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ABSTRACT This paper presents a design of dynamic output feedback event-triggering control for nonlinear
uncertain networked control systems. The plant and actuator asynchronously transmit the measurement and
control signals over two different communication channels. We address the norm-bounded time-varying
parameter uncertainties in a nonlinear plant. First, considering the exogenous disturbances and noises in
the control and measurement signals, sufficient conditions for the L2 stability of the nonlinear networked
control systems are given in the presence of the uncertainties. Then, we propose design conditions to choose
the dynamic output feedback control and triggering laws in terms of linear matrix inequalities (LMIs). The
proposed conditions enable the controller and event-triggering parameters to be jointly optimized to lessen
the number of transmissions, guaranteeing a certain level of L2 gain. Numerical examples demonstrate the
effectiveness of the proposed method.

INDEX TERMS Hybrid dynamical systems, L2-stability, linear matrix inequality, networked control sys-
tems, nonlinear uncertain systems.

I. INTRODUCTION
Networked control systems (NCSs) are widely applied in
many fields due to their attractive advantages, such as
reduced system wiring, low weight and space, ease of sys-
tem diagnosis and maintenance, and increased system agility,
see [1]–[8]. In NCSs, reducing the amount of transmission
data is essential because data congestion at routers can cause
severe time delay or packet losses, e.g., [9]. In traditional
NCSs, sampled-data control systems, the control input and
measurement output signals are sampled and transmitted
periodically even when the sampled values do not change,
expanding communication resource and power usage.

Event-triggered control (ETC) has been proposed to
overcome this issue, as in [10], [11]. The ETC systems
prevent excessive use of the communication by adapting
transmissions to the current signal so that the network is
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only used when it is necessary, see [12]–[14]. An adaptive
event-triggered fault-tolerant tracking control problem was
investigated for a class of MIMO uncertain nonlinear systems
with unknown nonlinearities and actuator faults in [15]. [16]
addressed an event-triggered adaptive control method to
reduce the communication and computational resources of
uncertain nonlinear systems with unknown control direc-
tions and actuator faults, while eliminating the explosion
of complexity problem in backstepping. [17] was devoted
to the event-triggered adaptive control design without any
priori knowledge of the signs of unknown virtual control
coefficients for uncertain nonlinear systems with full state
constraints. In [18], H∞ static output feedback tracking
control methodology was proposed for discrete-time nonlin-
ear networked systems subject to quantization effects and
asynchronous event-triggered constraints.

One challenge in designing an ETC is combining the trig-
gering condition with the feedback control law. Many exist-
ing event-triggering strategies have been developed using the
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emulation approach, see [14], [19], [20]. In this approach, the
feedback law is first synthesized to stabilize the plant with-
out any network communication. Subsequently, a sampling
rule is constructed, reducing network communication. The
approach is intuitive and easy to understand but can limit the
control performance, e.g.,L2-gain, due to an initial choice on
the feedback law. [21]–[23] and [24] have proposed co-design
methods that choose both the control law and triggering
conditions simultaneously. Many studies on event-triggering
controller designs have investigated full-state feedback con-
trollers. However, in many real-world control applications,
only partial state is measurable. Thus, it is important to study
output-based ETC, see [25].

Recently, researchers have studied the co-designing of
feedback control and event-triggering laws. Based on the
analysis in [26], [27] proposed an co-design method of
dynamic output feedback (DOF) and event-triggering laws
using linear matrix inequalities (LMIs). Furthermore, they
formulated an optimization problem using the proposed LMIs
to decrease the number of transmissions. [28] proposed a less
conservative co-design method of the output feedback law
and event-triggering conditions by presenting three additional
constraints. It is worth noting that the aforementioned works
considered ideal linear systems. However, many practical sys-
tems are described as nonlinear systems. In addition, parame-
ter uncertainties in the systemmodel can deteriorate the static
and dynamic performances if not considered in the controller
design, see [29]–[32]. Furthermore, [33], [34] reported that
even when the magnitude of disturbances is tiny, there may
be no positiveminimum inter-event times for event-triggering
mechanisms.

Motivated by the above discussions, this paper presents
an effective co-design strategy for a robust DOF law and
triggering conditions for nonlinear uncertain systems. The
ETC systems consist of a nonlinear uncertain plant, con-
troller, and communication network. The plant output and
control input are transmitted to the controller and the actua-
tors asynchronously. Considering a nonlinear ETC systems
with norm-bounded time-varying parameter uncertainties,
we provide the LMI-based L2 stability analysis. Moreover,
we propose LMI-based sufficient conditions for the co-design
of DOF law and triggering conditions. Subsequently, a con-
vex optimization problem is presented for a class of nonlinear
uncertain ETC systems to reduce the number of transmis-
sions, guaranteeing a certain level of L2 gain. In contrast
to the previously published work [26], we can optimize the
DOF controller and triggering laws using the proposed LMI
conditions. We present numerical examples to show the
effectiveness of the proposed design methodology. The
main contributions of this study are summarized as
follows:

1) This study firstly addresses the co-design methodology
of the DOF control and event-triggering laws for non-
linear uncertain systems.

2) We deal with more real-world situations by
investigating research on the ETC systems that are

asynchronously triggered on controller and actuator
over two different communication channels.

3) We provide sufficient conditions for the L2 stability of
the nonlinear ETC systems in the presence of the time-
varying norm-bounded uncertainties.

4) A convex optimization problem using the proposed
LMI conditions is presented to lessen the number of
transmissions.

The rest of this paper is organized as follows. Section II
presents the preliminaries for modeling the event-triggered
nonlinear uncertain plant. Section III provides the LMI-based
L2 stability analysis. Subsequently, we present the design
methodology of event-triggering DOF controllers and an
optimization method to minimize the amount of transmission
data. The numerical simulations are presented in Section IV.
Finally, the conclusions are made in Section V.

II. PROBLEM STATEMENT
A. PRELIMINARIES
Let R := (−∞,∞), R≥0 := [0,∞), Z≥0 := {0, 1, 2, ..}
and Z>0 := {1, 2, ..}. We denote the transpose and inverse
of the transpose of A as AT and A−T , respectively. We rep-
resent block-diagonal matrix with the entries A1, · · · ,AN on
the diagonal as diag(A1, · · · ,AN ). The symbol ? denotes the
symmetric blocks. The minimum and maximum eigenval-
ues of the symmetric matrix A are denoted as λmin(A) and
λmax(A), respectively. A continuous function γ : R≥0 is
of class K if it is zero at zero, strictly increasing, and it is
of class K∞ if γ (s) → ∞ as s → ∞. We use (x, y) to
represent the vector [xT , yT ]T for x ∈ Rn and y ∈ Rm. For
a vector x ∈ Rn, we denote ‖x‖ =

√
xT x as its Euclidean

norm.
In this study, the hybrid dynamical system framework was

used to reprsent event-triggering control systems:

ẋ = F(x,w) x ∈ F ,
x+ ∈ G(x,w) x ∈ J , (1)

where x ∈ Rnx is the state vector, w ∈ Rnw is the external
disturbance, F and G represent the flow and jump maps,
respectively. For x in the flow set F , x obeys the continuous
dynamics F(x,w); for x in the jump set J , x obeys the dis-
crete dynamics G(x,w). For the details on hybrid dynamical
systems, please see [35], [36]. We use the following defini-
tions ofL2 norm of hybrid signals andL2 stability for systems
in the rest of the paper, see [27].

Definition 1: For a hybrid signal z defined on the
hybrid time domain dom z = ∪J−1j=0

[
tj, tj+1

]
× {j} with J

possibly ∞ or tJ = ∞, the L2 norm of z is defined as

‖z‖2 =

(∑J−1
j=0

∫ tj+1
tj
|z(t, j)|2dt

) 1
2
, provided that the

right-hand side exists and is finite, where z ∈ L2.
Definition 2: System (1) is L2 stable from the input (w)

to the output z = h(x,w) with gain less than or equal to
γ ≥ 0 if there exists β ∈ K∞ such that any solution pair
(x,w) to (1) satisfies ‖z‖2 ≤ β (|x(0, 0)|)+ γ ‖w‖.
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FIGURE 1. Schematic diagram of the event-triggered control
system.

B. REPRESENTATION OF EVENT-TRIGGERED CONTROL
SYSTEMS
We consider an ETC system where the controller and plant
send signals through digital channels in a shared communi-
cation network (Fig. 1). We represent the nonlinear uncertain
plant as follows:

ẋp = Apxp + Bf f (xp)+ Bpû+ Epw (2a)

y = Cpxp + dy, (2b)

where xp ∈ Rnp is the plant state, û ∈ Rnu is the sampled
value of the control input u ∈ Rnu , w ∈ L2[0,∞) is the
external disturbance, y ∈ Rny is the measured output, and
dy ∈ Rny is the measurement noise. We consider a plant that
includes model uncertainty. Ap is represented by the sum of
the nominal plant matrix Ap0 and the time-varying parametric
uncertainty 1Ap(t) that is represented as Ep11p(t)Fp1, i.e.,
Ap = Ap0 + Ep11pFp1 with 1T

p1p ≤ I . f (xp) ∈ Rnf is a
nonlinear function that satisfies β-Lipschitz with respect to
x, i.e., ∀x, y ∈ Rn, ‖f (x)− f (y)‖ ≤ β‖x − y‖ where β > 0 is
the Lipschitz constant.

The DOF controller which is described in Fig. 1 is given
as follows:

ẋc = Acxc + Bcŷ (3a)

u = Ccxc + du, (3b)

where xc ∈ Rnc is the controller state, ŷ ∈ Rny is the last
transmitted value of the output measurement y ∈ Rny , and
du ∈ Rnu is the noise corrupting the control input. The noise
du may include model computational glitches, quantization
errors, or, more generally, any disturbance which may affect
the control input. We assume that the noise signals dy ∈ Rny

and du ∈ Rnu that affect y and u, respectively, are absolutely
continuous; their time-derivatives exist for almost all points
in time and are in L2.
In Fig 1, event-triggering mechanisms 1 (ETM1) and 2

(ETM2) govern the control input and measurement output
data transmissions, respectively. For example, ETM1 allows
sending measurement output y over the network only when
t = tyi , i ∈ Z≥0. Subsequently, the most recently trans-
mitted data is kept constant at the receiver’s side employing
a zero-order hold element (Fig. 2). ETM2 operates similar

FIGURE 2. Input data transmission of the event-triggered control
system.

to ETM1 in the control input data transmission but works
asynchronously with ETM1. The ETM2 allows sending u
through the network at t = tui , i ∈ Z≥0, otherwise, the
transmission is prevented. Thus, we can model the signal
transmissions through the communication network can be
modeled as following:

˙̂y = 0 t ∈
[
tyi , t

y
i+1

]
(4a)

˙̂u = 0 t ∈
[
tui , t

u
i+1
]

(4b)

τ̇y = 1 t ∈
[
tyi , t

y
i+1

]
(4c)

τ̇u = 1 t ∈
[
tui , t

u
i+1
]

(4d)

ŷ(ty+i ) = y(tyi ), τy(t
y+
i ) = 0, (4e)

û(tu+i ) = u(tui ), τu(t
u+
i ) = 0, (4f)

where τy and τu are the elapsed times since the most
recent transmission instant of the measured output and con-
trol input, respectively. The transmission instants are deter-
mined by triggering laws whose design method is presented
below.

Remark 1: Several existing studies have dealt with sit-
uations in which the communication networks are synchro-
nized, see [37]–[39]. However, in practical applications, there
are limitations such as physical distance and hardware dif-
ferences between the two channels. Taking this into account,
we investigate more practical situations by addressing the
ETC system in which two different communication chan-
nels are asynchronously triggered on controller and actuator,
as described in (4).
Let us define the network-induced errors as ey = ŷ − y,

eu = û−u, and e = (ey, eu). Let x̄ := (x, ey, eu, τy, τu) ∈ Rnx̄

with x := (xp, xc) ∈ Rnx , w̄ := (w, dy, du) ∈ Rnw̄ , d̄ :=
(ḋy, ḋu) ∈ Rnd̄ , and ξ := (w̄, d̄). Then, by using the hybrid
system framework, the whole ETC system dynamics (2)–(4)
is presented as follows:

˙̄x =


f̄1(x, e, ξ )
f̄2(x, e, ξ )
f̄3(x, e, ξ )

1
1

 x̄ ∈ Fy ∩ Fu (5a)

x̄+ ∈


[l] {(x, 0, eu, 0, τu)}{(

x, ey, 0, τy, 0
)}

{(x, 0, 0, 0, 0)}

[l]x̄ ∈ Jy\Ju
x̄ ∈ Ju\Jy
x̄ ∈ Jy ∩ Ju,

(5b)
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where

f̄1(x, e, ξ ) = A1x + R1f (xp)+ B1ey +M1eu + E1w̄,

f̄2(x, e, ξ ) = A2x + R2f (xp)+M2eu + E2w̄+ F2d̄,

f̄3(x, e, ξ ) = A3x + B3ey + E3w̄+ F3d̄,

A1 = A10 +1A1, A10 =
[
Ap0 BpCc
BcCp Ac

]
,

1A1 =
[
1Ap 0
0 0

]
= E11pF1, E1 =

[
Ep1
0

]
,

F1 =
[
Fp1 0

]
, R1 =

[
BTf 0

]T
= BfUT

p ,

B1 =
[
0
Bc

]
, M1 =

[
Bp
0

]
, E1 =

[
Ep 0 Bp
0 Bc 0

]
,

A2 = −CyA1, R2 = −CyR1, M2 = −CyM1,

E2 = −CyE1, F2 =
[
−I 0

]
, A3 = −CuA1,

B3 = −CuB1, E3 = −CuE1, F3 =
[
0 −I

]
,

Cy =
[
Cp 0

]
, Cu =

[
0 Cc

]
, Up =

[
I 0

]
.

The standard form of the ETC flow and jump sets is as
follows:

Fy =
{
x̄ : |ey| ≤ ηy|y| or τy ∈

[
0,Ty

]}
Jy =

{
x̄ : |ey| ≥ ηy|y| and τy ≥ Ty

}
Fu = {x̄ : |eu| ≤ ηu|u| or τu ∈ [0,Tu]}

Ju = {x̄ : |eu| ≥ ηu|u| and τu ≥ Tu} , (6)

where ηu, ηy ≥ 0 are the parameters to be designed.
Ty ∈ (0, T̄y(ζy)) and Tu ∈ (0, T̄u(ζu)) denotes the minimum
inter-event times between two consecutive transmissions of y
and u, respectively, where T̄y(ζy) = 1

ζy

π
2 and T̄u(ζu) = 1

ζu

π
2 ,

preventing Zeno behavior. ζy and ζu are design parameters,
see [27]. The error dynamics ėy = f3(e, x, ξ ) also includes
uncertainties from the plant, making the controller design
difficult. We define the controlled output as

z = [Cp
z 0]x + [Dwz Dyz Duz ]w̄ = Czx + Dzw̄, (7)

where Cp
z ,Dwz ,D

y
z,Duz are matrices with appropriate dimen-

sions.

III. MAIN RESULTS
A. STABILITY ANALYSIS
In this subsection, we present sufficient conditions for the
L2 stability of the system (5). Before we present our main
theorem, we present the following lemma that is used for the
proof of the main theorem.

Lemma 1: Consider system (5) with the flow and jump
sets defined in (6) and the output z in (7). For given
Ty ∈ (0, T̄y(ζy)) and Tu ∈ (0, T̄u(ζu)), suppose that there
exist the locally Lipschitz functions V : Rnx → R≥0,
Wy : Rny → R≥0, Wu : Rnu → R≥0 with Wy, Wu positive
definite, continuous functions Hy : Rnx+neu+nξ → R≥0,
Hu : Rnx+ney+nξ → R≥0, real numbers η2w̄, η

2
d̄
∈ R, Ly,

Lu ≥ 0, γy, γu > 0, α, α ∈ K∞, a continuous function
δy : Rny → R≤0, δu : Rnu → R≤0, αs : Rnx+nξ → R
such that

(i) for all x ∈ Rnx

α(|x|) ≤ V (x) ≤ α(|x|) (8)

(ii) for almost all x ∈ Rnx and all (e, ξ ) ∈ Rne+nξ

〈∇V (x), f̄1(x, e, ξ )〉 ≤ −αs(x, ξ )− H2
y (x, eu, ξ )

−H2
u (x, ey, ξ )− δy(y)− δu(u)

+ γ 2
y W

2
y (ey)+ γ

2
uW

2
u (eu) (9)

(iii) for almost all e ∈ Rne and all (x, ξ ) ∈ Rnx+nξ

〈∇Wy(ey), f̄2(x, e, ξ )〉 ≤ LyWy(ey)+ Hy(x, eu, ξ )

〈∇Wu(eu), f̄3(x, e, ξ )〉 ≤ LuWu(eu)+ Hu(x, ey, ξ ) (10)

where αs(x, w̄, d̄) := |z|2 − η2w̄|w̄|
2
− η2

d̄
|d̄ |2. Then, system

(5) is L2-stable from ξ to z with an L2 gain less than or equal

to η =

√
max

{
η2w̄, η

2
d̄

}
.

Proof: The proof uses a similar procedure to that in [26].
Thus, this is omitted here.

Remark 2: Lemma 1 disassociates ξ into w̄ and d̄ com-
pared with Assumption 2 in [26]. Moreover, we introduce
the functions Hy and Hu which also depend on the errors
eu and ey, respectively, enabling (9) and (10) to be less con-
servative.
Now, we propose the following theorem that addresses the
L2-gain analysis of the ETC systems (5) with the flow and
jump sets defined in (6).

Theorem 1: Consider system (5) with the flow and jump
sets defined in (6) and the output z in (7). Suppose that there
exist scalars εy, εu, β, µy, µu, γw̄, γd̄ , λy, λu > 0,
ρ ≥ 0 and a positive definite matrix P such that

9 < 0, (11)

where 9 =
{
9ij
}
, i, j ∈ {1, 2, . . . , 6} is the sym-

metric matrix whose components are given as following
matrices:

911 = AT1 P+ PA1 + C
T
z Cz + λ

2
yA

T
2 A2 + λ

2
uA

T
3 A3

+ εyCT
y Cy + εuC

T
u Cu + ρβU

T
p Up,

921 = RT1 P+ λ
2
yR

T
2 A2, 922 = −ρI + λ2yR

T
2 R2

931 = BT1 P+ λ
2
uB

T
3 A3, 933 = −µyI + λ2uB

T
3 B3,

941 = MT
1 P+ λ

2
yM

T
2 A2, 942 = λ

2
yM

T
2 R2,

944 = −µuI + λ2yM
T
2 M2,

951 = ET1 P+ D
T
z Cz + λ

2
yE

T
2 A2 + λ

2
uE

T
3 A3

+ εyDTy Cy + εuD
T
uCu,

952 = λ
2
yE

T
2 R2, 953 = λ

2
uE

T
3 B3,

954 = λ
2
yE

T
2 M2,

955 = −γw̄I + DTz Dz + λ
2
yE

T
2 E2 + λ

2
uE

T
3 E3 + εyD

T
y Dy

+ εuDTuDu,

961 = λ
2
yF

T
2 A2 + λ

2
uF

T
3 A3, 962 = λ

2
yF

T
2 R2

963 = λ
2
uF

T
3 B3, 964 = λ

2
yF

T
2 M2
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965 = λ
2
yF

T
2 E2 + λ

2
uF

T
3 E3,

966 = −γd̄ I + λ
2
yF

T
2 F2 + λ

2
uF

T
3 F3,

Du = [0 0 I ], Dy = [0 I 0].

Let the parameters in (6) and T̄y(ζy),T̄u(ζu) be cho-
sen as ηy =

√
εy
µy
, ηu =

√
εu
µu
, ζy =

√
µy
λy

,

and ζu =

√
µu
λu

. Then, system (5) with (6) is
L2-stable from (w̄, d̄) to z with an L2-gain less than or equal

to γ =
√
max

{
γw̄, γd̄

}
.

Proof: Please see the Appendix.
Remark 3: In this paper, we derive the results of the

L2 stability analysis of the nonlinear system (5) while that
of [26] (Proposition 1) was addressed for a linear system.
In addition, we provide less conservative condition (11) with
the separated disturbances w̄, d̄ and the functions Hy and Hu
which have the error terms eu and ey, respectively.
We use condition (11) to derive sufficient conditions for
designing ETC. However, we face two challenges while
achieving this: 1) the nonlinear terms AT2 A2 and A

T
3 A3 make

the LMI relaxation of (11) difficult using standard LMI relax-
ation methods when we set the control law, Ac, Bc, and Cc,
as decision variables (see, [27], [28]). [27], [28] put some
additional LMI constraints to obtain LMI conditions. How-
ever, the obtained LMI conditions are only available on ideal
linear systems; 2) in condition (11), A1 includes the uncer-
tainty 1A1, i.e.; A1 = A10 + 1A1. Thus, A2 and A3 also
include1A1, making the LMI relaxation difficult. In the next
subsection, we provide a robust ETC design for nonlinear
systems with parameter uncertainties in the system model.

B. CONTROLLER DESIGN
In this subsection, a new controller design scheme for the
output feedback and triggering laws is proposed for robust
ETC of nonlinear uncertain plants. We present the following
theorem that provides the LMI-based design conditions and
procedures to obtain the controller parameters.

Theorem 2: Consider system (5) with (6) and its con-
trolled output (7). For positive scalars α1, α2, α3, γd̄ , λy,
and λu, the L2-gain (w̄, d̄) to z of the system (5) with

(6) is less than or equal to γ =
√
max

{
γw̄, γd̄

}
, if there

exist scalars β, ν, µy, µu, σy, σu, γw̄ > 0, and
ρ ≥ 0, matrices Âc, B̂c, Ĉc, and positive definite matrices
X , Y , H1, H2, H3 with appropriate dimensions such that

� < 0, (12) I ? ?

0 I ?

λ2y8
T
6 λ2u8

T
7 2α1812 − H1

 ≥ 0, (13)

[
I ?

8T
6 2α2812 − H2

]
≥ 0, (14)[

I ?

8T
7 2α3812 − H3

]
≥ 0, (15)

where � =
{
�i,j

}
, i, j ∈ {1, 2, . . . , 14} is the symmetric

matrix whose components are given as follows:

�1,1 = 81 +8
T
1 , �2,1 = 82, �2,2 = −ρI ,

�3,1 = 83, �3,3 = −µyI , �4,1 = 84,

�4,4 = −µuI ,
�5,1 = 85, �5,5 = −γw̄I ,
�6,1 = �7,1 = �8,1 = 81,

�6,2 = �7,2 = 8
T
2 , �6,3 = �8,3 = 8

T
3 ,

�6,4 = �7,4 = 8
T
4 , �6,5 = �7,5 = �8,5 = 8

T
5 ,

�6,6 = −
γ̃d̄

α21

H1, �7,7 = −
(
α2λy

)−2H2,

�8,8 = −(α3λu)
−2H3,

�9,1 = 86, �9,5 = Dy, �9,9 = −σyI ,

�10,1 = 87, �10,5 = Du, �10,10 = −σuI ,

�11,1 = 88, �11,5 = Dz, �11,11 = −I ,

�12,1 = 89, �12,12 = −(ρβ)−1I ,

�13,1 = �13,6 = �13,7 = �13,8 = 810,

�13,13 = −ν−1I ,

�14,1 = 811, �14,14 = −νI ,

81 =

[
YAp0 + B̂cCp Âc

Ap0 Ap0X + BpĈc

]
,

82 =

[
BTf Y BTf

]
, 83 =

[
B̂Tc 0

]
,

84 =
[
BTp Y BTp

]
, 85 =

E
T
p Y ETp
B̂Tc 0

BTp Y BTp

 ,
86 =

[
Cp CpX

]
, 87 =

[
0 Ĉc

]
,

88 =
[
Cp
z Cp

z X
]
, 89 =

[
I X

]
,

810 =

[
ETp1Y ETp1

]
, 811 =

[
Fp1 Fp1X

]
,

812 =

[
Y I
I X

]
, γ̃d̄ = γd̄ −max

{
λ2y, λ

2
u

}
.

Moreover, the control law Ac,Bc, and Cc can be calculated
using the following steps:
Step 1: Obtain X , Y , Âc, B̂c, Ĉc by solving LMIs

(12)–(15).
Step 2: Calculate M and N using the relation

MNT
= I − XY .

Step 3: Obtain the feedback control and triggering
parameters ηy, ηu as follows:

[
Ac Bc
Cc 0

]
=

[
N YBp
0 I

]−1
×

[
Âc − YApX B̂c

Ĉc 0

]
×

[
MT 0
CpX I

]−1
,

ηu = (µuσu)
−

1
2 , ηy =

(
µyσy

)− 1
2 .
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Proof: See the Appendix.
Remark 4: In [26], the stability analysis results for a

class of nonlinear systems were presented, but the controller
design technique using the results was not obtained. [27]
designed the controller based on the results of [26] and [28]
proposed an improved controller design scheme. However,
the controller design techniques were all studies for linear
systems. In other words, they are the methods that cannot
be applied in the systems with nonlinearity and uncertainty.
Theorem 2 in this paper even enables the co-design of the
feedback controller and triggering parameters for the uncer-
tain nonlinear systems.

Based on Theorem 2, we derive the following corollary.
Corollary 1: Consider the hybrid system (5) with (6)

and its controlled output (7). Suppose that for given real
scalars α1, α2, α3, γd̄ , λy, λu > 0, there exist scalars
β, µy, µu, σy, σu, γw̄ > 0, and ρ ≥ 0, matrices Âc, B̂c, Ĉc,
and positive definite matrices X , Y , H1, H2, H3 with appro-
priate dimensions such that

9 < 0, (16)

and (13)–(15) where 9 =
{
9i,j

}
, i, j ∈ {1, 2, . . . , 12} is

symmetric and the components of 9 are the same as those of
� in Theorem 2.
Then, system (5) with (6) isL2-stable from (w̄, d̄) to zwith

anL2-gain less than or equal to γ =
√
max

{
γw̄, γd̄

}
. Further-

more, the procedure to obtain the output feedback control law
is the same as that described in Theorem 2.
Proof: The proof follows the same procedure as the proof of
Theorem 2 with 1Ap = 0. Thus, this is omitted here.

C. REDUCTION OF THE NUMBER OF TRANSMISSIONS
In this subsection, we present an optimization problem that
enables the number of transmissions of y and u to be reduced
using the optimized controller. The input and output signals
are transmitted if |ey| and |eu| violate the thresholds ηy|y| and
ηu|u|, respectively, according to the triggering conditions (6).
Thus, maximizing ηy and ηu in (6) in the controller design
reduces the number of transmissions. Furthermore, maximiz-
ing ηy and ηu implies minimizing σy, and σu, µy, and µu,
in (12)–(15) in Theorem 2. Therefore, for the given positive
values α1, α2, α3, γ̃d̄ , and scalars λy, λu, we can formulate
the optimization problem as follows:

minimize δ1µy + δ2µu + δ3σy + δ4σu
subject to (12)–(15) (17)

where δ1, δ2, δ3, and δ4 ≥ 0 are weight values. The val-
ues can be determined by considering the limitations such
as hardware characteristics of each channel, communication
periods of controllers and actuators, and performance of the
ETMs, which may commonly occur in real-world applica-
tions. In fact, when there is a limit to triggering of the actuator
due to the hardware limitation, relatively large values of ηu
and Tu can be obtained by determining large values of δ2 and
δ4, which can reduce the number of triggering of the actuator.

TABLE 1. ηy , ηu and T̄y , T̄u obtained using Theorem 1 over various θ .

TABLE 2. Scalar parameters used for the example in Section 4.1 over
various θ .

For systemswithout model uncertainties, we can alternatively
use (16) in Corollary 1 instead of (12). In Section IV-B, (16)
is used for the optimization problem (17) for comparison with
previous studies.

IV. NUMERICAL EXAMPLES
A. ROBUST STABILIZATION OF SYSTEMS WITH
UNCERTAINTY
We consider the following nonlinear uncertain plant model,
modified from the example in [40]:

ẋp1 = xp2,

ẋp2 = −2xp1 − 3xp2 + θ sin (5t)xp1
− sin (3xp1)+ u+ w,

y = xp1.

Here, θ is a known constant and used for discussions. Accord-
ing to (5) and (7), we can rewrite the plant model and con-
trolled output as follows:

Ap0 =
[
0 1
−2 −3

]
, Ep1 =

[
0
θ

]
, Fp1 =

[
1 0

]
,

1p = sin (5t), Bf =
[
0
−1

]
, f (xp) = sin (3xp1),

Bp =
[
0
1

]
, Ep =

[
0
1

]
, Cp =

[
1 0

]
,

Cp
z =

[
1 0.5

]
, Dz =

[
0.5 0 0

]
.

We set λu = λy = 0.1, and δi = 1, i = {1, 2, 3, 4}. To select
the parameters αi for i ∈ {1, 2, 3}, ρ and ν, we can use several
optimization methods. In this study, we used fminsearch
of MATLAB (see [41], [42]). Given θ = 0.1 and γ = 1.5,
the obtained values were α1 = 0.0004, α2 = 0.6319,
α3 = 3.4986, ρ = 0.8637, and ν = 10.4176.
Here, we set γw̄ = γd̄ = γ 2. Then, we can obtain the

following control and triggering laws as follows by solving
(17):

Ac =
[
−1.7214 −1.6453
4.1954 −4.4467

]
, Bc =

[
−0.1656
4.2723

]
Cc =

[
0.1754 −1.4923

]
,

ηy = 0.2253, ηu = 0.2339.
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TABLE 3. The average number of events on the output channel Ny
avg and

input channel Nu
avg; the average inter-event time on the output channel

τ
y
avg and input channel τu

avg for various θ .

TABLE 4. Comparison of ηy and ηu between the previous and proposed
studies.

FIGURE 3. (a) The trajectories of y (t) and ŷ (t), (b) The trajectories of u(t)
and û(t); the release intervals of (c) y and (d) u of Theorem 2.

Table 1 shows ηy, T̄y, ηu, and T̄y values over various values of
θ ; the scalar parameters used for solving the optimization (17)
are presented in Table 2. We observed that ηy, T̄y, ηu, and T̄u
decreased as θ decreased, implying that smaller thresholds in
triggering conditions need to be used for the larger influence
of the time-varying uncertainties.

We set the initial values x(0, 0) = (−50, 50, 50,−50),
e(0, 0) = (0, 0), and τ (0, 0) = (0, 0) for the time-domain
simulation. The unknown exogenous disturbance w of the
plant satisfies |w(t)| ≤ 0.5, and the noise on the output
and control input is dy(t) = 0.08 sin (50t) and du(t) =
0.1 sin (60t), respectively for any t ≥ 0. Fig. 3 shows the
time-domain simulation results for θ = 0.1. The designed
ETC effectively stabilized the closed-loop system, reducing
the number of transmissions on both channels. Table 3 shows
the number of transmissions, and average inter-event times
of y and u over various θ with randomly generated initial
conditions, ‖x(0, 0)‖2 ≤ 100. This shows that the number of
transmissions on both channels increases as the influence of
the time-varying uncertainties increases. The largest θ ensur-
ing the LMIs feasible was 5.703.

B. COMPARISON WITH THE PREVIOUS RESULT
Consider the following dynamics of a single-link robot arm,
illustrated in [26].

ẋp1 = xp2, ẋp2 = − sin (xp1)+ u+ w,

y = xp1

FIGURE 4. (a) The trajectories of y (t) and ŷ (t), (b) The trajectories of u(t)
and û(t); the release intervals of (c) y and (d) u of [26].

Following the representation of (5) and (7), the single-link
robot arm can be represented as:

Ap =
[
0 1
0 0

]
, Bf =

[
0
−1

]
f (xp) = sin (xp1),

Bp =
[
0
1

]
, Ep =

[
0
1

]
, Cp =

[
1 0

]
,

Cp
z =

[
1 0.5

]
, Dz =

[
0.5 0 0

]
.

We chose λu = 0.01, λy = 1, and γ = 19.3746, which
were used in [26]. We set γw̄ = γd̄ = γ 2. We chose δ1 =
δ3 = 1, δ2 = δ4 = 50. Using the same method as in the
previous subsection, we obtained α1 = 0.0883, α2 = 0.0835,
α3 = 44.9565, and ρ = 4.8263. Table 4 shows that the ηy
and ηu obtained using the proposed conditions are larger than
those of the previous study. The larger values can increase the
time required for the event-triggering rule to be violated, that
is, it can increase the inter-transmission times.

The obtained upper bounds of Ty and Tu are 6.79 × 10−2

and 5.59 × 10−3, respectively. Note that the upper bounds
of Ty and Tu obtained by the previously published method
were 5.62 × 10−3 and 3.63 × 10−4, respectively, which are
smaller than those of the proposed method. The parameters
of the controller are obtained as follows:

Ac =
[
−5.2307 −14.6627
4.2807 −18.2182

]
, Bc =

[
−29.5269
152.5669

]
Cc =

[
−0.4920 −2.3653

]
.

For the time-domain simulation, the unknown exogenous
disturbance w is applied, satisfying |w(t)| ≤ 0.1; the
noise signals on the output and control input are dy(t) =
0.08 sin (60t) and du(t) = 0.1 sin (50t), respectively. We set
Ty = 1.70 × 10−2 and Tu = 5.59 × 10−3. Figs. 4
and 5 shows the time-domain simulation results of the pre-
vious and proposed methods for the initial values x(0, 0) =
(20,−20,−20, 20), e(0, 0) = (0, 0), and τ (0, 0) = (0, 0).
We observe that the number of data transmissions of the
proposed method was significantly less than those of [26].
Furthermore, we also see that the controller obtained using

82138 VOLUME 10, 2022



S. Jeong et al.: Design of Robust Dynamic Output Feedback Event-Triggering Controllers

FIGURE 5. (a) The trajectories of y (t) and ŷ (t), (b) The trajectories of u(t)
and û(t); the release intervals of (c) y and (d) u of Corollary 1.

TABLE 5. The average number of events on the output (Ny
avg) and input

(Nu
avg) channels; the average inter-event time on the output (τy

avg) and
input (τu

avg) channels per simulation.

the proposed method shows better transient performance in
the output y.
Table 5 summarizes the number of transmissions of y

and u, and the average inter-event times of y and u for
10 s with randomly generated initial conditions such that
‖x(0, 0)‖2 ≤ 100. The number of transmissions of y and u in
the proposed method is 33.14% and 22.86% of those of the
previously published method in the simulation, respectively.
The inter-event times of the output and input of the proposed
method are 301.64% and 374.07% of those of the previously
published method at the same guaranteed L2-gain.

V. CONCLUSION
This paper has proposed a co-design of the DOF and
event-triggering laws for nonlinear uncertain systems. ETC
systems including the nonlinear uncertain plant output and
dynamic output controller transmitting the measurement and
control signals using their sampling rules have been described
as hybrid dynamical systems. As the nonlinear plant is
affected by time-varying uncertainties, the error dynamics
of the recently transmitted and currently measured signals
have also included these uncertainties making the controller
design difficult. First, we have presented L2-stability anal-
ysis of ETC systems. Subsequently, based on the analysis,
we have proposed LMI-based design conditions for the DOF
and event-triggering laws. We have deduced LMI-based con-
ditions using the modified Young’s inequality and the elim-
ination of uncertainties. The proposed design method can
minimize the number of transmissions by solving a convex
optimization problem. The simulation results have shown
that proposed method effectively design the controller to

stabilize the uncertain nonlinear network system. Further-
more, the controller designed by the proposed method has
greatly reduced the number of transmissions of the ETC
system, compared to the previous study. In future research,
the authors will be devoted to the robust output feedback
event-triggering control schemes for a class of the uncertain
systems with nonlinearity that does not guarantee the global
Lipschitz condition. Furthermore, the co-design of static out-
put feedback controller and event-triggering condition for a
class of uncertain nonlinear systems is still an open problem
and would be an interesting research direction.

APPENDIX
Before we present proofs, we introduce the following lemmas
that are necessary for the proof of Theorem 1 and 2.

Lemma 2 [43]: Let V0(ζ ) and V1(ζ ) be two arbitrary
quadratic forms over Rn. Then V0(ζ ) < 0 is a consequence
of V1(ζ ) ≤ 0 if and only if there exists ρ ≥ 0 such that

V0(ζ ) < ρV1(ζ ), ∀ ζ ∈ Rn
− {0}.

Lemma 3 [44]: Given constant matricesM,N ,Y; pos-
itive semi-definite matrix R with appropriate dimensions and
Y = YT , then for any1 satisfying1T1 ≤ R, the following
inequality holds:

Y +M1N +N T1TMT < 0

if and only if there exists a constant ν > 0 such that:

Y + νMMT
+ ν−1N TRN < 0.

Lemma 4 [28]: For givenmatrixX ∈ Rn×n, the follow-
ing inequality is satisfied for any matrix S > 0 and scalar α,

α
(
X T
+ X

)
− X T SX ≤ α2S−1.

Proof of Theorem 1: Let Wy(ey) = λy|ey| and Wu(eu) =
λu|eu|. Then, for almost all e ∈ Rne and all (x, ξ ) ∈ Rnx+nξ ,
we have

〈∇Wy(ey), f̄2(x, e, ξ )〉 ≤ λy|A2x + R2f (xp)

+M2eu + E2w̄+ F2d̄ |,

〈∇Wu(eu), f̄3(x, e, ξ )〉 ≤ λy|A3x +M3ey + E3w̄+ F3d̄ |.

Hence, condition (10) holds with Ly = 0, Hy(x, eu, ξ ) =
λy|A2x+R2f (xp)+M2eu+E2w̄+F2d̄ |, Lu = 0,Hu(x, ey, ξ ) =
λu|A3x +M3ey + E3w̄+ F3d̄ |, and Lu = 0.
Let V (x) = xTPx, for x ∈ Rnx . (8) is satisfied with α(s) =

λmin(P)s2 and α(s) = λmax(P)s2 for s ≥ 0. And it holds that
〈∇V (x), f̄1(x, e, ξ )〉 = xT (AT1 P+PA1)x+ (R1f (xp)+B1ey+
M1eu + E1w̄)TPx + xTP(R1f (xp)+ B1ey +M1eu + E1w̄) for
almost all x ∈ Rnx and all (e, ξ ) ∈ Rne+nξ . Let us define
the state vector ζ := (x, f (xp), ey, eu, w̄, d̄). Because f (xp) is
β-Lipschitz, we have

f (xp)T f (xp) ≤ βxTp xp ⇔ ζ Tϒζ ≤ 0, (18)

where ϒ := diag{−βUT
p Up, I , 0, 0, 0, 0}. Post-and pre-

multiplying (11) by ζ and its transpose, we have ζ T9ζ .
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Applying Lemma 2 with V0(ζ ) = ζ T9ζ and V1(ζ ) = ζ Tϒζ
in (18) yields

〈∇V (x), f̄1(x, e, ξ )〉 ≤ −|z|2 + η2w̄|w̄|
2
+ η2d̄ |d̄ |

2
− εy|y|2

− εu|u|2 + γ 2
y W

2
y (ey)+ γ

2
uW

2
u (eu)

−H2
y (x, eu, ξ )− H

2
u (x, ey, ξ )

where η2w̄ = γd̄ , η
2
d̄
= γd̄ , γ

2
y =

µy

λ2y
, and γ 2

u =
µu
λ2u
. Thus, (9)

is verified with δy(y) = εy|y|2, δu(u) = εu|u|2. �

Proof of Theorem 2: Let us define the positive definite
matrix P ∈ Rnx+nc ,

T1 =
[
Y I
NT 0

]
, T2 =

[
I X
0 MT

]
such that T1 = PT2 and MNT

= I − XY . Then,
we can obtain T T1 A10T2 = 81, RT1 T1 = 82,

BT1 T1 = 83, MT
1 T1 = 84,ET1 T1 = 85, CyT2 = 86,

CuT2 = 87, CzT2 = 88,UpT2 = 89, ET1T1 =
810, F1T2 = 811, T T1 T2 = 812 where



PA10 + AT10P ? ? ? ? ? ? ? ? ? ? ? ? ?

RT1 P − ρI ? ? ? ? ? ? ? ? ? ? ? ?

BT1 P 0 − µyI ? ? ? ? ? ? ? ? ? ? ?

MT
1 P 0 0 − µuI ? ? ? ? ? ? ? ? ? ?

ET1 P 0 0 0 − γw̄I ? ? ? ? ? ? ? ? ?

PA10 PR1 PB1 PM1 PE1 S1 ? ? ? ? ? ? ? ?

PA10 PR1 0 PM1 PE1 0 S2 ? ? ? ? ? ? ?

PA10 0 PB1 0 PE1 0 0 S3 ? ? ? ? ? ?

Cy 0 0 0 Dy 0 0 0 − σyI ? ? ? ? ?

Cu 0 0 0 Du 0 0 0 0 − σuI ? ? ? ?

Cz 0 0 0 Dz 0 0 0 0 0 − I ? ? ?

Up 0 0 0 0 0 0 0 0 0 0 −1
ρβ
I ? ?

ET1P 0 0 0 0 ET1P ET1P ET1P 0 0 0 0 −1
ν
I ?

F1 0 0 0 0 0 0 0 0 0 0 0 0 − νI



< 0,

S1 = −
γ̃d̄

α21

H̄1, S2 = −
1

(λyα2)2
H̄2, S3 = −

1
(λuα3)2

H̄3 (19)

Y + νMMT
+ ν−1N TN < 0,

Y =



PA10 + AT10P ? ? ? ? ? ? ? ? ? ? ?

RT1 P − ρI ? ? ? ? ? ? ? ? ? ?

BT1 P 0 − µyI ? ? ? ? ? ? ? ? ?

MT
1 P 0 0 − µuI ? ? ? ? ? ? ? ?

ET1 P 0 0 0 − γw̄I ? ? ? ? ? ? ?

PA10 PR1 PB1 PM1 PE1 S1 ? ? ? ? ? ?

PA10 PR1 0 PM1 PE1 0 S2 ? ? ? ? ?

PA10 0 PB1 0 PE1 0 0 S3 ? ? ? ?

Cy 0 0 0 Dy 0 0 0 − σyI ? ? ?

Cu 0 0 0 Du 0 0 0 0 − σuI ? ?

Cz 0 0 0 Dz 0 0 0 0 0 − I ?

Up 0 0 0 0 0 0 0 0 0 0 −1
ρβ
I



,

M =
[
ET1P 0 0 0 0 ET1P ET1P ET1P 0 0 0 0

]
,

N =
[
F1 0 0 0 0 0 0 0 0 0 0 0

]T (20)
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Âc = YAp0X + NBcCpX + YBpCcMT
+ NAcMT , B̂c = NBc,

and Ĉc = CcMT . Thus, pre- and post-multiplying (12) by
a matrix diag{T−12 , I , I , I , I ,T−12 ,T−12 ,T−12 , I , I , I , I , I , I }
and its transpose yields (19), as shown at the bottom of the
previous page, where H̄1 = T−T2 H1T

−1
2 , H̄2 = T−T2 H2T

−1
2 ,

and H̄3 = T−T2 H3T
−1
2 . Applying the Schur complement on

(19) yields (20), as shown at the bottom of the previous page.
Based on Lemma 3, (21) holds from (20). By applying the
Schur complement on (21), as shown at the bottom of the
page, we obtain (22), as shown at the bottom of the page,
where εu = σ−1u and εy = σ−1y . On the other hand, (13) can
be rewritten as:

 I ? ?

0 I ?

λ2yT
T
2 C

T
y λ2uT

T
2 C

T
u 2α1T T2 T1 − H1

 ≥ 0. (23)

Multiplying the left of (23) by diag{I , I ,T−T2 } and the right
by its transpose yields[

I ?

GT 2α1P− H̄1

]
≥ 0, (24)

where G =
[
λ2yCp 0

0 λ2uCc

]
. By applying Schur complement on

(24), we have

2α1P− H̄1 − GTG ≥ 0.

Similarly, one can obtain the following inequalities from the
LMIs in (13)–(15):

GTG ≤ 2α1P− H̄1, CT
y Cy ≤ 2α2P− H̄2,

CT
u Cu ≤ 2α3P− H̄3. (25)



PA1 + AT1 P ? ? ? ? ? ? ? ? ? ? ?

RT1 P − ρI ? ? ? ? ? ? ? ? ? ?

BT1 P 0 − µyI ? ? ? ? ? ? ? ? ?

MT
1 P 0 0 − µuI ? ? ? ? ? ? ? ?

ET1 P 0 0 0 − γw̄I ? ? ? ? ? ? ?

PA1 PR1 PB1 PM1 PE1 S1 ? ? ? ? ? ?

PA1 PR1 0 PM1 PE1 0 S2 ? ? ? ? ?

PA1 0 PB1 0 PE1 0 0 S3 ? ? ? ?

Cy 0 0 0 Dy 0 0 0 − σyI ? ? ?

Cu 0 0 0 Du 0 0 0 0 − σuI ? ?

Cz 0 0 0 Dz 0 0 0 0 0 − I ?

Up 0 0 0 Dz 0 0 0 0 0 0 − (ρβ)−1I



< 0 (21)



41 ? ? ? ?

RT1 P − ρI ? ? ?

BT1 P 0 − µyI ? ?

MT
1 P 0 0 − µuI ?

42 0 0 0 43


+



AT1 P AT1 P AT1 P

RT1 P RT1 P 0

BT1 P 0 BT1 P

MT
1 P MT

1 P 0

ET1 P ET1 P ET1 P


44

PA1 PR1 PB1 PM1 PE1
PA1 PR1 0 PM1 PE1
PA1 0 PB1 0 PE1

 < 0,

41 = PA1 + AT1 P+ C
T
z Cz + εyC

T
y Cy + εuC

T
u Cu + ρβU

T
p Up, 42 = ET1 P+ D

T
z Cz + εyD

T
y Cy + εuD

T
uCu,

43 = −γw̄I + DTz Dz + εyD
T
y Dy + εuD

T
uDu, 44 = diag(γ̃−1

d̄
α21H̄

−1
1 , (λyα2)2H̄

−1
2 , (λuα3)2H̄

−1
3 ) (22)



41 ? ? ? ?

RT1 P − ρI ? ? ?

BT1 P 0 − µyI ? ?

MT
1 P 0 0 − µuI ?

42 0 0 0 43


+



AT1 AT1 AT1
RT1 RT1 0

BT1 0 BT1
MT

1 MT
1 0

ET1 ET1 ET1


45

A1 R1 B1 M1 E1
A1 R1 0 M1 E1
A1 0 B1 0 E1

 < 0,

45 = diag(γ̃−1
d̄
GTG, λ2yC

T
y Cy, λ

2
uC

T
u Cu) (27)
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Pre- and post-multiplying the inequalities in (25) by P−1

yields by Lemma 4:

P−1GTGP−1 ≤ 2α1P−1 − P−1H̄1P−1 ≤ α21H̄
−1
1 ,

P−1CT
y CyP

−1
≤ 2α2P− P−1H̄2P−1 ≤ α22H̄

−1
2 ,

P−1CT
u CuP

−1
≤ 2α3P−1 − P−1H̄3P−1 ≤ α23H̄

−1
3 . (26)

Thus, (27), as shown at the bottom of the previous
page, is satisfied from (22) and (26). Applying the Schur
complement on (27), we have (11) in Theorem 1 with
GA1 = λ2yF

T
2 A2 + λ2uF

T
3 A3, GR1 = λ2yF

T
2 R2, GB1 =

λ2uF
T
3 B3, GM1 = λ

2
yF

T
2 M2, GE1 = λ2yF

T
2 E2 + λ

2
uF

T
3 E3 and

γ̃d̄ I = γd̄ I −λ
2
yF

T
2 F2−λ

2
uF

T
3 F3. Thus, we can conclude that

the system (5) with (6) is L2 stable from (w̄, d̄) to z with an
L2 gain less than or equal to γ =

√
max{γw̄, γd̄ }. �
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