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ABSTRACT In order to achieve interaction between structure and texture information in generative
adversarial image inpainting networks and improve the semantic veracity of the restored images, unlike the
original two-stage inpainting ideas where texture and structure are restored separately, this paper constructs a
multi-scale fusion approach to image generation, which embeds images into two collaborative subtasks, that
is, structure generation and texture synthesis under structural constraints. We also introduce a self-attention
mechanism into the partial convolution of the encoder to enhance the long range contextual information
acquisition of the model in image inpainting, and design a multi-scale fusion network to fuse the generated
structure and texture feature, so that the structure and texture information can be reused for reconstruction,
perception and style loss compensation, thus enabling the fused images to achieve global consistency. In the
training phase, feature matching loss are introduced to enhance the image in terms of structural generation
plausibility. Finally, through comparison experiments with other inpainting networks on the CelebA, Paris
StreetView and Places2 datasets, it is demonstrated that our method constructed in this paper has better
objective evaluation metrics, more effective inpainting of structural and texture information of corrupted
images and better image inpainting performance.

INDEX TERMS Image inpainting, generative model, deep learning, generative adversarial network.

I. INTRODUCTION
Image inpainting [1] techniques are an important element in
the field of image processing, which aim to reconstruct the
lost area according to the known part of the image or video.
Image inpainting can be widely used in film and television
special effects production, image editing, damaged cultural
relics digital image inpainting and other tasks.

Early image inpainting researchers [1]–[13] mainly used
texture synthesis to synthesize small regions of holes based
on image content similarity and texture consistency. How-
ever, due to the lack of human-like image comprehension
and perception by computers, the results often suffer from
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blurred content and missing semantics in large-area holes
image inpainting.

With the rise of deep learning, image inpainting based on
deep learning has also achieved remarkable results. Among
various methods of image inpainting, Generative Adversarial
Network (GAN) are often used to deal with the inpainting
task of complex texture [17], [25], [30], but their inpainting
results are prone to excessive smooth or blurred areas, which
fails to reconstruct fine image details. For example, Edge
Connect (EC) [28] proposed a two-stage generative adver-
sarial network combining edge information priors, includ-
ing edge inpainting network and texture inpainting network.
Edge inpainting network generates predicted edges in the
mask region of the image, and then the image inpainting
network uses predicted edges as priors to fill the mask region.
Although the network is used for image inpainting, with
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FIGURE 1. Example inpainting results on CelebA, Places2 and Paris
StreetView of our method. From left to right: (a) Corrupted images,
(b) Corrupted edge images, (c) Edge images, (d) Our results.
(e) Ground-truth images.

rich texture details of inpainting results were obtained, but
the GAN network residual block uses the dilated convo-
lution, when around the damaged area texture is relatively
complex, it is easy to incur the structure and texture to
connect inconsistently phenomenon between the filled area
and the known area. This is due to the neural network can
not extract the remote image and irregular image content
well, sometimes fails to accurately describe the edges of
highly textured regions of texture, and when large parts of the
image are missing, the results of the model patching become
poor.

In order to solve this problem, a multi-scale feature fusion
network image inpaintingmethod based on two-stage inpaint-
ing is proposed in this paper. which is trained and predicted in
two U-net type network structures, and the overall framework
is implemented as a GAN model. As shown in Figure 1,
our approach enables more visually convincing structures and
textures to be achieved. Our contribution can be summarized
as follows:
• A new inpainting method based on a generative adver-
sarial network is constructed on the basis of a two-stage
inpainting architecture. The network embeds images
into two collaborative subtasks, namely structure gen-
eration and texture synthesis under structural con-
straints, by which two parallel coupled streams are
modeled separately and combined to complement each
other.

• We have introduced the self-attention mechanism
module into the partial convolution of the encoder for
texture and structure, where convolution processes infor-
mation in the local domain, enhancing the ability to learn
learned relationships between long-range features, com-
plementing the advantages of convolutional manipula-
tion of learned features. Through self-attention, it helps
to generate more accurate results.

• A BIFPN-based multi-scale fusion network was
constructed to integrate the reconstructed structural and
textural features, refining the generated textural and

structural features to enhance their consistency for ren-
dering finer details.

We conducted a number of experiments on publicly avail-
able datasets to evaluate. Qualitative and quantitative results
show that our model is significantly superior to the oth-
ers. The structure of this paper is as follows. In the sec-
ond section, we introduce the traditional methods of image
inpainting, deep learning methods, self-attention model and
BIFPN feature fusion based methods. The third section
mainly introduces the details of our network. The fourth
section introduces the experimental environment, experime-
ntal parameter setting and evaluation methods. The fifth
section is the experimental results and results analysis. The
sixth section is the ablation experiments. Finally, the seventh
section is the conclusion.

II. RELATED WORK
A. TRADITIONAL METHODS
Early image inpainting adopted traditional methods based
on mathematical and physical theories. According to the
diff-erent methods adopted in image inpainting tasks, tradi-
tional methods can be roughly divided into diffusion based
methods and sample based methods.

Diffusion based methods are mainly used to complement
small scale image holes, which mainly includes partial dif-
ferential based inpainting technology [1], [2] and geomet-
ric image model based variational inpainting [3]–[5] The
sample based method assumes that the image missing areas
can be represented by known samples, and this method can
achieve good results in the inpainting of large area dam-
aged images technology. The main methods in this category
include texture-based synthetic inpainting methods [6]–[13]
and data-driven inpainting methods [14].

Traditional image inpainting methods can achieve good
results when the missing area of the image to be repaired
is small and the structure and texture are relatively simple.
However, in the face of more complex image inpainting tasks,
due to the lack of understanding and perception of image high
level semantics, it is impossible to fill the missing areas with
content in semantic consistency and reasonable, which is easy
to cause the lack of visual effects.

B. DEEP LEARNING METHODS
Mapping learning ability of deep features in deep learning
learning fits perfectly into the requirements of image inpaint-
ing, pointing out the direction for new inpainting methods,
and a variety of inpainting methods related to deep learning
have emerged [15]–[24]. Recently, Yu et al. [25] introduced
Contextual attention (CA) of the content awareness layer into
the generative adversarial network to match similar patches
from known pixels, so as to refine the inpainting results and
obtain clearer inpainting results. Liu et al. [26] proposed a
special convolution layer called partial convolution, in which
the mask is updated in each layer of convolution opera-
tion to limit the weight, reduce the influence of the mask
part on the image on the convolution process, and eliminate
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FIGURE 2. The overall architecture of our inpainting framework (best viewed in color). Corrupted edge images, corrupted grayscale image and
mask are the inputs of G1 to predict the full structure map Fs. The generator G2 takes the full structure map Fs and corrupted image as inputs to
generator the texture map Ft. The feature fusion network to further refine the results.

issues such as image blurring after incomplete. Yu et al. [27]
adopted Gated Convolution to automatically learn the dis-
tribution of mask, further improving the inpainting effect.
Edge Connect (EC) of Nazeri et al. [28] adopted two-stage
structural network to generate structural edge and texture
information respectively, in order to enhance the authentic-
ity of generated image. However, due to the instability of
generation versus series coupling frame, the ability to obta-
in reasonable structural edge information from corruptted
images is poor. In order to effectively realize the inpainting
of image structure and texture information, Liu et al. [29]
adopted the shared generator of texture and structure and
proposed a Mutual Encoder-Decoder (MED) inpainting net-
work combining structure and texture. Guo et al. [30] divided
image inpainting into two subtasks, texture synthesis and
structure reconstruction, and proposed a novel dual-stream
network CTSDG for inpainting to further improve the
performance.

Unlike existing methods, our approach uses an improved
two-stage Encoder-Decoder inpainting network which
embeds the images into two collaborative subtasks, the first
stage gets the structure complement result, the second stage
borrows its completed structure to guide the texture genera-
tion, and then the completed structure and texture generation
results are fused through a multi-scale fusion network to
achieve better inpainting results.

C. ATTENTION MODELS
Traditional convolutional generative networks generate
images, sometimes with distorted and blurred boundary

structures, due to the inability of the neural network to extract
pixels of distant image and irregular image very well, for
instance, if the content of a pixel point is affected by content
64 pixels away, then he would have to use at least six layers
of 3 × 3 convolutional kernels to have a perceptual field
of that size. And since the shape of this perceptual field is
a very standard and symmetric rectangle, it is not possible
to assign the correct weights to the corresponding features
well on some images, so it is already common to introduce
attention mechanisms into deep convolutional neural net-
works [32]–[34], [50]. Dai et al. [36] and Jeon et al. [37] pro-
pose learning spatial attention convolution kernels or active
convolution kernels. These methods can make better use of
information to deform the shape of the convolution kernel
during training, but may still be limited when we need to
borrow exact features from the background. Zhang et al. [31]
propose a method that can directly compute the relationship
between any two pixel points in an image and then acquire
the global geometric features of the image in one step. This
method was firstly proposed by Wang [35], which is better
able to learn the dependencies of global features on each
other. Our attentional module neural network is essentially
different from transforming an image into a common fea-
ture space with perceptual fields of the same size while
ignoring the fact that restoration involves different levels
of missing regions. Our approach uses a two-stage coder
network for inpainting, and in our network, different from
Zhang et al. [31] who applied the self-attention mechanism
to generators and discriminators, we apply the self-attention
modules to encoders of textures and structures.
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FIGURE 3. Detail view of the generators.

III. APPROACH
In this paper, the proposed method is implemented as a
generative adversarial network, where the image inpainting
network structure is shown in Figure 2. The network contains
two generators: a structure generator and a texture genera-
tor to synthesize the image texture and structure, then by
a multi-scale feature fusion network to refine features, the
discriminator determines the quality and consistency of the
generated images. In this section, we describe the generators,
multi-scale feature fusion network, discriminators and loss
functions in detail.

A. THE GENERATOR
The image inpainting method based on a self-attention
module generative adversarial network decomposed the
inpainting task into the completion of high frequency
information (structure) in the mask areas and low frequency
information (texture). The designed network has the follow-
ing features: the training and generalization ability of neural
network can be improved more stably by constructing the
embedded self-attention module between the lower sampling
layer and the upper sampling layer of generator. The gener-
ator is divided into two parts: G1 (structure generator) and
G2 (texture generator). The generator uses U-net structure,
encoding (down sampling), then decoding (up sampling),
returning to the classification of pixels the same size as
the ground-truth image. In this paper, the attention module
is defined as a residual block embedded in the process of
recoding.

Firstly, edge detection of corrupted images is performed
using Holistically-Nested Edge Detection (HED) [40] to
obtain the damage information of image edges. Then, the
damaged edges are projected to G1(structure Generator),
while the damaged image and G1-generated edges are pro-
jected to G2 (texture generator). In addition, skip connec-
tion [39] produces more complex predictions by combining
low level and high level features on multi-scale.

FIGURE 4. Multi-scale feature fusion network based on BIFPN.

TABLE 1. The parameters of discriminator.

The details of generators are shown in figure 3. The gener-
ator contains a normalization layer, and its convolution layer
is 7 × 7 convolution; The second to sixth layers are the
lower sampling layers, in which 5×5 convolution kernels are
used for the second and third layers, and 3 × 3 convolution
kernels are used for the fourth to sixth layers. The seventh to
eleventh layers are 3× 3 up sampling layers, and the twelfth
layer is the activation function layer with a convolution kernel
size of 3 × 3. The input channel number of texture encoder
is 2, including damaged image and mask, while the input
channel number of structure encoder is 3, including damaged
edge image (detected by edge detection method [40], gray
image and mask. The structure and texture mapping images
generated byG1 andG2 are shown in Figure 3. where, tomake
it easier to observe the generated structure map, we display
the generated structure information in pink and the original
structure information in black.

B. MULTI-SCALE FEATURE FUSION
Bai et al. [46] introduced FPN [48] into the discriminator
of generative adversarial networks, where feature maps of
different depths are up sampled and then directly summed,
so that shallow and deep information can be effectively com-
bined, and realistic results were obtained. Inspired by [46],
this paper introduces BIFPN [47], which has better perfor-
mance, into the network constructed in this paper, and unlike
their work, this paper designs a BIFPN-based multi-scale fea-
ture fusion network for fusing the generated texture features
and structural features, so as to achieve the interaction of
texture and structural information. In order to enhance the
consistency of structure and texture of the inpainting, fused
with the feature graph output by G1 and G2, the structure
of feature fusion network as shown in Figure 4, where Ft
is the output texture feature and Fs is the structural feature.
In order to realize the mutual constraint of structure and
texture information in the fusion process and reduce the loss
of reconstruction, perception and style, the improved BIFPN

VOLUME 10, 2022 82671



L. Li et al.: Multiscale Structure and Texture Feature Fusion for Image Inpainting

FIGURE 5. Qualitative comparisons on CelebA dataset. (zoom in for a better view): (a) cprrupted images, (b) EC, (c) MED, (d) CTSDG, (e) Ours, and
(f) Ground-truth images.

multi-scale feature fusion network is adopted to make the
fused image closer to the ground-truth image. Skip connec-
tion is used to prevent semantic damage in the fusion process,
and a pair of convolution and deconvolution are seamlessly
embedded into our feature fusion structure to improve com-
putational efficiency.

By learning the context, the feature information percep-
tion of texture and structure can communicate with mes-
sages, the correlation between local features of the image
can be enhanced, and the overall consistency of the image
can be maintained. The specific formula of its treatment is as
follows:

P t = σ (g(C(Ft ,Fs))) (1)

where, C(·) is the channel connection, g(·) is the mapping
function realized by the convolution layer with a kernel size
of 3, and σ (·) is the sigmoid activation function. Through P t ,
we can adaptively combine Ft and Fs to obtain the feature
graph Fp. The purpose of multi-scale feature fusion is to
aggregate different features. Generally, the feature graph can
be expressed as:

Fp = (F1
p,F

2
p . . . ,F

i
p) (2)

where, Fip represents the feature level of 1/2i whose reso-
lution is the input image, and this paper adopts the feature
level of i = 1, 2, 4, 8 as the feature input. When fusing
features with different resolutions, the common method is to
adjust them to the same resolution first. In order to better
aggregate multi-scale semantic features, we further design
a pixel weight generator to generate pixel weights. GW is
composed of two convolution layers, the size of convolution
kernel is 3 and 1 respectively. Each convolution layer is
followed by ReLU nonlinear activation, and the number of
output channels is 4. Pixel weight mapping is calculated as
follows:

W = Softmax(GW (Fp)) (3)

W 1,W 2,W 4,W 8
= Slice(W ) (4)

where, Softmax(·) is the Softmax value of the channel direc-
tion, and Slice(·) is the channel-wise slice of W . Finally, the
multi-scale semantic features are aggregated. Here, we take
F4
p as an example.

F4
td = Conv(

W 4F4
p +W

8Resize(F8
p )

W 4 +W 8 + α
) (5)
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FIGURE 6. Qualitative comparisons on Places2 dataset. (zoom in for a better view): (a) cprrupted image,(b) EC, (c) MED, (d) CTSDG, (e) Ours, and
(f) Ground-truth images.

F4
out = Conv(

W 4F4
p +W

4F4
td +W

2Resize(F2
out )

2W 4 +W 2 + β
) (6)

where, Resize is the up sampling or down sampling operation
usually used in resolution matching, and Conv is the convo-
lution operation in feature processing. F4

td is the intermediate
feature at level 4 on the top-down path, and is the output
feature at level 4 on the bottom-up path, and all other features
are constructed in the similar way. Finally, feature graph Fa
was obtained by element addition.

Fa =
(
F1
out ⊗W

1
)
⊕

(
F2
out ⊗W

2
)

⊕

(
F4
out ⊗W

4
)
⊕

(
F8
out ⊗W

8
)

(7)

For efficiency, the depthwise separable convolution
[41], [42] is used here for feature fusion, with batch normal-
ization and activation function ReLU after each convolution.

C. THE DISCRIMINATOR
Both discriminators D1 and D2 choose spectral normal-
ized Markov discriminators, ground-truth images are dis-
tinguished from generated images by estimating features
of texture and structure. the discriminator parameters are

shown in Table 1 and are the same for both discriminators.
The discriminator consists of five convolution layers and one
fully connected layer. The first three convolution layers have
a kernel size of 4 and a step size of 2, and the last two
the convolution operation in feature processing. F4

td is the
intermediate feature at level 4 on the top-down path, and is
convolution layers have a kernel size of 4 and a step size of 1.
The last layer uses the sigmoid nonlinear activation function,
and the other layers use the Leaky ReLU with slope of 0.2.
The convolution-normalized layer-activation function is used
to extract the advanced features of the image, and then the
adversarial loss is calculated on this basis. Different from the
case of texture discriminator, structure discriminator needs to
detect the edge of the fused image by using the HED [40] to
obtain the edge of the generated image and use gray image
as additional condition. Pairs of data are used as inputs to
optimize the adversarial loss of the structure discriminator.
In this way, the structure discriminator can not only judge
the authenticity of the generated structure, but also ensure its
consistency with the real image. In addition, spectral normal-
ization can effectively solve the training instability of gener-
ative adversarial networks and improve the problem of slow
weight change in the iterative process. The network details
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FIGURE 7. Qualitative comparisons on paris street view dataset. (zoom in for a better view): (a) cprrupted image, (b) EC, (c) MED, (d) CTSDG, (e) Ours, and
(f) Ground-truth images.

of the two discriminators are exactly the same. By repeating
the game process of minimax, the model finally reaches the
equilibrium state, thus stabilizing the training process.

D. COMBINED LOSS FUNCTION
In order to reduce the loss of training link as much as possi-
ble, semantic based combined loss training is adopted here,
including feature matching loss, intermediate loss, recon-
struction loss, perception loss, style loss and adversarial loss,
so as to obtain visually real and semantically reasonable
inpainting network.

1) FEATURE MATCHING LOSS
The edge image is a single channel black and white image,
so the loss function for color image is not applicable. Facing
complex edge information, feature matching is needed to
control the generator to generate edge details to get more sim-
ilar results to ground-truth images. Therefore, DenseNet [43]
was designed to extract the feature matching loss of features.
By comparing the output of activation functions at each level
of the discriminator, the feature matching loss was obtained,
so as to help the generator generate the result with details

closer to the ground-truth image.

Lfm = E

[
n∑

i=1

1
N i

∥∥∥D(i)
i (Ein)− D

(i)
i (Eout )

∥∥∥
1

]
(8)

where, n represents the number of layers of the discriminator,
i represents the i-th layer of the discriminator, N i represents
the number of elements at i-th layer, D(i)

i is the i-th layer
output of the discriminator, Ein is the damaged edge map-
ping, and Eout is the generated complete output edge. The
detailed texture effect of edge graph is improved by calculat-
ing the L1 loss output by activation function of each layer of
discriminator.

2) INTERMEDIATE LOSS
In order to support the two decoders of the generator to
accurately capture the features of both structure and texture,
we introduced intermediate monitoring for Fs and Ft :

Linter = Lstructure + Ltexture
= BCE(Egt ,Ps(Fs))+ `1(Igt ,Pt (Ft )) (9)

where, Ps(·) and Pt (·) represent projection functions realized
by residual block and convolution layer, where Fs and Ft
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TABLE 2. Objective quantitative comparison on Celeba (↑ higher is better, ↓ lower is better).

TABLE 3. Objective quantitative comparison on Pleaces2 (↑ higher is better, ↓ lower is better).

TABLE 4. Objective quantitative comparison on paris street view (↑ higher is better, ↓ lower is better).

correspond to structural feature mapping and texture feature
mapping respectively.

3) RECONSTRUCTION LOSS
The reconstruction loss is added to the objective function of
the multi-scale feature fusion network, which helps to explic-
itly guide the feature fusion network towards the possible
configuration close to the actual data. We take the between
Iout and Igt as the reconstruction loss, and the formula is as
follows:

Lrec =
∥∥Iout − Igt∥∥1 (10)

4) PERCEPTION LOSS
Since reconstruction loss is difficult to capture high level
semantics, perception loss Lperc is introduced to evaluate
the global structure of image. The perception loss model is
the pre-trained VGG-16 [45] on ImageNet [44], Igt is the
ground-truth image, Iout is the output of the generator, and
L1 is the distance between Iout and Igt in the feature space.

Lperc = E

[∑
i

∥∥φi(Iout )− φi(Igt)∥∥1
]

(11)

where, φi(·) represents the activationmapping obtained by the
given input image I∗ through the pooling layer of layer i of
VGG-16

5) STYLE LOSS
Style loss is further designed to ensure style consistency.
Similarly, style loss is used to calculate the distance L1

between feature maps.

Lstyle = E

[∑
i

∥∥ϕi(Iout )− ϕi(Igt )∥∥1
]

(12)

where, ϕi(·) = φi(·)Tφi(·) represents the Gram matrix con-
structed by the activation mapping φi.

6) ADVERSARIAL LOSS
Adversarial loss is to ensure the visual authenticity of the
reconstructed image and the consistency of texture and struc-
ture, where D stands for discriminator. The addition of dis-
criminator introduces additional adversarial loss and adds a
new regularization for the network to distinguish whether it
is the image generated by the network or the truth image,
as defined below:

Ladv = min
G

max
D

EIgt ,Egt
[
logD(Igt ,Egt )

]
+EIout ,Eout log [1− D(Iout ,Eout )] (13)

where, Egt is the edge mapping of the original image.
In summary, the combined loss function is as follows:

Ljoint = λfmLfm + λinterLinter + λrecLrec + λpercLperc
+ λstyleLstyle + λadvLadv (14)

where, λfm = 10, λinter = 1, λrec = 10, λperc = 0.1, λstyle =
250, λadv = 0.1.
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IV. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT AND DATASETS
The deep learning framework used for the experiments was
pytorch, the computer operating systemwas windows 10, and
the graphics card model was NVIDIA TITAN XP (12GB).

FIGURE 8. Results on real images. (zoom in for a better view):
(a) Cprrupted image, (b) Corrupted edge images, (c) Edge images, (d) Our
results, (e) Real-world images.

We used the CelebA, Paris Street View and Places2
datasets, which are widely used in the literature, to evalu-
ate the proposed approach. We selected 10 categories from
Places2, each with 5000 training images, 900 test images and
100 validation images. We used 30,000 images for training
and 10,000 images for testing. 14,900 training images and
100 test images were included in Paris Street View. Irregular
masks were obtained from [26] and classified according to
their hole size relative to the whole image in 10% incre-
ments. All images and the corresponding masks were resized
to 256 × 256 pixels and the batch size was processed to
16 images, using the Adam optimizer [49]. We first used a
learning rate of 2 × 10−4 for initial training, then fine-tuned
the model at a learning rate of 5×10−5 and froze the BN layer
of the generator, with the discriminator trained at 1/10 the
learning rate of the generator. The model took approximately
5 days to train on CelebA, 10 days on Places2 and 4 days on
Paris Street View. The fine-tuning was done in one day.

B. EVALUTION CRITERION
Both subjective and objective evaluations were used to ana-
lyze the experimental results. For the objective evaluation,
PSNR (Peak Signal to Noise Ratio), SSIM (Structral Simi-
larity Index) and FID (Frechet inception distance score) are
used as evaluation indexes.

Among them, PSNR is used to evaluate the error between
corresponding pixel points in two images, and a higher value
indicates a smaller distortion.

SSIM is used to evaluate the overall similarity of two
images in brightness, contrast and structure. The closer the
result is to 1, the higher the similarity is.

FID [38] is a measure to evaluate the quality of generated
images, is also ameasure to calculate the distance between the

feature vectors of real images and generated images, which is
specifically used to evaluate the performance of generative
adversarial network. Lower scores were highly correlated
with higher quality images.

TABLE 5. User study on datasets.

TABLE 6. The time evaluation.

V. RESULTS AND COMPARISONS
A. QUALITATIVE COMPARISON
Figures 5, 6 and 7 compare our results with those of rep-
resentative methods. As shown in Figure 5 on the CelebA
dataset, our method is able to predict the generation of more
reasonable faces, even when the occluded partial areas are
large, ensuring that the faces are reasonable and natural,
yielding better texture detail features. For example, the results
of the MED method in the second line and the CTSDG
method in the third line, they perform poorly in maintaining
the semantic integrity of the restored object, especially when
the masking rate gradually increases, compared to the results
of our method, which is not up to the task of approximating
the original image effect.

On the other hand, on the Places2 and Paris Street View
datasets, as shown in Figures 6 and 7, we can find that our
method has a clear advantage in maintaining the integrity of
the repaired objects and restoring the edges of the objects.
As shown in Figure 7 for the EC method in the second line
and the MED method in the third line, they exhibit large
restoration biases and distorted restoration structures when
finer edge textures need to be restored, whereas our method
achieves clear close-to-real inpainting results with smoother
features such as edges and image text details.

In short, our method gives the results more stability and
accuracy in terms of structural and textural features.

B. QUANTITATIVE COMPARISON
1) THE NUMERICAL EVALUATION
We have used three main metrics, PSNR, SSIM and FID, for
quantitative evaluation and compared the results with other
methods having irregular mask rates of 10-20%, 20-30%
and 30-40%. The quantitative results are shown in Table 2,
3 and 4. After comparison shows that it can be seen that our
proposed method is significantly better than other methods,
indicating that it can, to a certain extent more accurately solve
the image inpainting problem in the case of varying mask
rates, thus circumventing the weaknesses of methods such as
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FIGURE 9. Visualization of the effects of network architecture and individual modules on CelebA. (zoom in for a better view): (a) Corrupted image,
(b) w/o two-stage structure, (c) w/o self-attention module, (d) w/o multi-scale feature fusion, (e) Ours, and (f) ground-truth images.

TABLE 7. Quantitative ablation study on Celeba.

EC and MED, and can be among the candidates for reference
in terms of restoration accuracy; at the same time the method
consumes very little time and can be competent for quasi-
real-time tasks.

Whereas in the three results tables, the inpainting effective-
ness on the basis of the same prerequisites and hardware is
represented at the data level and can reflect the accuracy and
stability of our proposed method, the data from these three
tables conclude that the improved multi-scale feature fusion
inpainting method in this paper provides better performance
in the same hardware environment. This is also consistent
with the intuitive visual perception of the results graphs given
by Figures 5, 6 and 7.

From Tables 2, 3 and 4, it can be seen that on the basis
of different datasets and increasing mask rates, our method
has the most significant accuracy improvement compared to
EC, followed by CTSDG, while for MED, our method is
more closely aligned with its results, with higher restoration
accuracy for both, but it can still be clearly discerned that
our method has superior performance and can produce better
results and quality.

2) THE VISUAL EVALUATION
The image inpainting task itself is a ill-posted problem,
especially when it comes to large areas, where restoration
of unknown restored areas is often underdetermined and

error-free restoration is often very difficult, Paris Street View
and CelebA datasets, and the methods involved in the eval-
uation were EC, MED, CTSDG and our results. For each
test image, the five repair results were randomly ordered and
presented to the volunteers along with the input images, and
the evaluation results are shown in Table 5. Our method had
better results for border generative tasks such as places2 and
Paris Street View.

3) THE TIME EVALUATION
The time required for image inpainting is also an important
factor in evaluating the efficiency and goodness of a model,
so we evaluated the time of several restoration models that
were compared. All models used the same ten images and
masks for restoration, and then the total restoration time was
divided by 10 to obtain the restoration time per image. As can
be seen from Table 6, the algorithm proposed in this paper has
relatively efficient restoration efficiency.

C. INPAINTING OF REAL-WORLD IMAGES
We obtained real-world images by using the phone photo
function, obtained corrupted images by masking the mask
over the ground-truth images, and then tested them with the
trained places2 model. The first row of Figure 8 is done with
the model trained on on the Paris Street View dataset, and
the second and third row are done with the model trained on

VOLUME 10, 2022 82677



L. Li et al.: Multiscale Structure and Texture Feature Fusion for Image Inpainting

the places2 dataset. As shown in figure 8, our method is able
to predict the structures well and provide clear and realistic
photographs.

D. ABLATION STUDY
In this section we will analyze the contribution of each com-
ponent of the model to the final performance from three per-
spectives: the improved two-stage structure, the self-attention
module and the multi-scale feature fusion network.

1) TWO-STAGE STRUCTURE NETWORK
To demonstrate the effectiveness of the improved two-stage
network in this paper, it was compared with a two-stage task
network (i.e. structural texture repair separately). To be fair,
the multi-scale feature fusion network and the dual Markov
discriminator designed in this paper were used. As can be
seen in Figure 9, and Table 7, our improved two-stage inpaint-
ing network has better results.

2) SELF-ATTENTION MODULE
To verify the effectiveness of the self-attention module,
we used the self-attention module as a variable and kept only
a single encoding-decoding structure in the texture generator
and the structure generator, leaving the rest of the structure
to make the comparison more concrete, the results of the
quantitative analysis are given in Table 7. It is shown that
self-attention module helps to improve performance.

3) MULTI-SCALE FEATURE FUSION
In order to evaluate the effect of multi-scale feature fusion
network, a simple fusion of the generated structural and tex-
tural features was used as a baseline for comparison. As can
be seen in Figure 9, for the results obtained using the simple
fusion module (channel cascade followed by a convolutional
layer) blurred edges as well as missing information can be
observed. To make the comparison more concrete, the results
of the quantitative analysis are given in Table 7. It is shown
that the multi-scale fusion helps to improve performance.

VI. CONCLUSION
In this paper, we propose a novel approach to image inpaint-
ing that embeds images into two collaborative subtasks,
namely structure generation and texture synthesis under
structural constraints. A self-attention module is embedded in
the partial convolution in the encoding part of the generator,
which enhances the long-range contextual information acqui-
sition of the model in image inpainting. Moreover, a multi-
scale fusion network is constructed on the basis of the original
two-stage inpainting network to refine and fuse the generated
structure and texture information so that the structure and
texture information can be repeatedly and effectively utilised.
Experiments show that themodel is capable of performing the
task of image inpainting and outperforms the state-of-the-art
counterparts.
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