leukemia (CLL) and Chronic Myeloid
Leukemia (CML) [11]. Hence, Leukemia is of four types:
ALL, AML, CLL, and CML.

ALL is a fastly growing blood-cancer that severely
affects lymphoid progenitor cells in the bone marrow, blood,
and extramedullary sites [13]. In ALL, the number of
B lymphatic-cells is more than that of T-cells. B-cells are
responsible for preventing germs’ infection, whereas T-cell
kill the infected cells [14].

C

FIGURE 2. Healthy WBC and ALL subtypes: (a) Healthy and (b) L1; (c) L2
and (d) L3 -cells.

According to the FAB model, ALL can further be clas-
sified into three subtypes: L1, L2, and L3, as displayed in
Fig. 2 [12], [14], [15]. L1 is a small uniform cell with a
well-structured nucleus and little cytoplasm. L2 has an irreg-
ular nucleus with nonuniform cytoplasm. L3 has a normal
shape and size with an oval or round nucleus. It has a fair
amount of cytoplasm with vacuoles. It is relatively large
compared to L1 [15]. Adults above 50 years and children
below five years are in leukemia (ALL) higher-risk group.
Early disease diagnosis with appropriate treatment can save
the life.

Manual detection of hematological disorders like acute
leukemia is required a well-experienced expert physician/
doctor for the more accurate early detection. In addi-
tion, the complex nature of blood cells, presence of noise,
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blurring, weak edges, intensity inhomogeneity, cell overlap-
ping make the manual detection using microscopic analysis
of blood cells manually very difficult. Manual detection of
the hematological disorder is a time taking and error-prone
process [1], [2], [4], [6]-[10], [14], [16]-[20]. On the other
hand, recent advancements in artificial intelligence tech-
niques like machine learning and deep learning help to design
more accurate systems for detecting hematological disor-
ders. In conventional machine learning techniques, crucial
hand-crafted features (geometrical, color, texture features
along with the features extracted by employing Local Binary
Pattern (LBP) [21], Local Directional Pattern (LDP) [22],
Discrete Orthogonal S-Transform (DOST) [23], Gray Level
Co-occurrence Matrix (GLCM) [24] and Gray Level Run
Length Matrix (GLRLM) [25]) are exploited by more effi-
cient classification approaches to predict diseases more accu-
rately. In addition, in preprocessing and segmentation steps,
special care should be taken to suppress the above-mentioned
issues. However, in deep learning approaches, the extraction
of more significant deep features in addition to more efficient
classification is performed within a single neural network
system for achieving more accurate disease detection by nul-
lifying the effects of noise, blurring, weak edges, intensity
inhomogeneity, and cell overlapping up to a great extent.
Hence, more efficient computer-aided detection (CAD) sys-
tems help in more accurate early detection of disease.
It assists the doctor in proper disease diagnosis and treatment
planning to save valuable lives.

Computer vision-based systems have been developed in
the recent past to detect such hematological disorders.
Machine Learning and Deep Learning have emerged as a
preferred medical image analysis approach for more accu-
rate disease diagnosis [2], [4]-[11], [14]-[17], [26]-[35].
The basic steps in the conventional machine learning-based
detection and classification of Leukemia are: preprocessing,
segmentation, feature extraction, and classification, as pre-
sented in Fig. 3. Pre-processing is used for improving the
image quality. The objective behind segmentation is to extract
desired WBCs (by eliminating platelets and RBCs) and sep-
arate the overlapped cells [8], [10], [16], [17]. After this,
relevant features are extracted, and then a classifier is applied
to achieve a more efficient performance. This review article
presents a description of each step systematically.

4’{ Preprocessing H Segmentation H Fc;::“]zxg:;::;;nd H Classi:ﬁcatiun}—b
Output

Input
Image

FIGURE 3. Schematic of leukemia detection.

Very few literature reviews on the detection of ALL
are available [14], [36]-[38]. In 2016, Bagasjvara et al. [36]
presented a review on ALL detection in which they have
mainly discussed several image processing and classical
machine learning-based ALL detection approaches. They
have not analyzed deep learning schemes, transfer learn-
ing schemes, challenging issues, and future scopes in this
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direction. In 2020, Al-Dulami et al. [14] and anilkumar [38]
have done survey on various segmentation schemes for
ALL detection. In both these review works, the authors
have emphasized the discussion of several segmentation
approaches, whereas they have not focused on classification
schemes. They have more concentrated on classical image
processing schemes rather than advanced machine and deep
learning schemes. In 2020, a brief review work was presented
by Parthvi et al. [37]. In that review work, they have discussed
some popular machine learning and deep learning-based
ALL detection approaches. However, they have not discussed
advanced deep learning and transfer learning-based ALL
detection schemes. More importantly, the reviews are not well
structured as systematic categorization of segmentation and
classification schemes are absent. Moreover, discussion of
machine learning and deep learning schemes, dataset-wise
performance analysis of existing schemes, and observations
from the study are not presented in that review work.

Hence, it motivates us to present a systematic review of
the recent advancements in deep and machine learning-based
Acute Lymphoblastic Leukemia (ALL) detection. We give a
brief analysis of various segmentation, feature extraction, and
classification methods that help researchers get a brief idea
about Leukemia detection developments. Moreover, several
challenging issues and future scope in this research field are
also discussed.

The rest of the paper is structured as follows. Section 11, III
and IV present an overview of preprocessing, segmentation
methods, and feature extraction/ feature selection techniques,
respectively. A detailed analysis of machine learning and
deep learning-based classification approaches are presented
in Section V and VI, respectively. The validation measures
are discussed in Section VII, whereas a brief analysis of
datasets is illustrated in Section VIII. Section IX emphasizes
technical discussion. The critical analysis of the study is pre-
sented in Section X. Section XI focuses on various challeng-
ing issues, whereas Section XII emphasizes future scopes.
Finally, the paper is concluded in Section XIII.

Il. PREPROCESSING

The quality of acquired microscopic images relies on camera
type, microscope type, light source, capturing camera angle,
illumination variation, and noise. Hence, stain normalization
is a crucial preprocessing step that normalizes all stain slides
to deal with variations in capturing environments, particularly
lighting condition variations. It minimizes the illumination
and color variations due to different capturing environments
of microscopic images taken from different laboratories and
thus improving the segmentation and classification perfor-
mances [39], [40]. A simple way to deal with this issue is
histogram equalization or modified versions of it like adaptive
histogram equalization [10], [41] and Contrast Limited Adap-
tive Histogram Equalization [10], [42]. Gehlot et al. [40]
have presented an efficient coupled self-supervised frame-
work in which two U-Net-type modules are employed.
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The first module is applied for identity transformation,
whereas the second one is used for stain normalization.

The purpose of preprocessing is to improve image quality.
It is employed for denoising, deblurring, edge enhancement.
For example, Laplacian of Gaussian (LoG), or LoG-based
modified high-boosting (LoGMH) operation, is employed for
these purposes. Laplacian operation is applied for deblurring
and edge enhancement. However, it is noise-sensitive. Thus,
in LoG, a Gaussian filter is used before the Laplacian oper-
ation for suppressing the noise effect [1], [43]. LoGMH is a
modified version of LoG that hybridizes the benefits of LoG
with the benefits of high-boosting operation to improve the
performance further [1].

Moreover, data augmentation is applied as a preprocess-
ing step in machine learning and deep learning schemes to
suppress the overfitting issue. Data augmentation is usually
employed in the training phase to enhance training data
size by slightly modifying the existing data like padding,
re-scaling, horizontal or vertical flip, translation, random
rotation, zoom, and crop [2], [6], [7], [44]. Thus, it helps to
properly train a system, resulting in improved segmentation
or classification performance.

Ill. SEGMENTATION METHODS

This section describes several segmentation methods that
are employed to segment WBCs more precisely. It has an
essential role in overall performance and disease diagnosis.
The prime objective of segmentation is to extract desired
WBC:s (by eliminating platelets and RBCs) and separate the
overlapped cells. It mainly consists of three types of seg-
mentation approaches: signal and image processing based
techniques, machine learning-based techniques, and deep
learning-based techniques, as illustrated in Fig. 4. Usually,
machine learning and deep learning-based techniques deliver
better performance than the first one.

Segmentation

v

v

v

Signal and Image
Processing based
Segmentation

Conventional Machine
Learning based
Segmentation

Deep Learning based

Segmentation

—

—

Supervised
Machine Learning

Unsupervised
Machine Learning

Fully Convolutional
Neural Network

Transfer
Learning

FIGURE 4. ALL segmentation technique.

A. SIGNAL AND IMAGE PROCESSING BASED
SEGMENTATION

In this section, we discuss various signal and image
processing based WBC segmentation approaches:
thresholding-based techniques, morphological operations,
watershed-based techniques, circle/ ellipse-fitting-based tec-
hniques, active contour/ level set-based techniques. Though
our review work emphasizes deep and machine learning-based
ALL detection and classification, several signal and image
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processing-based conventional segmentation approaches are
discussed since these techniques are employed in various
machine learning-based classification models whose per-
formances have a significant role in overall classification
performance.

Thresholding-based segmentation is the simplest segmen-
tation method. It is suitable when the cells do not touch or
overlap one another and have a clear depth difference between
objects and background [45], [46]. Selecting an appropriate
threshold value is the main challenge, particularly due to
the complex nature of cells and intensity inhomogeneities
and overlapping cells. Several researchers have applied the
Ostu-based threshold method [45]-[47] to segment WBC.
Selecting an appropriate threshold value is the main chal-
lenge. In 2019, Mishra et al. [8] have employed the triangle
method for thresholding [48] to extract leukocytes from the
background.

Zhao et al. [46] have applied morphological operations
like erosion and dilation on them, where erosion eliminates
insignificant cells, and dilation grows the nucleus of WBCs.
Rawat et al. [34] used global thresholding and morphologi-
cal opening techniques for segmentation. Dorini et al. [49]
used morphological operators and scale-space analysis for the
segmentation of WBC cells. But, this gave only qualitative
analysis, and chances for misclassification were high. Self
Dual Multi-scale Morphological Toggle (SMMT) operator
was used by Dorini et al. in another paper [50], which gave a
more accurate segmented result than the earlier one.

Various researchers have employed the Watershed algo-
rithm to segment overlapped and touched cells [19], [51].
However, it faces an over-segmentation problem due to
cells’ irregular shape. Some researchers have applied a
marker-based watershed algorithm to segment overlapped
and touched cells more effectively and solve the above prob-
lem [8], [16], [17]. In this technique, we have first extracted
the marker, and then the marker is imposed on the gradient to
get the segmented cells [8], [16], [17].

Fadhel et al. [51] have suggested a circle Hough Trans-
form (CHT)-based technique to segment overlapped cells.
They found that it delivers superior performance to the
watershed algorithm. It is also faster than the watershed
algorithm. However, it is incapable of separating overlapped
elongated-cells perfectly. In 2020, Anita and Yadav pre-
sented an automated ellipse-fitting-based technique to detect
WBCs efficiently [52]. In 2021, Das et al. [1] have sug-
gested a hybrid ellipse-fitting model by integrating the advan-
tages of algebraic and geometric ellipse-fitting methods to
yield promising segmentation for the detection of AML,
ALL, and sickle-cell disease. Despite it giving a promising
ellipse fitting performance, it is unable to demonstrate excel-
lent cell-segmentation performance with accurate boundary
detection as normally, cells are not perfectly elliptical.

Active contour and level set-based methods are employed
to detect object boundaries properly and to achieve efficient
segmentation [53]-[57]. Contours are object boundaries that
define regions of interest [53], [57]. Emo ef al. [54] have

81744

employed a region-based active contour model for effective
segmentation of WBCs. However, an active contour suffers
from yielding perfect segmentation since it cannot man-
age topological variations: splitting and merging [55], [56].
The level set method is introduced to overcome this lim-
itation and able to represent the contour of complex
topology [55], [56]. Khadidos et al. [56] have suggested a
novel weighted level set method to deliver more accurate
medical image segmentation.

However, most of the signal and image processing-based
methods are unable to deliver more accurate segmentation
due to the complex nature of cells, intensity inhomogeneities,
and overlapping cells. Moreover, more accurate segmentation
can be achieved by hybridizing a recent active contour/ level
set method with the marker-based watershed algorithm. It is
one of the future scopes in this field.

B. CONVENTIONAL MACHINE LEARNING BASED
SEGMENTATION

The conventional machine learning-based segmentation
method is broadly classified into two types: supervised and
unsupervised. The details about these machine learning tech-
niques are discussed in Section IV. This section analyzes the
recent machine learning algorithm-based WBC segmentation
approaches that have an essential role in ALL detection and
classification.

1) SUPERVISED MACHINE LEARNING-BASED
SEGMENTATION

Supervised machine learning is a learning algorithm that
trains the machine using labeled data. Support vector machine
(SVM) [58], Artificial Neural Network (ANN) [59], [60], and
Random Forest [61] are more popular supervised learning
techniques.

Abdulhay et al. [62] have employed SVM to segment
WBC efficiently. Mohapatra et al. [63] have suggested a
Functional Link ANN (FLANN)-based WBC segmentation
approach. FLANN is a type of ANN that has a flat network
with no hidden layer [63]-[65]. It can solve the non-linear
problem better than the single-layer perceptron [63]. They
treat the segmentation as a pixel classification problem
and segment the nucleus, cytoplasm, and background quite
effectively.

2) UNSUPERVISED MACHINE LEARNING-BASED
SEGMENTATION
Unsupervised machine learning is a learning algorithm that
trains the machine using unlabeled/ unclassified data. The
unsupervised model works on its own to extract the features
and information without knowing the labeled/ class of the
data. K-means clustering [66], [67] and Fuzzy C-means clus-
tering (FCM) [68] are the two most popular unsupervised
machine learning-based techniques. The objective of these
clustering techniques is to obtain similar regions (clusters)
within the input image.

Several researchers have employed the k-means clustering
technique to segment WBCs efficiently, which has a vital
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role in ALL detection and classification [10], [11], [18], [29].
In 2020, Das et al. [10] have suggested a k-means based color
segmentation technique to extract WBC successfully. On the
other hand, Acharya et al. [69] have applied the k-medoid-
based segmentation approach to separate cytoplasm from the
nucleus. Though the k-medoid technique is slower than the
k-means, it achieves better segmentation performance and
more robust than k-means [69].

Mohapatra et al. [70] have employed FCM to segment
WBCs successfully. Since the FCM-based segmentation
depends on similarity criteria, it is prone to noise and intensity
inhomogeneity. Hence, it can’t achieve more accurate seg-
mentation, especially in the presence of noise and intensity
inhomogeneity [9], [71]. Chung et al. [71] have suggested
an improvised FCM that modifies membership functions
depending on spatial information to overcome the limitation.
Mohapatra et al. [72] have suggested a rough fuzzy c-mean
clustering-based WBC segmentation approach. It boosts the
segmentation performance by updating fuzzy membership
value depending upon cluster mean, unlike FCM. They have
observed that it outperforms k-means, k-medoid, FCM, and
rough c-means. MoradiAmin et al. [33] have applied FCM to
extract the nucleus of WBC. Jha and Dutta [73] have sug-
gested a hybrid WBC segmentation approach. It combines the
segmentation outputs of active contour and FCM to achieve
more efficient segmentation.

C. DEEP LEARNING-BASED SEGMENTATION

Recent advancement in deep learning makes it a pre-
ferred approach for image segmentation. Here, two major
types of deep learning-based segmentation schemes used
in ALL detection and classification, i.e., traditional deep
learning-based segmentation and transfer learning-based seg-
mentation approaches are discussed. The details about the
deep learning techniques are briefly analyzed in Section V1.

Wang et al. [74] have suggested a CNN-based WBC detec-
tion technique using a single shot multi-box detector [75]
and a modified You Only Look Once (YOLOV3) [76].
Mandal et al. [77] have presented a U-Net [78] based
semantic segmentation to detect overlapped nuclei.
Shahin et al. [79] have presented a transfer learning-based
segmentation/detection approach. Shahin et al. [79] have
presented three deep learning methods to classify five types
of WBCs: Monocyte, Lymphocyte, Basophil, Eosinophil,
and Neutrophil. Shahin et al. [79] have suggested a new
CNN model (WBCsNet) to detect WBCs more accurately.
It contains 3 convolution layers, 2 pooling layers, 4 activa-
tion (ReLu) layers, 2 fully connected layers, followed by a
softmax layer.

Automated and more precise nuclear segmentation has
an important role in improving overall classification and
disease detection performances [80]-[83]. Duggal ef al. [80]
have recommended deep belief network-based segmentation
schemes to detect nuclei of WBCs more accurately.

Roy and Ameer [84] have suggested a transfer
learning-based semantic segmentation approach to yield
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more accurate WBC segmentation. They have applied
DeepLabV3+ [84] to achieve more precise semantic seg-
mentation, where ResNet50 [85] is used as the segmentation
model.

IV. FEATURE EXTRACTION AND FEATURE REDUCTION

In this section, we discuss several feature extraction and
feature reduction approaches that are applied to extract signif-
icant features that have an essential role in ALL detection and
classification. We broadly divide the feature extraction into
two types: (i) conventional feature extraction; (ii) machine
learning and deep learning-based feature extraction. Usually,
feature extraction is followed by a feature reduction tech-
nique to select more significant features. Principal Compo-
nent Analysis (PCA) [86], Probabilistic Principal Component
Analysis (PPCA) [87], and Linear Discriminant Analysis
(LDA) [88] are some popular feature reduction techniques,
which are applied to improve the overall performance and
make the system computationally efficient.

A. CONVENTIONAL FEATURE EXTRACTION

Here, we discuss geometrical-, color-, and statistical-texture-
features. Moreover, extraction of important texture-fearures
by applying Local Binary Pattern (LBP) [21], Local
Directional Pattern (LDP) [22], Discrete Orthogonal
S-Transform (DOST) [23], Gray Level Co-occurrence
Matrix (GLCM) [24] and Gray Level Run Length Matrix
(GLRLM) [25] are also analyzed.

Several researchers have extracted crucial geometrical,
color, and statistical texture features to yield efficient
ALL classification [10], [18], [20], [29], [29], [34], [45],
[57], [89], [89]. Moshavash et al. [19] have extracted LBP-
based texture-features along-with geometrical and color
features to classify ALL efficiently. Jha and Dutta [73]
have applied LDP to extract efficient texture features.
Das et al. [10] have extracted vital geometrical fea-
tures: perimeter, area, rectangular bounding-box, minimum
bounding-ellipse, convex hull, and circularity. They have
extracted histogram-based color features. Moreover, they
have suggested GLCM and GLRLM-based feature extraction
technique to extract important texture features. They have
presented a PCA-based feature selection. Mishra et al. [17]
have presented GLCM-based feature extraction followed by
a PPCA-based feature selection method to classify malignant
and benign. Mishra er al. [8] have used DOST for feature
extraction, whereas a hybrid of PCA and LDA techniques is
applied for feature reduction.

B. MACHINE LEARNING AND DEEP LEARNING-BASED
FEATURE EXTRACTION
Machine learning and deep learning methods, particularly
transfer learning-based methods, are widely employed to
extract more significant features, which play a key role in
ALL classification.

Vogado et al. [35] have presented VGG-f [90]-based fea-
ture extraction followed by PCA-based feature reduction
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techniques to extract crucial features. Finally, they have
used an ensemble classifier to classify benign and malig-
nant efficiently. Vogado et al. [4] have applied AlexNet [91],
CaffNet [92], VGG-f [90] to extract efficient features. Then,
they have used gain-ratio to select more important features.

Shahin et al. [79] have suggested a transfer learning-based
feature extraction scheme, where they have applied Overfeat-
Net [93], AlexNet [91], and VGGNet [90] for feature extrac-
tion. Then, they have used Chi-squared or PCA-based feature
selection followed by SVM-based classification. In 2021,
Das et al. [6] have extracted essential features by utilizing the
best training model from the three modified ResNet models
presented by them. In 2022, Das et al. [5] have recommended
a MobileNetV2-SVM framework in which MobileNetV2 is
employed for feature extraction, whereas SVM is used for
efficient classification.

V. CONVENTIONAL MACHINE LEARNING-BASED
CLASSIFICATION

In this section, we discuss various conventional machine
learning based ALL classification approaches. Machine
learning is a sub-branch of Artificial intelligence, which uses
logical, statistical, and mathematical techniques to help a
machine learn from data without programming and from a
general principle of conclusion using data samples. That is,
a computer learns from its own experience by using the tech-
nique of artificial intelligence in pattern recognition. Thus,
the conclusions are mainly based on the data that we have
prior to the process. Usually, machine learning-based ALL
classification is either supervised or unsupervised, as shown
in Fig. 5. However, some researchers have suggested ensem-
ble or hybrid classifiers by combining the benefits of more
than one classifiers (supervised or unsupervised) or single
classifier with different kernels and parameters to boost the
performance. Here, we discuss all these techniques.

A. SUPERVISED MACHINE LEARNING

Supervised machine learning is a learning algorithm that
requires labeled data to properly train the algorithm for yield-
ing more efficient classification. This section describes some
popular supervised learning techniques: k-nearest neighbor
(k-NN) [94], Naive Bayesian Network [95], Multi-Layer Per-
ceptron (MLP) [96], Decision tree [97], Random Forest [98],
Support vector machine (SVM) [58], Artificial Neural Net-
work (ANN) [59], [60], which are employed for automatic
ALL classification.

1) K-NEAREST NEIGHBOUR

The distance between two data samples is used for their
classification or, in general, based on the nearest neighbors,
the decision is taken. Hence, the distance between identical
or similar data samples will be less than that of two separate
data samples [26], [94], [94], [99]. K-NN usually employs
Euclidean distance to chose the nearest neighbor and assigns
the respective class. Though KNN is easily implementable,
it becomes slower in large datasets, and it is also sensitive to
irrelevant parameters [100], [101]. Umamaheswari et al. [47]
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FIGURE 5. Machine learning-based ALL classification.

and Madhloom et al. [102] have applied KNN for effective
ALL classification.

2) NAIVE BAYESIAN

It is a standard supervised classifier in which the relation-
ship between variables is described using statistics, and
more specifically, the probabilities of features are made use
of [26], [95], [99]. Thus, rather than predictions, projections
of likelihood are made for the classification. In graph the-
ory, the variables are represented using graph nodes, and
the relationship between these variables is represented using
arcs. In the Naive Bayesian network, there will be only one
parent and several children who are independent of each
other [26], [95], [99]. Naive Bayes is computationally effi-
cient both in the training and testing phase. During the estima-
tion of probabilities, it ignores the missing values. Hence, the
final decision is not affected by these missing values, which
makes it more robust [99]. Sabino et al. [103] have applied
Naive Bayesian to classify Leukemia and five sub-types of
healthy WBCs: Basophil, Neutrophil, Eosinophil, monocyte,
and lymphocyte.

3) MULTI-LAYER PERCEPTRON (MLP)

MLP is a class of feed-forward ANN. It consists of multiple
layers of perceptrons (with threshold activation). An MLP
contains at least three layers of nodes: an input layer, a hidden
layer, and an output layer. Every node except input nodes
is a neuron that employs a nonlinear activation function.
MLP uses a supervised learning approach called backprop-
agation for proper training. Its multiple layers and nonlinear
activation differentiate it from linear perceptron [96], [104],
[105]. Multiple inputs are weighted in a perceptron, then an
activation function is applied, and a single result is produced
at the output [96], [104], [105]. Mathematically it is presented
as:

m
y =Y wixi +b) M
i=1
where, x is an input-vector, y is the output, w is the per-
ceptron’s weight vector, and b is the bias term. The acti-
vation function, ¢, is a nonlinear function like sigmoid.
Nazlibilek et al. [104] have applied MLP to achieve efficient
WBC classification, whereas Neoh et al. [105] have used
MLP to classify ALL effectively.
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4) DECISION TREE

As the name implies here, the data is represented in a tree
format; data sample labels as leaf nodes, and various char-
acteristics as internal nodes. Hence, Decision Tree (DT) is
basically follows a divide and conquer method for the classi-
fication purpose [26], [97], [99], [106].

In this scheme, a complex decision is divided into the
integration of various simpler decisions [107]. In DT, each
link is mutually distinct as well as exhaustive. A particular
pattern’s classification begins from a root-node that focuses
on a certain pattern’s property [108]. Different links are con-
nected to descendent nodes based on various possible values.
Then, a decision at the new node (descendent node) is taken
by treating it as the root of a subtree. This process will stop
when a leaf-node is reached [108].

A commonly used algorithm for decision tree classification
is C4.5 [109], [110]. EC4.5 [109] is a robust variant and
5 times better than C4.5 [111] but has the same decision tree
as that of C4.5. The training stage is faster than a neural net-
work, but it has no flexibility for modeling parameters [100].
Negm et al. [29] have employed a decision tree to achieve
efficient ALL classification. Ke er al. [112] have proposed a
Gradient Boosting Decision Tree-based classifier known as
LightGBM to yield efficient classification. Mandal et al. [31]
have employed the LightGBM model [112] to classify
Leukemia efficiently. They have observed that it gives better
performance than SVM.

The main disadvantage of DT is that a single tree provides
the prediction, which makes it noise-sensitive [113]. More-
over, a smaller data variation needs a lot of changes to produce
an optimal DT structure, thus making it comparatively unsta-
ble. Its performance can be boosted by efficiently combining
predictions of various trees [113].

5) RANDOM FOREST
Random forest (RF) is a more accurate, powerful, and widely
used Machine learning algorithm [61], [98]. It is a tree
structure-based classifier in which every tree depends on a
random vector’s value and the distribution of trees in the
forest [61], [98]. Its output (class of an object) is predicted
effectively by integrating the predictions of all the DTs.
Mishra et al. [17] have used an RF classifier to clas-
sify lymphoblasts into benign and malignant. In 2019,
Mishra et al. [8] presented an Adaboost-based RF (ADBRF)
for ALL classification. In ADBRF, RF [98] act as a base
classifier, whereas Adaboost [114] is an ensemble learning
technique employed to enhance prediction performance.

6) SUPPORT VECTOR MACHINES (SVM)

SVM is one of the most popular supervised machine learning
technique, widely used in machine learning for regression
and classification [58], [115]. It separates various classes
using hyperplanes. Its objective is to maximize the distance
between the hyperplane and every feature vector in such a
way that each feature-vector feels safe in the classification
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point of view. This can be achieved only when it satisfies:
yiwxi +b) > 1 @

where x; represents an input feature vector and y; denotes
the corresponding label or class belongingness. The feature
vector x; is called support vector only if y; (w.x; + b) = 1.
It has the most accurate performance when the data is linearly
classifiable. It actually converts a nonlinear problem into a
linear separation problem and thus leads to an easier classifi-
cation. To classify non-linearly separable data, mapping the
data into a higher-dimensional space can be made use of. The
selection of correct kernel function and parameters is crucial
in that case [26], [58], [100], [115]. Most of the researchers
use Radial basis functions (RBFs) as the kernel functions to
map the data into higher dimensional space [26], [100].

Various researchers have suggested SVM-based ALL clas-
sification techniques to classify benign and malignant effi-
ciently [4], [10], [11], [14], [16], [31], [33], [34], [45], [70].
MoradiAmin et al. [33] have employed an ensemble of SVM
classifiers with various kernels and parameters to classify
three ALL subtypes: L1, L2, L3, and healthy WBC suc-
cessfully. Its amazing generalization ability, discriminative
power, and optimal solution make it a preferred machine
learning technique [100].

7) ARTIFICIAL NEURAL NETWORKS (ANNSs)

Artificial neural networks (ANNSs) are one of the most
popular neural network-based classifiers. It is similar to the
network of neurons found in the human brain [59], [60].
It estimates output from a large number of input data. ANN
can be supervised, unsupervised, or reinforcement machine
learning technique depending on the training process and
learning rule. A back-propagation neural network (BPNN)
is a popular supervised ANN, whereas a self-organizing
map (SOM) is a popular unsupervised ANN. In supervised
ANN, the backpropagation algorithm boosts the learning
ability of ANN by comparing the produced output to the
desired output. Thus, it optimizes the error [26], [59], [60],
[116]. Generally, an ANN comprises an input layer, one or
more hidden layers, and an output layer. A sum of weighted
inputs and bias terms is applied to a non-linear unit (activation
function). An activation function helps the NN to learn com-
plex patterns and predict the desired output. The significant
feature of an effective activation function is its ability to add
nonlinearities into a NN. Sigmoid, Tanh, ReLU, and Softmax
are some popular nonlinear activation functions.

ANN can be a feedforward or feedback neural network.
In MLP, no recurrent connection exists, whereas, in ANN,
there may have recurrent connections or may not. Parameter
sharing is not occurred in MLP, whereas in some specific
types of ANN like CNN, parameter sharing is performed.

Negm et al. [29], Acharya et al. [69], and Al-jaboriy et al.
[117] have employed ANN to achieve efficient ALL classi-
fication. Mohapatra et al. [63] have applied Functional Link
ANN (FLANN) to classify ALL effectively. FLANN is a
type of ANN that has a flat network having no hidden
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layer [63]-[65]. In this network, nonlinearity is added by
improving input patterns with nonlinear functional expan-
sion. Nonlinear functional expansions like polynomial and
trigonometric enhance the dimensionality of an input vector,
resulting in improved discrimination capability. Appropriate
selection of functional expansion has an important role in the
overall performance of FLANN [63]-[65].

B. UNSUPERVISED MACHINE LEARNING

Unsupervised machine learning is a learning algorithm that
trains the machine using unlabeled/ unclassified data. The
unsupervised model works on its own to extract the features
and information without knowing the label/ class of the data.
Clustering is a widely used unsupervised machine learning
technique. Its objective is to decide the class belongingness
based on similarities between objects. There are mainly two
types of clustering: hard clustering and soft clustering.

1) HARD CLUSTERING
Hard clustering is a type of clustering where each data strictly
belongs to one class like in K-means and K- medoid.

a: K-MEANS

K-Means clustering is an unsupervised method that decides
a pixel or object’s class belongingness based on the nearest
mean [9], [10], [66], [67]. Algorithm 1 presents the k-means
clustering algorithm. It minimizes the objective function to
make it more suitable for convex clusters. However, it is not
preferable for arbitrarily shaped ones [72].

Algorithm 1 K-Means Clustering

Input: Input data (Images)

Output: Resultant clusters

Begin

1: Choose the number of clusters, K

2: Generate K clusters. Select K centroid points randomly
or using an effective heuristic scheme.

3: Update every cluster by allotting each data-point to the
respective cluster based on the centroid of a cluster near
to it.

4: Compute the centroid of all updated cluster (group).

5: Estimate the distance between every data point and every
cluster centroid.

6: Update every cluster by allotting each data-point to the

respective cluster based on the centroid of a cluster near
to it.

7: Repeat step-4 through step-6 till convergence of the
algorithm (i.e., when we get a difference between two
consecutive means less than a threshold for all clusters
or we reach the predefined number of iterations).

End

Usually, it is preferred for segmentation and classification
tasks where the available data is unlabeled. Other more effi-
cient supervised schemes are preferred over it while labeled
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data is present due to their superior performance as they are
efficiently trained using the labeled data.

Laosai et al. [18] have applied the k-means clustering
technique to classify acute Leukemia. It effectively classifies
healthy, AML, and ALL with approximately 97% accuracy.

b: K-MEDOID

Similar to k-means, k-medoid optimizes the squared error.
However, in k-medoid, the most centrally located datapoint
(from the given datapoints) is selected as cluster-center,
known as medoid. Hence, it has more immunity to noise and
outliers; thus much better than K-Means [72], [118].

2) SOFT CLUSTERING

Soft clustering is a type of clustering technique, where data
may belong to more than one clusters. Here, we discuss some
popular soft clustering methods: Fuzzy C-Means (FCM) [68],
Rough C-Means (RCM) [119], and Rough-Fuzzy C-Means
(RFCM) [119].

a: FUZZY C-MEANS CLUSTERING (FCM)

FCM is a popular unsupervised learning method [68].
In 1973, the first soft partitive algorithm was devel-
oped by Dunn and then got improved into the FCM.
A fuzzy membership function is used to estimate the degree
of belongingness of an object/ pixel corresponding to a
cluster [68], [72]. An objective function is also formed, which
should be optimized to form the partitive matrix. It is mathe-
matically represented as:

N M
Z=" ()" 1% —cill® 3)

i=1 j=1

where ¢; is the jth cluster centre, 1 < n < oo is the
degree of fuzziness, ||.|| is the euclidean distance norm, and
u € [0, 1] is the membership function of the ith data pattern
to it. We have the equation for ¢; and u;; as,

Zﬁ\;l(ﬂji)nxi
= @

iz ()"

1
Wji = ©)
" Sou (dji/di) ¥ =D
where,

dji = Xk — cil® (6)

Viswanathan et al. [120] have suggested an FCM-based ALL
classification approach.

b: ROUGH C-MEANS (RCM)

By considering each class as a rough set, the idea of K-Means
is extended into RCM [72], [119]. The lower and upper
approximations of a rough set X is given by BX and BX,
respectively. Objects in a rough set are classified into lower
approximation if it clearly satisfies a given vague definition,
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whereas it is classified into upper approximation if satisfy-
ing the definition is still ambivalent. These two approxima-
tions result in objects in rough boundaries [72]. RCM can
be completely defined depending upon the weight factors
(Wiow, Wyp) and the threshold (7). T is the relative distance
between data and cluster centroids. Tuning of these parame-
ters is crucial for the segmentation process [72], [119].

¢: ROUGH-FUZZY C-MEANS (RFCM)

RFCM was developed by integrating the FCM concept into
the RCM to boost the performance [72], [119]. By using the
membership function, we can actually segment an image,
where the membership value w;; of a data sample X; is inte-
grated into the cluster mean c; relative to all other means c;.
There is no need to use the Euclidean distance dj;. A better
segmentation accuracy is achieved by incorporating fuzziness
into RCM [72], [119].

Unsupervised learning techniques don’t need labeled data
to classify data/ objects efficiently. However, the selection of
an appropriate number of clusters to yield excellent perfor-
mance is still challenging.

C. ENSEMBLE CLASSIFIER

An ensemble classifier can be developed by using more than
one classifiers or using a single classifier with different kernel
functions and parameters. It is used to improve classification
performance by combining the benefits of multiple classifiers
or the benefits of multiple kernels [121]. Adaboost is an
example of an ensemble classifier that combines classifiers
of the higher error rate to produce a classifier of lower
error rate [8], [114]. Mohapatra et al. [121] have presented
an ensemble classifier (ensembles of KNN, MLP, and SVM
classifiers) to classify malignant and benign. They observed
that it outperforms KNN, MLP, and SVM since it retains
these three methods’ benefits. However, it has also become
computationally expensive. Moshavash et al. [19] have sug-
gested two ensemble classifiers: Ensemblel (ensemble of
KNN, Decision tree, SVM, and NaiveBayes classifiers) and
Ensemble?2 (it is developed by using five SVM kernels: poly-
nomial, linear, Gaussian radial basis, multi-layer perceptron,
and quadratic).

In 2019, Mishra et al. [8] presented an Adaboost-based
RF (ADBREF) for ALL classification. In ADBRF, RF [98] acts
as a base classifier, whereas Adaboost [114] is an ensemble
learning technique employed to enhance prediction perfor-
mance. Hence, the combination of RF (as a weak learner)
and Adaboost yields better performance. Vogado et al. [35]
have applied an ensemble of three classifiers (Multilayer
Perceptron, SVM, and Random Forest) to classify benign and
malignant efficiently. MoradiAmin et al. [33] have employed
an ensemble of SVM classifiers with various kernels and
parameters to classify three ALL subtypes: L1, L2, L3, and
healthy WBC successfully. Though the ensemble classifier
yields superior performance than the employed individual
classifier, it becomes computationally slow.
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D. HYBRID CLASSIFIER

In the testing phase of a hybrid classifier (a hybrid of two
classifiers), the second classifier executes only for a spe-
cific situation (if the first classifier yields poor performance
than a predefined label). Thus, it is faster than an ensem-
ble classifier. Hyperrectangular composite neural networks
(HRC-NNs) is a hybrid combination of neural networks
with a rule-based approach. It consists of crisp if-then
rules [89], [122]. Su et al. [89] have applied HRC-NNs to
classify WBCs effectively.

VI. DEEP LEARNING-BASED CLASSIFICATION

Medical image analysis using deep learning methods is get-
ting remarkable attention because of its efficient perfor-
mance [2], [4]-[7], [26], [27], [123], [124]. Here, we discuss
three types of deep learning-based classification methods:
Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), and the Autoencoder, as shown in Fig. 6.
CNN is further subdivided into conventional CNN and Trans-

fer learning.
Deep Learning based
ALL Classification

v v v

Convolutional Neural Recurrent Neural

Autoencoder
Network (CNN) Network (RNN)
[
Conventional Transfer Learni Other Advancements
CNN ransfer Learning i ONN

FIGURE 6. Deep learning-based ALL classification.

A. CONVOLUTIONAL NEURAL NETWORK (CNN)

CNN is the most popular deep learning scheme. It is a Neural
Network with multiple layers, and it resembles the visual
cortex. It works better for correlated multidimensional data
inputs like images and thus helps to get the most relevant
features out of it without correlation. In CNN, weights are
shared adaptively to perform convolution operations on an
image, unlike MLP [27].

1) CONVENTIONAL CONVOLUTIONAL NEURAL

NETWORK (CNN)

In conventional CNN, convolution layers extract generic fea-
tures, whereas the deeper layers are incorporated with target-
specific features. Hence, features are gradually transformed
from generic to target specific [125]. It consists of various
layers: an input layer, convolutional layer, pooling layer,
fully connected layer, and a classification layer, as displayed
in Fig. 7.

a: INPUT LAYER
In this layer of a CNN model, inputs (images) are given. Here,
the size of the inputs is also defined.

b: CONVOLUTION LAYER
As its name signifies, a convolution operation is performed
in this layer. It is done by performing a dot multiplication
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FIGURE 7. Conventional CNN architecture.

between kernel pixels with the respective image pixels on
which the kernel pixel is currently lying and then adding all
these results to evaluate a convolution output at a particular
pixel. Then, the kernel slides over the whole image based on
the predefined stride. The objective of this layer is to extract
the different features from its previous layer [26].

¢: ReLu LAYER

ReLu stands for Rectified Linear Unit. This layer is employed
to enhance non-linearity in the CNN model. Here, ReL U acti-
vation functions are employed to add nonlinearity instead of
traditional tanh or sigmoidal activation functions [91]. ReLU
does not saturate near 1, unlike these two functions. More
importantly, it makes the network faster with maintaining
similar accuracy by improving the learning speed [26], [91].
It is a popular activation function since it is easy to use and
is successful at eliminating the drawbacks of other formerly
well-liked activation functions.

d: POOLING LAYER

Pooling or sub-sampling is done to reduce the dimensionality
of the image, which decreases the image’s feature dimension
to minimize the computational cost and make the learning
faster. It is also used to suppress over-fitting issues. In CNN,
Max Pooling and Average Pooling are two popular methods
of pooling [26].

(i) Max Pooling: It gives the maximum value from the
region of the image upon which the pooling kernel is applied.
Its job is to suppress the noise by rejecting all the noisy
activations, as well as reduce the dimensionality [26].

(i1) Average Pooling: It gives the mean of the values from
the region of the image upon which the pooling kernel is
applied [26].

e: FULLY CONNECTED LAYER

A number of fully connected layer(s) is added after the con-
volutional and pooling layers in the CNN model. As the name
implies, every neuron in this layer connects to every neuron of
the previous layer. This layer integrates all of the information
that the earlier layers had learned to detect the larger pat-
terns. The final fully connected layer integrates information
(features) for image classification. Thus, the output size of the
final fully-connected layer is selected the same as the number
of classes that we intended to classify the input data. SoftMax
activation is usually employed in the final fully-connected
layers to determine probabilities of class belongingness [26].
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f: CLASSIFICATION LAYER

It is the last layer in the CNN model, which exploit the
probabilities estimated by the SoftMax activation function for
every input to predict the class effectively [26].

Banik et al. [3] have recommended a CNN-based ALL
classification method. In this method, the first and last
layer features are combined. The dropout layer is used to
avoid overfitting. In 2020, Jha and Dutta [73] presented
a Chronological Sine Cosine Algorithm (SCA)-based deep
CNN model to classify ALL successfully. Shahin ez al. [79]
have proposed a new CNN-based framework (WBCsNet) to
classify WBC efficiently. Claro et al. [126] have suggested a
deep-learning network (Alert-Net). It consists of 5 convolu-
tion layers, two fully connected layers, and a softmax layer.

Conventional CNN needs a huge dataset to achieve
outstanding performance. Since publicly available stan-
dard medical datasets are in small size, it is unable to
properly fine-tune the weights to extract more important
target-specific features efficiently. Thus, it yields relatively
poor performance.

2) TRANSFER LEARNING

Recently, transfer learning emerges as a rapidly growing
approach in the medical imaging field due to its excellent
performance [4], [27], [79], [126]. Transfer learning has
the advantage that it does not require a large dataset for
the training purpose since it makes use of a pre-trained
network and transfers its knowledge or weights to the
target-domain tasks (medical imaging tasks). Hence, in the
target-domain, only fine-tuning of these pre-trained networks
are required. Thus, it yields outstanding performance even
for small datasets [4], [27], [79], [126]. Here, we discuss
some popular transfer learning approaches: AlexNet [91],
CaffNet [92], VGGNet [90], GoogLeNet [127], ResNet [85],
MobileNet [128], MobileNetV2 [129], and Xception [130].

a: AlexNet

AlexNet is a famous transfer learning technique. It was devel-
oped by Krizhevsky et al. [91] in 2012. It has five convolu-
tion layers and three fully connected layers, as displayed in
Fig. 8. Each convolution layer is followed by ReLU activa-
tions (add nonlinearities) and a max-pooling layer (reduce
over-fitting) [4], [57], [84], [91].

2088 2088

Max 128 Max pooling
pooling pooling

FIGURE 8. AlexNet architecture [91].
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b: CaffNet

It was created by Berkeley Vision and Learning Cen-
ter(BVLC). Similar to AlexNet, it has five convolutional
layers and three fully connected layers. It differs from
AlexNet in terms of an order of pooling layer and
normalization [4], [92].

c: VGGNet

It became popular in 2014 because of its uniform architec-
ture (stuck to a filter-size 3 x 3). Here, a block of filters
is employed instead of a convolution layer. It boosts non-
linearities and optimizes the receptive field by employing
3 x 3 convolutions in succession, as presented in Fig. 9. The
succession of two 3 x 3 and three 3 x 3 convolution layers
produce receptive fields of 5 x 5 and 7 x 7 convolution layers,
respectively. VGGNet deals with around 138 million amount
of parameters. VGG16 and VGG19 have 16 and 19 weighted
layers, respectively [90].

2:x2 2x2

3x3 Conv|3x3 Conv . 3x3 Conv |3x3 Conv |3x3 Conv i
Pooling Pooling

(a) (b)

FIGURE 9. Convolution blocks: (a) Block with two 3 x 3
convolution-layers, (b) Block with three 3 x 3 convolution-layers.

d: GoogleNet

Szegedy et al. [127] have presented a novel GoogleNet
architecture that uses an inception module for dimensionality-
reduction. The inception module uses a convolutional block
that has various filter sizes. The inception module is presented
in Fig. 10. As presented in Fig. 10 (b), an efficient incep-
tion module is suggested in GoogLeNet architecture [127].
It becomes computationally efficient by applying 1 x 1 con-
volutions prior to 3 x 3 and 5 x 5 convolutions that yield
bottleneck architecture.

A=

5x5 Conv.

1x1 Conv

Previous.
Layer

Previous Filter Filter
Layer Concatenation Concatenation

33 Max-
Pooling

33 Max-
Pooling

(a) Inception Module, Naive Version (b) Inception Module with Dimensionality Reduction

FIGURE 10. Inception module.

e: ResNet
ResNet was created by He er al. [85] in 2015, a very deeper
network due to many layers. They have recommended
skip-connection to overcome vanishing gradient issues,
which gives an alternative gradient flow path, as shown
in Fig. 11.

The residual factor, F(x) is presented as:

Fx)=H(x)—x @)
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FIGURE 11. Residual learning block.

where, x and H(x) symbolize the input and oupt of the
residual block, respectively.

More importantly, in this model, they have recommended
learning of residual factor, F'(x), instead of the residual block
output, H(x), resulting in faster learning and a faster system
as F(x) is very small compared to H(x).

f: MobileNet

Wang et al. [128] have created a lightweight MobileNet
architecture. Depth-wise separable convolution is achieved
by applying depth-wise convolution before point-wise convo-
lution to make the system computationally efficient, as shown
in Fig. 12. In depth-wise convolution, convolution is individ-
ually performed on every input channel. Point-wise convolu-
tion is responsible for combining the outputs of depth-wise
convolution linearly. They have introduced width and reso-
lution multipliers to make the model faster [128]. Moreover,
width is employed for efficiently producing a thicker/ thinner
network [128].

Depthwise Convolution

™ ™
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FIGURE 12. Depth-wise separable convolution [128], [129].

g: MobileNetV2

It is a modified version of the MobileNet model, where
inverted residual bottleneck structure is introduced. It also
uses depth-wise separable convolutions, width, and res-
olution multipliers to make the model computationally
fast [129]. In this architecture, two blocks: MobileNetV?2
block 1 (MVB1) and MobileNetV2 block 2 (MVB2), are
suggested to make the faster as well as to improve the
performance, as presented in Fig. 13 [129]. As displayed
in Fig. 13 (a), MVBI represents an inverted-residual-
bottleneck-structure with stride 1, where a skip connection is
provided between two bottleneck layers. Hence, it integrates
the benefits of both bottleneck and residual structure [129].
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FIGURE 13. MobileNetV2 blocks: (a) MVB1 and (b) MVB2.

Ontheotherhand, MVB2 represents a bottleneck structure
with stride S = 1 or 2 [129].

h: XCEPTION

Xception is a depth-wise separable convolution-based trans-
fer learning method. It consisting of 14 modules and contains
36 convolution layers in total. All of these modules, except the
first and last modules, have linear residual-connections [130].

i: ShuffleNet

Zhang et al. [131] have recommended a lightweight faster
ShuffleNet framework in which group convolution is also
employed on 1 x 1 layers. The main novelties of this model are
the introduction of the ShuffleNet unit and Channel shuffle
for group convolutions to make the model faster. ShuffleNet
unit exploits channel shuffling to produce a faster transfer
learning model [7], [131]. Moreover, it also boosts the per-
formance by sharing information among groups because of
channel shuffling.

Shafique and Tehsin [15] have employed AlexNet [91] to
classify WBCs into four classes: healthy, L1, L2, L3. It not
only classifies healthy and ALL but also efficiently clas-
sify three subtypes of ALL. Yu et al. [30] have presented an
ensemble transfer-learning-based ALL detection approach.
They have ensembled VGG-16 [90], InceptionV3 [127],
VGG-19 [90], ResNet50 [85], and Xception [130] to clas-
sify WBCs effectively. Shahin et al. [79] have applied fine-
tuned LENet [132] and AlexNet [91] for efficient WBC
classification.

Mallick et al. [133] have presented five-layered deep
CNN-based ALL and AML classification model. Roy and
Ameer [84] have used AlexNet [91] to classify subtypes of
WBC successfully. Claro et al. [126] have presented a deep-
learning-based Alert-Net network. They have proposed two-
hybrid networks: Alert-Net-R and Alert-Net-X by combining
Alert-Net with ResNet [85] and Xception [130], respectively.
They further modify these two networks by removing a
dropout layer, which results in two new networks: Alert-Net-
RWD and Alert-Net-XWD.

81752

Vogado et al. [35] have presented VGG-f [90]-based fea-
ture extraction followed by PCA-based feature reduction
techniques to extract crucial features. Finally, they have
employed an ensemble classifier to classify benign and malig-
nant efficiently. Vogado et al. [4] have applied AlexNet [91],
CaffNet [92], VGG-f [90] to extract efficient features. Then,
they have used gain-ratio to select more important features.

Shahin et al. [79] have suggested transfer learning-based
feature extraction scheme, where they have applied Overfeat-
Net [93], AlexNet [91], and VGGNet [90] for feature extrac-
tion. Then, they have used Chi-squared or PCA-based feature
selection followed by SVM-based classification. In 2021, Das
and Meher [7] have suggested a ShuffleNet-based ALL detec-
tion model, which yields promising performance by retaining
advantages of channel shuffling, depthwise separable con-
volution, and group convolution. Genovese et al. [134] have
recommended a VGG16-based ALL classification model in
which an adaptive unsharpening technique is employed for
image enhancement.

In 2021, Mondal er al. [135] have suggested an ensem-
ble model by ensembling five popular transfer learning
techniques: DenseNet, InceptionResNet-V2, VGG-16, and
MobileNet. Though it achieves comparatively better per-
formance than the above five transfer learning techniques,
it is computationally expensive. To overcome this issue,
in 2021, Das and Meher [2] have suggested a new hybrid ALL
detection model by combining the advantages of ResNet18
and MobileNetV2. It gives promising performance and is
faster than ensemble techniques since the second classifier
(ResNet18) is executed while MobileNetV?2 depicts relatively
poor performance.

B. OTHER ADVANCEMENTS IN CNN

Recently, several other efficient, faster CNN models have
been suggested, along with transfer learning models.
You only look once (YOLO) [136], YOLOv2 [137],
YOLOv3 [138], and YOLOv4 [139] are some popular
advanced faster CNN models. YOLO is an effective CNN
method that becomes computationally efficient by employ-
ing a CNN architecture to simultaneously perform localiza-
tion and classification tasks. Hence, it yields faster object
detection [136]. It applies a convolutional layer to predict
the location of a bounding box. However, it is suffering
from a localization error issue [137]. YOLOV2 is a modi-
fied version of YOLO that employs anchor boxes instead of
the convolutional layer to mitigate localization error. Hence,
it results in better object detection and classification [137].
YOLOV3 is an improved version of YOLO that applies a
logistic regression-based prediction approach to perfectly
detect bounding boxes [138]. Ai-Qudah and Suen [140]
have employed YOLOv2 [137] to classify healthily and
ALL efficiently. YOLOv2 [137] is an improvised version
of YOLO [136] that boosts both precision and speed. They
notice that YOLOv2 [137] with random resize outperforms
YOLOV3 [138] and YOLOV?2 [137] without random resize.
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In 2020, Bochkovskiy et al. [139] have proposed the
YOLOv4 model, in which cross-Stage-Partial-connections,
weighted-Residual-Connections, cross mini-Batch Normal-
ization, mish-activation, and self-adversarial-training is
employed to boost the performance. In 2021,
Khandekar et al. [141] have suggested the YOLOv4-based
ALL classification model to classify healthy and ALL effi-
ciently as it retains all the benefits of YOLOv4, as mentioned
above.

In addition, several CNN-based advanced schemes are
developed by various researchers for efficient disease diag-
nosis, particularly for cancer detection [40], [142]-[144].
Gehlot et al. [142] have suggested two-module deep learn-
ing ALL classification framework. In one module, compact
CNN is employed that acts as the main classifier, whereas
in another module, kernel SVM is applied that behaves as
an auxiliary classifier. Duggal et al. [143] have presented an
efficient CNN-based cancer detection system in which a
stain deconvolutional (SD) layer is introduced to convert
microscopic images to Optical Density (OD) space. It is also
responsible for deconvolving these OD images by backprop-
agation learning to produce tissue-specific stain-absorption
quantities as input to the next layer.

C. RECURRENT NEURAL NETWORK (RNN)

RNN is a deep learning technique that uses the current
state’s output to evaluate the next state’s output. Hence, the
effect of feedback in the network made it popular in the
field of streaming data [27]. Bidirectional RNN [145], long
short-term memory (LSTM) [146].

Bidirectional RNN is a modified version of RNN that
can train the data both in positive and negative time direc-
tions [145]. LSTM [146] is an efficient RNN technique that
can overcome the vanishing gradient issues. In LSTM, long-
term information is stored in memory-cells, whereas concep-
tual information is learned to make the classification efficient.
It uses a particular kind of memory block in place of nonlinear
hidden units, unlike conventional RNN [146], [147]. In 2019,
Shah et al. [148] suggested an efficient deep learning model
by integrating the benefits of transfer learning (AlexNet) and
RNN (LSTM).

D. AUTOENCODER

Autoencoder is a deep learning technique that transforms
input to output with an optimum error. It maps a higher
dimensional input into a lower-dimensional output [27], [57].
Usually, the input of the autoencoder is images or feature
vectors. It comprises an encoder, decoder, and a loss func-
tion. Both encoder and decoder are neural networks. The
encoder converts input (X) to output (¥) based on hidden
layer size. The decoder is used to predict X from Y. Internally,
an autoencoder consists of a hidden layer H, which describes
a code employed for representing the input [149]. Its encoder
is represented as:

F,:X—>H (®)
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Hence,

H =F,X) ©)
Similarly, the decoder is expressed as:

Fg:H—Y (10)
Thus,

Y =Fq(H) (In

where, F, and F; represent the encoder function and decoder
function, respectively. Fig. 14 represents the general architec-
ture of an autoencoder.

FIGURE 14. The architecture of an autoencoder.

If the learning of an autoencoder is simply designed to
get Fy (F, (X)) = X everywhere, then it is not so useful.
In contrast, it is designed for coping the input approximately,
i.e., coping only input that resembles the training data. This
model is designed to copy the particular aspects of input
in a priority manner. Usually, an autoencoder learns crucial
properties of data [149]. Hegde et al. [S7] have employed
autoencoder to classify WBCs into: monocyte, lymphocyte,
basophil, eosinophil, neutrophil, and unhealthy WBC.

VIl. PERFORMANCE MEASURES

The mathematical representation of various performance
measures that have an essential role in comparative
quantitative performance analysis is presented in Table 1.
True positive (TP) presents the number of properly-identified
ALL-affected-pixels. True Negative (TN) depicts accurately
identified healthy-pixels. FN presents the number of inac-
curately detected healthy-pixels. FP presents the number of
falsely detected ALL-affected-pixels.

TABLE 1. Performance measures.

Mathematical

Performance Measures Representation
Specificity or True TN
Negative Rate (TNR) (TN+FP)
Sensitivity or Recall or TP
True Positive Rate (TPR) (TPYFN)
Precision %
Accuracy W%r%
F1 Score %
False Positive Rate (FPR) 1 — speci ficity
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TABLE 2. ALL datasets.

Datasets Description
It has 108 images that contain multiple leukocytes. Out
ALLIDB1 of these 108 images, 59 are healthy, and 49 are ALL

[28] -affected images.

Link- https://homes.di.unimi.it/scotti/all/

It has 130 healthy and 130 ALL affected images. Each
image contains a single leukocyte.

Link- https://homes.di.unimi.it/scotti/all/

It contains 25 ALL, 40 AML, and 23 other types of
Atlas images [126]. Link-
http://www.hematologyatlas.com/principalpage.htm

It consists of two sets of data. In first set, it contains 367
microscopic images (without argumentation). In another

ALLIDB2
[28]

BCCD set, it contains 12444 images (with argumentation) [3].
Link- https://github.com/Shenggan/BCCD_Dataset
It contains 15000+ cancer cell images of B-Lineage
C-NMC ALL (B-ALL) along with healthy images. [150].

Link-
https://competitions.codalab.org/competitions/20395

VIIl. DATASET
Table 2 represents various publicly available standard
datasets. Among these datasets, ALLIDB1 and ALLIDB2
datasets are two quite popular ALL datasets.

Among all these available datasets, ALLIDB1 and
ALLIDB? are the most popular standard datasets.

IX. TECHNICAL DISCUSSION

In this section, we demonstrate a comparative performance
analysis of various deep and machine learning methods that
are employed for the detection and classification of ALL.

Here, a comparative analysis is performed using the results
as presented in their respective work. A comparative anal-
ysis of recent advancements in machine learning and deep
learning-based ALL detection and classification is presented
in Table 3.

Table 4 and Fig. 15 illustrate the segmentation performance
using BCCD, whereas Table 5 and Fig. 16 represent the seg-
mentation performance in ALL-IDB2 datasets. These tables
and figures indicate the CNN-based segmentation model
suggested by Banik et al. [3] yields superior performance in
both the datasets with an accuracy of 99.42% and 98.61%,
respectively. It yields good performance due to the fusion of
features of the first and last convolution layers.

Table 6 and Fig. 17 represent machine learning-based
ALL classification performance in ALL-IDB1 dataset. They
indicate the ADBRF-based ALL classification approach
suggested in [8] outperforms other machine learning
approaches. The DOST-based feature-extraction before PCA-
LDA-based feature-selection helps to extract more signifi-
cant features, whereas ADBRF-based classification results
in more efficient ALL classification. Hence, it achieves
superior performance with the best sensitivity (100.00%)
and best accuracy (99.66%). The SVM-based classification
along with GLRLM-based feature extraction followed by
PPCA-based feature selection recommended in [16] depicts
the second-best accuracy (96.97%).

On the other hand, the ALL detection approaches pro-
posed in [10] and [17] deliver similar accuracy performance
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FIGURE 15. Graphical representation of segmentation performance using
BCCD dataset.

[152] [153] [104] [154] El

W Precision W Specificity Sensitivity Accuracy

FIGURE 16. Graphical representation of segmentation performance using
ALLIDB2 dataset.

(96.00%). The SVM-based ALL classification model recom-
mended in [10] integrates benefits of color and shape features
with GLRLM and GLCM-based texture features along with
PCA-based feature selection that helps to achieve 93.06%
specificity and 92.64% accuracy. The RF-based model sug-
gested in [17] yields the best specificity (99.56%), the best
accuracy(99.60%) and the best F1 Score (0.9973) among all
machine learning-based ALL classification models. In con-
trast, it achieves poor sensitivity performance (86.50%) due to
higher false negatives. The ensemble classifiers: E1 (ensem-
ble of NaiveBayes, Decision tree, KNN, and SVM) and E2
(ensemble of SVM kernels: linear, polynomial, Gaussian
radial-basis, quadratic, and multi-layer perceptron) suggested
in [19] yield the best sensitivity (100%), whereas they give
poor specificity, precision, and accuracy performances due to
high false positives.

Table 7 and Fig. 18 illustrates deep learning-based
ALL classification performance in the ALL-IDB1 dataset.
It indicates hybrid ALL detection model proposed in [2]
outperforms others with the best specificity, precision,
accuracy, and F1 Score performances by combining the
advantages of ResNetl8 (residual learning and skip con-
nection) and MobileNetV2 (linear bottleneck architecture,
depthwise separable convolutions, and inverted residual).
Moreover, MobileNetV2-SVM framework-based ALL clas-
sification scheme suggested by Das eral. [S] also yields
excellent performance with the best accuracy of 99.39% and
the best sensitivity of 100.00%. In that scheme, the bene-
fits of the MobileNetV2-based feature extraction (linear bot-
tleneck architecture, depthwise separable convolutions, and
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TABLE 3. A comparative analysis of recent advancements in deep and machine learning-based detection and classification of ALL.

Refer- Segmen- Features . Accuracy
ence Year tation Extarction Reduction Classifier Dataset (%)
Ostu’s Shape, texture,
[34] 2017 Thresholding and color — SVM ALL-IDB1 89.80
(7] | 2017 | atershed GLCM PPCA RF ALL-IDBI 96.00
algorithm
Ensemble
[30] 2017 — — — transfer — 88.50
learning
[35] 2017 — VGGNet PCA Ensemble ALL-IDBI 100.00
Texture, color, . .
(18] | 2018 |  k-means shape — IBI;eaT;iX)M g;‘tfs‘t:t 99.67
CD marker P g
[29] | 2018 |  k-means Shape, color, — AN, Decision ALL-IDB 99.52
size, texture Tree
[15] 2018 — — — AlexNet ALL-IDB2 96.06
Color, shape, Ensemble
[19] 2018 Watershed LBP-based — o ALL-IDB 89.81
classifiers
texture feature
Kemeans Statistical,
[20] 2018 . geometric, color — kNN NB Not revealed 92.80
clustering
textural feature.
Watershed
[16] 2018 . GLRLM — SVM ALL-IDB1 96.97
algorithm
[41 | 2018 — Franster — SVM Hlybrid 99.20
earning dataset
. Shape, ALL-IDB,
[69] 2019 k-medoid texture — ANN Atlas, Online 98.60
Color, texture,
[151] 2019 BSA shape, Wavelet Rough set ALL-IDB 95.00
statistical
731 | 2019 | PO Active Statistical LDP Deep CNN ALL-IDB2 98.70
ontour
Active
[57] 2019 contour Shape, — Auto encoder Private datset 99.00
. color texture AlexNet
thresholding
Triangle
[8] 2019 method of DOST PCA-LDA ADBRF ALL-IDB1 99.66
thresholding
. SVM, Deep
o [as | [ e [ TS [ e T
(WBCsNet)
BCCD 99.42
[3] 2020 k-means — — CNN ALL-IDB2 0861
Color, shape
[10] 2020 k-means texture (GLCM, PCA SVM ALL-IDB1 96.00
GLRLM)
Deep Neural Micro-array
[133] | 2020 T T B Network gene dataset 9820
[84] 2020 | DeepLabV3+ — — AlexNet LISC 98.87
Deep learning .
[126] | 2020 — — - Transfer Hybrid of 16 97.18
. atasets
learning
[140] | 2020 — — — YOLOvV2 ALL-IDBI1 98.72
(61 | 2021 — ansfer - Machine ALL-IDB2 96.15
earning learning
[134] | 2021 — — — VGGI16 ALL-IDB2 96.84
96.97 (ALL-IDB1)
[7] 2021 — — — ShuffleNet ALL-IDBI1, ALL-IDB2 96.97 (ALL-IDB2)
[141] 2021 — — — YOLOv4 ALL-IDB1 —
Hybrid
ALL-IDBI, 99.39 (ALL-IDB1)
(2]} 2021 - - - Transfer ALL-IDB2 97.18 (ALL-IDB2)
learning
. ALL-IDBI, 99.39 (ALL-IDBI1)
[5] 2022 — — MobileNetV2 SVM ALL-IDB2 98.21 (ALL-IDB2)

inverted residual) are combined with SVM-based classifi-
cation (hyperplane location optimization) to give excellent
performance. On the other hand, the ShuffleNet-based ALL
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detection model suggested in [7] yields the good performance
by retaining advantages of channel shuffling, depthwise sep-
arable convolution, and group convolution.
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TABLE 4. Segmentation performance using BCCD dataset.

Precision | Specificit Sensitivit Accurac

Method | ™ | P | @ | ey
[152] 80.51 99.30 94.51 99.15
[153] 87.77 99.59 89.77 99.22
[104] 15.81 86.64 51.46 85.79
[154] 3.86 14.17 77.76 75.88
[3] 94.38 99.78 91.21 99.42

TABLE 5. Segmentation performance using ALLIDB2 dataset.

[19] [34] [17] [10] [16] [

m Specificity Sensitivity Precision Accuracy

Precision | Specificity | Sensitivity | Accuracy
Method
(%) (%) (%) (%) - . . .
FIGURE 17. Graphical representation of machine learning-based
[152] 91.24 98.62 98.09 98.59 e - .
[153] 96.00 99.48 3870 9781 classification performance in ALL-IDB1 dataset.
[104] 80.09 96.05 89.27 95.80
[l[g?] gégg g;ég 322(3) gggi TABLE 7. Deep learning-based classification performance in ALL-IDB1
- . . - dataset.
Me- Speci- | Prec- Sensi- | Accu- Fi
TABLE 6. Machine learning-based classification performance in ALL-IDB1 th- Classifier ficity | ision tivity racy Score
dataset. hod (%) (%) (%) (%)
[141] YOLOv4 o 95.57 92.00 —_— 0.9375
Met- | Class- Specifi- | Sensiti- | Preci- | Accur- Fl Xception 93.89 | 90.00 62.00 80.61 | 0.7342
- city vity sion acy NasNet-
hod ifier (%) (%) (%) (%) Score 7] Mobile 96.66 | 94.62 76.00 85.15 | 0.8429
[19] El 54.24 100.00 64.47 75.00 0.7840 VGG19 86.11 86.76 95.33 90.30 | 0.9084
[19] E2 81.36 100.00 81.67 89.81 0.89901 ResNet50 92.78 | 91.97 98.00 95.15 | 0.9489
(34] | SVM — — — [ 8980 | — ShuffieNet | 96.11 | 95.63 | 98.00 | 96.97 | 0.9630
[17] RFE 9956 36.50 99.60 96.00 | 0.9259 AlexNet 89.35 | 89.55 | 98.64 93.64 | 0.9387
0] [ SYM | 9306 | 9260 | — T 9600 | — gGG116 89.90 | 8838 | 8035 | 85.76 | 0.8417
[6] | SVM | — — — 9697 | — 2] o | 9467 | 9449 | 9566 | 9515 | 09507
[8] A]IQ)]?- 99.12 100.00 99.46 99.66 0.9973 ResNet18 94.12 93.79 96.59 95.15 0.9517
l\l’fg’g; 95.81 | 9567 | 96.63 | 96.06 | 0.9615
. . . e e Hybrid 99.47 | 99.33 99.55 99.39 | 0.9944
Table 8 deplc?ts machine learning-based ALL class1f1cat'1({n VGGG 5836 [ 85243 | 5231 1 8594 | 08354
performance with the ALL-IDB2 dataset. From the table, it is VGGI6+ | o 3¢ | 5076 | 8579 | 89.62 | 08773
observed that Logistic Regression and SVM give the best RF6 - i i i i
sensitivity performance, whereas Random forest achieves 5] V(s}\(;];/l "1 9500 | 9203 | 8733 | 9148 | 0.8962
the superior specificity, precision, and F1 Score perfor- Mobile- 97.00 | 9572 | 96.19 | 95.68 | 0.9595
mance among these machine learning schemes. Table 9 and 1\1/\1165';2 i i ' i '
Fig. 19 represe.ntS deep learning-based ALL f:lassifica'ltio.rl N(;tilg 0800 | 9733 | 96.19 | 9629 | 0.9676
performance with the ALL-IDB2 dataset. This table indi- +RF
cates most of the research works are based on transfer 1\1/\[10?\1}; 0000 | 9857 | 10000 | 9939 | 09926
. . .y . € B . B 8 .
learning-based approaches due to their ability to achieve +SVM

promising performance in small datasets. The MobileNetV2-
SVM framework-based ALL classification scheme sug-
gested by Das et al. [5] achieves the best accuracy (98.21%)
and the best F1 Score (0.9828) performance. It delivers
promising performance due to the combined benefits of the
MobileNetV2-based feature extraction and SVM-based clas-
sification. We also observe the hybrid model suggested by
Das and Meher [2] yields the second-best overall perfor-
mance with 97.18% accuracy. It yields admirable perfor-
mance due to the combined benefits of the MobileNetV2
and ResNet18. The ShuffleNet-based ALL detection model
suggested in [7] achieves the second-best specificity, preci-
sion, and accuracy performance. On the other hand, Logis-
tic Regression or SVM-based classification as suggested
in [6] yields the best sensitivity (100%) due to the combined
benefits of transfer learning-based feature extraction using
modified ResNet model with machine learning-based clas-
sification. It delivers the third-best overall performance.
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FIGURE 18. Graphical representation of deep learning-based
classification performance in ALL-IDB1 dataset.

Goswami et al. [155] have suggested a transfer learn-
ing (InceptionV3)-based ALL detection scheme in which
they have emphasized optimization of heterogeneity loss
that helps the network for learning of subject-independent
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TABLE 8. Machine learning-based classification performance with
ALL-IDB2 dataset.

Speci- | Preci- | Sensit- | Accu-
1:145:1_ Classifier ficity sion ivity racy S(l::(}re
(%) (%) (%) (%)
gandom 96.55 | 95.65 | 95.65 | 96.15 | 0.9565
[6] OI.‘CS.[
Iﬁoglstw, 9355 | 91.30 | 100.00 | 96.15 | 0.9545
egression
SVM 9355 | 9130 | 100.00 | 96.15 | 0.9545

TABLE 9. Deep learning-based classification performance with ALL-IDB2
dataset.

Me- Speci- | Prec- | Sensi- | Accu- Fl
th- Classifier ficity ision tivity racy Score
hod (%) (%) (%) (%)
Xception 91.72 | 91.11 | 83.26 | 87.35 | 0.8701
NasNet-
(7] Mobile 94.32 94.08 84.77 89.48 0.8918
VGGI9 78.76 | 80.93 | 88.45 83.59 | 0.8452
ResNet50 94.82 | 94.82 [ 9290 | 93.85 | 0.9385
ShuffleNet | 96.90 | 96.95 | 96.46 | 96.67 | 0.9670
[134] VGGI16 96.15 J— 97.53 | 96.834 —
AlexNet 88.21 89.77 94.87 91.54 0.9225
VGG16 78.97 84.60 86.15 82.57 0.8537
2] G‘;‘I’egtle' 86.67 | 88.26 | 9641 | 91.54 | 0.9216
ResNet18 93.34 93.82 93.34 93.34 0.9358
Mobile-
NetV?2 93.84 | 9548 | 91.80 | 92.82 | 0.9360
Hybrid 98.46 | 98.52 | 95.90 | 97.18 | 0.9719
VGG16 82.00 | 83.04 | 88.13 85.22 | 0.8551
VGISFIM 86.05 | 86.42 | 87.53 86.92 | 0.8697
[5]
VGGI16+
SVM 89.68 | 89.99 | 90.24 | 90.00 | 0.9011
Mobile-
NetV?2 89.10 | 90.02 | 9595 | 92.56 | 0.9289
Mobile-
NetV2 92.63 93.58 96.95 94.87 0.9524
+RF
Mobile-
NetV2 97.37 | 97.61 | 98.95 | 98.21 | 0.9828
+SVM

features. This proposed work is validated using the C-NMC
dataset [150], which is the largest available ALL dataset.
It achieves 95.26% of the weighted F1 score. Gupta and
Gupta [156] have discussed some important challenging fac-
tors of the C-NMC dataset [150] that yields ALL detection
tougher. The morphological similarity between ALL and
healthy images, imbalanced dataset, and presence of inter-
subject heterogeneity among images may enforce a system to
learn subject-specific features rather than class-specific fea-
tures [155]. Hence, these factors make the ALL classification
more difficult.

Most of the research focuses on detecting ALL by clas-
sifying healthy or ALL-affected, whereas very few research
works emphasize further classifying ALL to its subtypes
(L1, L2, and L3). Table 10 represents AlexNet-based clas-
sification performance suggested in [15], which classi-
fies WBCs into healthy and three ALL subtypes: L1, L2,
and L3. It indicates L1 is the most accurately classified sub-
type among them. The suggested method achieves 96.06%
overall accuracy.
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TABLE 10. ALL sub-types classification performance using ALLIDB2
dataset.

Normal L1 L2 L3

Specificity (%) 99.00 99.48 | 98.40 | 99.26
Precision (%) 98.57 99.60 | 94.01 | 94.39
Sensitivity (%) 100.00 | 95.40 | 94.82 | 96.77
Accuracy (%) 98.11 99.06 | 93.33 | 93.75
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FIGURE 19. Graphical representation of deep learning-based
classification performance with ALL-IDB2 dataset.

X. CRITICAL ANALYSIS

From this analysis, we observe that most of the signal and
image processing-based methods are unable to deliver highly
accurate segmentation due to the complex nature of cells,
intensity inhomogeneities, and overlapping cells.

Unsupervised learning techniques are widely used in seg-
mentation for detecting WBCs efficiently, as these techniques
don’t need labeled data for this purpose. However, in these
techniques, selecting an appropriate number of clusters to
yield excellent performance is still challenging. K-means is
the most popular scheme for detecting desired WBCs due
to its superior performance. However, in this scheme also,
there is a challenge in selecting the appropriate cytoplasm
and nucleus clusters as cluster index changes frequently even
if the same algorithm is executed repeatedly. Hence, there is
a need to select the desired clusters adaptively and carefully.
On the other hand, transfer learning-based semantic segmen-
tation (DeepLabV3+) achieves promising performance.

In most cases, we also observe that conventional machine
learning-based classification approaches yield relatively poor
performance since it requires proper segmentation before
more accurate classification. However, the ADBRF-based
ALL classification approach suggested in [8] achieves
excellent performance with a 99.66% accuracy due to the
combined benefits of RF as a base classifier with Adaboost
learning. From this study, we also observed that unsupervised
machine learning schemes are preferred over supervised ones
for efficient WBC segmentation, whereas supervised
machine learning schemes are preferred over unsupervised
ones for more accurate classification. This occurs since, from
the classification point of view, labeled data is publicly avail-
able (i.e., images with their class belongingness), whereas
labeled segmentation data is not available.

In this review article, a brief analysis of recent advance-
ments in deep and machine learning-based ALL detection
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schemes is presented in a systematic manner. The conven-
tional machine learning techniques require additional seg-
mentation schemes for suppressing the presence of undesired
cells and overlapping cells. In addition, the techniques require
crucial hand-crafted geometrical, color, and texture features
for more accurate classification. Hence, in these techniques,
the overall classification performance relies on the perfor-
mance of the preprocessing, segmentation, feature extrac-
tion, and classification stages. In contrast, a deep learning
approach usually performs the segmentation, feature extrac-
tion, and classification tasks within a single neural network
system. Unlike conventional machine learning approaches,
it does not need an additional segmentation scheme. How-
ever, the traditional deep learning approach needs a large
dataset for proper training to yield more efficient classifica-
tion. Thus, traditional deep learning approaches are unable
to achieve outstanding performance due to the unavailability
of large labeled medical datasets. Recent developments in
deep learning, particularly transfer learning approaches, help
to solve this issue. In transfer learning approaches, a pre-
trained network trained in source-domain only finetuned in
target-domain using small datasets; thus, it can also yield
outstanding performance in the presence of small datasets.
This is possible due to knowledge transfer from source to
target domain.

Thus, transfer learning schemes are emerging as popu-
lar deep learning schemes for ALL detection because of
their promising performance even in small datasets. Transfer
learning-based method suggested in [35] achieves outstand-
ing performance with 100% accuracy, whereas YOLOV2
based ALL classification method presented in [140] yields
98.72% accuracy. Among these transfer learning schemes,
AlexNet, MobileNetV2, and ResNet are more popular due
to their computational efficiency and classification per-
formance. The MobileNetV2-SVM framework-based ALL
classification scheme suggested by Das et al. [5] depicts

promising performance by retaining benefits of MobileNetV2-

based feature extraction and SVM-based classification.
The hybrid transfer learning model suggested by Das and
Meher [2] deliver excellent performance due to the combined
advantages of ResNet18 and MobileNetV2.

Most of the researchers use two quite popular publicly
available ALL datasets: ALLIDB1 and ALLIDB?2 to detect
and classify ALL. ALLIDBI1 dataset is the most popular
dataset for ALL detection, which is used in around 43.33%
cases, whereas the ALLIDB2 dataset is used in around
40.00% cases. Among them, about 10% research work, both
datasets are employed. From this review, we also observe
that most of the research works only emphasize classifying
healthy and ALL-affected. In only a few research work, ALL
classification into its all subtypes are performed. This is one
of the challenging future scopes in this field.

Holdout and k-Fold cross-validation are the two most
popular schemes employed for effectively training and test-
ing data. Holdout is the simplest scheme for evaluating a
system (classifier) in which usually total data is split into
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training, testing, and validation subsets (sometimes training
and testing subsets). For example, 70%, 20%, and 10% of data
are applied for training, validation, and testing, respectively.
However, in this scheme, a small portion of the total dataset
images are used for testing, which is not so robust as the
k-fold cross-validation scheme. Hence, it is recommended
to demonstrate a comparative performance analysis using
cross-validation. In k-Fold cross-validation, the dataset is
divided into k groups in such a manner that each group
contains the approximately same number of images with
images from each class is also present. Then, in the first
fold, the first group images are used for testing, whereas
the remaining images are used for training. Similarly, in the
second fold, the second group images are used for testing,
whereas the remaining images are used for training. This will
continue for all the k-folds. Finally, the average performance
among these k-folds is compared for performance analysis.
Thus, the cross-validation performance is more reliable and
more robust than hold-out methods as in cross-validation
approaches; each image is once used for testing. Usually,
the performance comparison is done using 5-Fold or 10-Fold
cross-validations.

XI. CHALLENGING ISSUES
An ALL detection and classification system may face the
following challenging issues.

o Traditional deep learning approaches are unable to
achieve outstanding performance due to the unavailabil-
ity of large labeled datasets.

« The presence of overlapping cells, weak edges, noise,
and intensity inhomogeneity result the segmentation and
classification more challenging.

o Illumination variation may yield non-uniform color
distribution for cytoplasm and nucleus regions. Thus,
proper discrimination in these regions becomes more
difficult.

o The shape, size, texture, and morphological structure of
the nucleus and cytoplasm vary for different subtypes
of WBCs (Basophil, Neutrophil, Eosinophil, monocyte,
or lymphocyte). Hence, it makes the classification of
benign and malignant more challenging.

« Classification of ALL into its subtypes: L1, L2, and L3
become a tough job due to standard-labeled datasets’
unavailability.

XIl. FUTURE SCOPES

As discussed above, many efficient machine learning and
deep learning-based ALL classification systems have been
suggested by various researchers. However, there are still
scopes for further research to improve the performance and
make the ALL diagnosis more accurate and robust, as given
below.

o A new hybrid dataset can be created by combining
images of various illuminations, resolutions, and size,
which gives an opportunity to build more robust systems
for ALL detection and classification.
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« Segmentation performance can be boost by hybridizing
an efficient active contour/ level set method with the
marker-based watershed algorithm or hybridizing the
level set method with deep learning techniques.

« Efficient deep learning (particularly transfer learning)-

based method may yield more accurate segmentation.
Research can be carried out to develop a more efficient
deep learning (particularly transfer learning)-based ALL
segmentation system.
More advanced deep learning or transfer learning-based
systems can be designed by modifying the existing
efficient models to make the system more accurate
and faster as well. For example, the softmax layer or
fully-connected classification layer can be replaced by
more efficient classification layers to make the opti-
mization easier and minimize the co-adaption among
parameters in the classification layer. The number of
connections can be minimized by selecting more sig-
nificant and desired connections to improve the inter-
class angles. Hence, the system can be more efficient
and faster.

« Classification performance can be improved by suggest-
ing more efficient and robust machine learning, deep
learning, or transfer learning methods.

Research can be carried out to develop a more efficient
ALL detection system by integrating the benefits of
transfer learning-based feature extraction with machine
learning-based classification.

More advanced deep learning or transfer learning-based
systems can be designed by modifying the existing
efficient models to make the system more accurate
and faster as well. For example, the softmax layer or
fully-connected classification layer can be replaced by
more efficient classification layers in which only signif-
icant and desired connections are employed to improve
the angle between the features and co-adaption among
features.

o The performance can be further enhanced by employing
an ensemble or hybrid of the above classifiers.

The ALL classification performance can be improved by
employing an efficient ensemble transfer learning clas-
sifier that combines the benefits of all the transfer learn-
ing schemes used in this classifier. Hence, it enhances
the diversity ability of feature learning, resulting in the
extraction of more significant features. In addition, the
combined benefits also improve the overall classifica-
tion performances.

The ALL classification performance can be improved
by suggesting more efficient hybrid systems like the
MobileNetV2-ResNet18 hybrid classifier discussed in
this article. More efficient transfer learning schemes
can be hybridized to further improve the ALL clas-
sification performance and also make the system
faster, keeping the benefits of the hybridizing models.
More importantly, research can be carried out to develop
more efficient ensemble transfer learning classifiers or
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to develop more efficient hybrid transfer learning classi-
fiers since transfer learning schemes achieves promising
performance with small datasets also.

« Further research can be carried out to efficiently classify
benign and malignant (ALL) as well as classify ALL
into its subtypes: L1, L2, and L3, which results in more
accurate disease diagnosis.

XIll. CONCLUSION

This article presents a brief analysis of recent advancements
in deep and machine learning-based detection and classifi-
cation of ALL. We have analyzed various existing methods
of segmentation, feature extraction, and classification, which
are employed to detect ALL efficiently. From this review,
we also observed that among classical machine learning
schemes, unsupervised schemes are preferred for segmenta-
tion tasks, whereas supervised schemes are preferred for clas-
sification tasks. However, Deep learning, particularly transfer
learning, has emerged as a preferred approach for automatic
and more robust detection and classification of ALL since it
yields excellent performance even in small datasets. From
this study, we have also observed that the MobileNetV2-
ResNet18 architecture yields the best ALL detection perfor-
mance in ALLIDB1 dataset due to the combined benefits of
both schemes. In the ALLIDB2 dataset, MobileNetV2-SVM
depicts admirable classification performance by integrating
the pros of both approaches. Furthermore, we have discussed
the challenging issues and future scope in this research field.
We hope this article will help researchers to analyze recent
advancements in ALL detection and will inspire researchers
to do further research.
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