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ABSTRACT There is continuous intensive research on image compression techniques in wireless sensor
networks (WSNs) in the literature. Some of the image compression techniques in WSNs that exist in the
literature include discrete cosine transform (DCT), discrete waveform transforms (DWT), set partitioning in
a hierarchical tree (SPIHT), and embedded zero tree wavelet (EZW) coding. Research on image compression
in WSNs is necessitated by the need to improve the energy efficiency of sensor nodes and WSNs’ lifetimes
without compromising the quality of the reconstructed data. Several approaches have been developed
centered around image compression and other factors in trying to limit the energy consumption of sensor
nodes. Most of these approaches do not provide the error-bound mechanism that balances the rate of
compression and distortion of the reconstructed image. Therefore, in this paper, a review and analysis
of image compression techniques and approaches in WSNs are conducted. Available image compression
approaches in WSNs in literature were then classified according to the image compression technique
adopted, and their strengths and weaknesses were highlighted. In addition, a rate-distortion balanced data
compression algorithm with error bound mechanism based on artificial neural networks (ANN) in the form
of an autoencoder (AE) was coded and simulated in MATLAB before being evaluated and compared to the
conventional approaches. The experimental results show that the simulated algorithm has less root mean
square error (RMSE) and a higher coefficient of determination (R2) values on variable compression ratios
as compared to the Principal Component Analysis (PCA), Discrete Cosine Transform, and Fast Fourier
Transform (FFT) when using the Grand-St-Bernard metrological dataset. Furthermore, it presented less
RMSE, and higher compression ratio values compared to the Lightweight Temporal Compression (LTC)
algorithm on variable error bounds when using the LUCE metrological dataset. Therefore, it was found that
the simulated algorithm presents better compression fidelity as compared to the conventional approaches
without an error-bound mechanism. Moreover, the algorithm analyzed presents a significant approach to
balancing the compression ratio and reconstructed data quality through its error-bound mechanism.

INDEX TERMS Autoencoder, data compression, image compression, image compression techniques, lossy
compression, wireless sensor network(s).

LIST OF ABBREVIATIONS
AD Average Difference.
AE Autoencoder.
AIDA Application Independent Data Aggregation.
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ALDC Adaptive Lossless Data Compression Algorithm.
AMBTC Absolute Moment Block Truncation Coding.
BPP Bits Per Pixel.
BS Base Station.
BTC Block Truncation Coding.
CC Communication Compression.
CR Compression Ratio.
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CS Compressed Sensing.
DC Data Compression.
DCT Discrete Cosine Transform.
DPCM Differential Pulse Coding Modulation.
DSC Distributed Source Coding.
DSM Distributed Source Modelling.
DWT Discrete Wavelet Transform.
EADAT Energy-Aware Distributed Heuristic

approach.
EBCOT Embedded Block Coding with Optimized

Truncation.
EDVQ Error-Dispersed based on Vector

Quantization.
EZW Embedded Zero Tree Wavelet.
FC Fractal Compression.
FELACS Fast Efficient Lossless Adaptive

Compression Scheme.
FFT Fast Fourier Transform.
GIF Graphic Interchange Format.
GTEB Game Theoretic Energy Balance Routing

Protocol.
HEED Hybrid Energy-Efficient Distribute

clustering.
IC Image Compression.
IFS Iterative Function System.
ISQ Image Subtraction with Quantization.
JPEG Joint Photographic Expert Group.
KL Kullback-Leibler.
L-BFGS Broyden-Fletcher-Goldfard-Shano.
LC Learning Compression.
LCM Local Cluster Member.
LEACH Low Energy Adaptive Clustering

Hierarchy.
LTC Lightweight Temporal Compression.
LZW Lempel-Ziv-Welch.
MD Maximum Difference.
MSE Mean Square Error.
NITF National Imagery Testing Formats.
NMF Non-negative Matrix Factorization.
PC Predictive Coding.
PCA Principal Component Analysis.
PEDAP Power Efficient Data gathering and

Aggregation Protocol.
PEGASIS Power Efficient Data Gathering

Protocol for
Sensor Information Systems.

PNG Portable Network Graphics.
PSNR Peak-Signal-to-Noise Ratio.
QoS Quality of Service.
QPDM Quad, Pixel, Data Manager.
RF Radio Frequency.
RLC Run Length Coding.
RMSE Root Mean Square Error.
S-LZW Sensor-Lempel-Ziv-Welch.
SAE Sparse Autoencoder.
SC Sampling Compression.

SCT Semantic/Spatial Correlation aware Tree.
SM Supreme Minimum.
SPIHT Set Partitioning in Hierarchical Tree.
SVD Singular Value Decomposition.
TIFF Tagged Image File Format.
TTA Tree based Tiny Aggregation.
USC-SIPI Signal Image Processing

Institute in the University of
Southern California.

VLB Variable Length Blocks.
VQ Vector Quantization.
WAE Weight decaying Autoencoder .
WMSN Wireless Multimedia Sensor Network.
WMSNs Wireless Multimedia Sensor Networks.
WSN Wireless Sensor Network.
WSNs Wireless Sensor Networks.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) are being deployed in
a wide range of potential applications scenarios, including
precision agriculture, object tracking, pipeline monitoring,
underground mining, forest monitoring, industrial applica-
tions, military surveillance, medical systems, traffic, and
remote control [1]–[3]. Wireless sensor networks; almost
unlimited information access and greater control of our envi-
ronments. These are numerous distributed sensing devices
for monitoring and interacting with the physical world. The
devices involved are networked in a way that they coop-
erate to perform higher-level sensing tasks. WSNs consist
of wireless sensors (numbers of nodes) and base stations
[4] that are limited by communication bandwidth, memory,
power supply, processing performance, and highly resource-
constrained [5]–[8]. Therefore, the key issue in the design of
algorithms and protocols for WSNs is energy consumption.
Radio communication is the dominant energy consumption
feature in WSNs with data bits being directly proportional to
this type of energy consumption. i.e., traffic data transmission
within WSN [8], [9]. Hence, a measurable reduction of com-
munication energy costs can be achieved through transmitted
bits compression while increasing the lifetime of the network
[8]. WSN topologies include star, tree, and mesh. The differ-
ent types of WSNs include Terrestrial WSNs, Underground
WSNs, Underwater WSNs, Multimedia WSNs, and Mobile
WSNs [4]. According to the literature, WSNs can be classi-
fied as static and mobile, deterministic, and nondeterministic,
single-base station and multi-base station, static-base station
and mobile-base station, single-hop and multi-hop WSN,
self-reconfigurable and non-self-configurable, and homoge-
neous and heterogeneous. A typical sensor node consists of
four main components: (i) a sensing unit including one or
more sensors and analogue- to-digital converters for data
acquisition; (ii) a data processor including a microcontroller
and a memory for local data processing; (iii) a radio sub-
system (RF unit) to transmit the data over a wireless channel
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FIGURE 1. A wireless sensor network model with a sensor network
architecture [3].

to a designated sink; and (iv) a power source [3], [10] as
shown in Figure 1.
Sensor Nodes –the sensing devices that sense data like

image data and used for forwarding and relaying messages in
the network to other nodes. According to literature, a wireless
sensor node is an essential component of a wireless sensor
network. They are used for sensing, processing, wireless
communication, power supply management, etc. according
to wireless network application. They collaborate with each
other to support in-network processing in such a way of
significantly reducing the amount of network data traffic.
Sinks– information destinations that avail data from sensor

to interested users on the internet.
Mobile Data Collectors – Intermediate nodes that are not

necessarily sources or destinations. At least one of them in a
network renders the network mobile.

Several attributes determine the sensor selection and inte-
gration. These include the accuracy of the sensed data,
sensitivity, reproducibility, sensing span of the network, res-
olution, selectivity, response time, and self-heating that can
affect the quality of the data sensed by the sensor and per-
formance of the sensor. The physical layer (point-to- point
communication) for establishing a direct link between sensor
nodes. It consists of the transmitter, channel, receiver, source
encoding, channel encoding, modulation, demodulation, and
signal propagation. MAC protocols can either be schedule
based, contention based or a hybrid. Ensures that all nodes
share the wireless media in a distributed way. MAC protocols
manage the utilization of energy on the network. Network
layer is used for supporting multi-hop communication. The
network layer includes the network topology, routing met-
rics, routing classification, and routing protocols. In wireless
sensor networks, the two main network topologies that have
been adopted according to literature are flat and hierarchical
topologies.

Unlike scalar WSNs, Wireless Multimedia Sensor Net-
works (WMSNs) nodes are equipped with low-cost cameras
to enable them to meet most event detections and envi-
ronmental data collection requirements [3], [11]. WMSNs’

complexity further increases the resource constraints such as
bandwidth and computational power as compared to scalar
WSNs in detecting environmental events [12]–[14].

Several image compression (IC) techniques exist in lit-
erature and their choice depends on the type of operating
platform. Image compression minimizes redundancies and
irrelevant image data for efficient storage and transmission
[15] while preserving the visual quality of the reconstructed
image [16]. Generally, image compression is done to save
storage space and lower bandwidth without compromising
the output image quality [16]. Compression techniques can
be classified as lossy and lossless [17]. Their applications are
dependent on the encoding and decoding time, compression
ratio, and energy requirements [16].

Surveys and reviews on image compression in WSNs have
been done by different researchers before. However, the con-
tributions of this research work are as follows:

1. Identifying compression techniques inWSNs and cate-
gorizing them into the types, the requirements, and the
features.

2. General overview of image compression and classi-
fication of lossy image compression algorithms into
transform-based and non-transformed as adopted in
WSNs.

3. Classification of image compression in WSNs related
works according to their strengths, weaknesses and the
image compression techniques adopted.

4. Analysis and simulation of a Rate-Distortion balanced
data compression algorithm in WSN using MATLAB.
This was compared with other conventional algorithms
that included Principal Component Analysis (PCA),
Discrete Cosine Transform (DCT), Lightweight Tem-
poral Compression (LTC) and Fast Fourier Transform
(FFT).

The rest of the paper is arranged as follows: Section II
covers compression in WSNs that include data compres-
sion and image compression. In Section III, related works
in image compression for WSNs are discussed and classi-
fied. Section IV and V cover an analysis and evaluation of a
rate-distortion balanced data compression algorithm, respec-
tively. Lastly, conclusions and future direction are provided
in Section VI.

II. COMPRESSION IN WIRELESS SENOSR NETWORKS
Different compression techniques in WSNs exist in the liter-
ature. There are several existing techniques on compression
in WSNs such as Data Compression (DC) and Image Com-
pression (IM). In WSNs, compression can be categorized
into three (3) categories; Sampling Compression (SC), Data
Compression [16], [18], and Communication Compression
[18], [19] as shown in Figure 2.

Sampling Compression: A reduction of sensory opera-
tions while making sure that there is no loss in coverage of
the network and at an acceptable distortion margin [8], [20].
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FIGURE 2. Different compression schemes within a wireless sensor
network [8].

FIGURE 3. Compression in WSNs types, requirements, and features
summary.

Data Compression: Conversion of an input image stream
into the desired output that is compressed with a smaller
size [16] using some form of encoding [8].

Communication Compression: Reduction of the number
of transmissions within the network and the receptions by
radio on-time of transceivers reduction [8], [21].

The requirements can be categorized into generic
requirements and application-specific requirements. Generic
requirements are communication requirements, computa-
tional complexity and memory requirements, redundant
sensing, on-route compression, reliability, robustness, and
scalability.

Whereas application specific requirements consist of real-
time vs. non-real-time, quality of service (QoS)-awareness,
and security. Features of these compression techniques
include lossless vs lossy, distortion vs accuracy, data aggre-
gation, data correlation, symmetric vs asymmetric, and non-
adaptive vs adaptive [8], [22]–[26]. Figure 3 is a summary on
compression in WSNs according to the types, requirements,
and the features.

A. DATA COMPRESSION TECHNIQUES IN WSN
Research on data compression for wireless sensor networks
has been done extensively and there are a lot of surveys
and reviews on the data compression techniques and their
applicability [27]. According to the authors in [27], data

compression techniques can be summarized into three main
categories; data aggregation compression techniques, local
data compression techniques, and distributed data compres-
sion techniques.

• Data aggregation compression techniques: These tech-
niques have been heavily investigated according to
literature [28]. However, they are known to extract sum-
maries of statistical data from sensory data such as min-
imums, maximums, and averages [27]. The techniques
are more useful to certain applications, which require
information that is limited. However, there is also a
group of distributed source coding techniques, which
are more practical such as the Slepian-Wolf coding [29]
that perform data compression from the sources [28].
Data aggregation techniques can be classified into Tree
Structured, Chain-Based, Cluster-Based, Sector-Based,
and QoS-Based data aggregation compressions [27].
Moreover, Tree structured types include Energy-Aware
Distributed Heuristic approach (EADAT) [30], Tree
based Tiny Aggregation (TTA) [27], and Power Effi-
cient Data gathering andAggregation Protocol (PEDAP)
[27]. Power Efficient Data Gathering Protocol for Sen-
sor Information Systems (PEGASIS) [31] is a type
of chain-based data aggregation techniques. Cluster-
based techniques [27] include Low Energy Adap-
tive Clustering Hierarchy (LEACH) [32] and Hybrid
Energy-Efficient Distribute clustering (HEED) [33].
Semantic/Spatial Correlation aware Tree (SCT) [34]
and Application Independent Data Aggregation (AIDA)
[35] are examples of sector-based techniques [27]. QoS-
based techniques include the AIDA.

• Local data compression techniques:Data is compressed
at each sensor nodes through the exploitation of the tem-
poral correlation of the data [27], [28]. These can either
be lossless or lossy [28]. The techniques are categorized
into String-based or Text, and Image compression tech-
niques [27]. Text-based algorithms include; Lempel-
Ziv-Welch (LZW) [36], Sensor-Lempel-Ziv-Welch
(S-LZW) [37], Adaptive Lossless Data Compression
Algorithm (ALDC) [38], and Fast Efficient Loss-
less Adaptive Compression Scheme (FELACS) [39].
Image compression techniques include; Joint Photo-
graphic Experts Group (JPEG) [40], Embedded Zerotree
Wavelet (EZW) [41], Set-Partitioning in Hierarchical
Trees (SPIHT) [42], EmbeddedBlockCodingwithOpti-
mized Truncation (EBCOT) [43], Discrete Wavelength
Transform (DWT) [44], and Discrete Cosine Transform
(DCT) [45].

• Distributed data compression techniques: They exploit
the high spatial similarities of the sensor data in dense
networks on fixed sensor nodes [27].

Figure 4 is a classification of the data compression techniques
as described in [27]. The techniques are categorized into Dis-
tributed Source Coding (DSC), Distributed SourceModelling
(DSM), and Compressive Sensing (CS).
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FIGURE 4. Data compression techniques classification.

FIGURE 5. Block diagram of how a generalized image compression
algorithm works [21].

B. IMAGE COMPRESSION IN WIRELESS SENSOR
NETWORKS
In WSNs, image compression is described as a data compres-
sion application for digital images to reduce their transmis-
sion and/or storage requirements. Several image compression
techniques exist in literature that include the commonly used
Joint Photographic Expert Group (JPEG), JPEG2000, and
discrete cosine transform (DCT).

1) IMAGE COMPRESSION OVERVIEW
Most images have correlated neighboring pixels that result in
redundancy [46]. Therefore, image compression just like data
compression is necessitated by the desire to reduce energy
consumption and improve the network lifetime inWSNs. The
process of image compression aims to output quality images
with less distortions while reducing data redundancies. Types
of images used for different applications exist with different
compression features. These image formats are either lossy
or lossless compression-based [47].

Table 1 classifies image formats according to lossy and
lossless compression based on the literature review.

a: HOW IMAGE COMPRESSION WORKS
i. Reduce spatial or temporal redundancy (mapper) - It

is a reversible or irreversible process depending on
the algorithm used for compression and decompression
from DFT, DCT or Run Length Coding.

ii. Reduce the accuracy of the mapper’s output (Quan-
tizer) - An irreversible process that can be done on lossy
compression and not advisable on lossless compres-
sion.

iii. Generate fixed or variable output.

In addition, Figure 5 illustrates how image compression
works.

b: THE JPEG COMPRESSION SCHEME DESCRIPTION
JPEG encoding algorithm: It is a lossy data compression
method commonly applied to digital images. It employs a

FIGURE 6. The JPEG compression schematic [24].

transform coding method using the DCT technique as sum-
marized in Figure 6.

C. STEPS IN THE JPEG COMPRESSION SCHEME
i. Splitting: split the image into 8 × 8 non-overlapping

pixel blocks.
ii. Colour space transform: RGB to YCbCr where Y is

brightness, Cb is color blueness and Cr is colour red-
ness.

iii. Apply the DCT: apply the DCT on each 8× 8 block.
iv. Quantization: Quantize the DCT coefficient according

to the image size.
v. Serialization: Zig-zag scanning pattern to exploit

redundancy.
vi. Vectoring: Apply the Differential Phase Code Modula-

tion on the DC components.
vii. Apply run length encoding or Huffman coding to make

move the data from image -> text -> coding-> com-
pressed (lossy and lossless relationship).

viii. Convert the data to digital format.

1) IMAGE COMPRESSION TECHNIQUES
These are algorithms used to identify and remove information
that is not critical to the image perception and then encode
the remainder in a compact form. Those developed primarily
for images, are categorized primarily in two types: lossy and
lossless [48].

a: LOSSLESS IMAGE COMPRESSION TECHNIQUES
There is no data loss to achieve a reduction in compression
ratio with lossless image compression techniques. Therefore,
this leads to complications on image transfer over WSN [16],
[49]. The resultant compressed image is very large with a
high power consumption of sensor nodes and bandwidth on
resource-constrained applications [16], [50].

The usage of lossless image compression techniques is
limited as surveyed from literature due to their lack of energy
efficiency. Lossless algorithms are for text or programs. There
is redundant data. Therefore, original data and the data after
compression and decompression are the same. Redundant
data is removed in compression and added during decom-
pression. E.g., ABABAA to 2ABAA then back to ABABAA.
Lossless compression techniques reconstruct the exact data,
and they can reduce the size of data at low extent. Original
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TABLE 1. Image formats’ descriptions and their compression techniques.

data is compressed to a less extent and it does not degrade the
quality of the data. Moreover, channel holds a smaller amount
of data. The algorithms depend on two-stage procedures [16],
[51]: Decorrelation and Entropy coding.
Decorrelation – It is a process used for the removal of

the spatial redundancy [8] between the pixels while pre-
serving the other aspects of the image with low distor-
tion. Decorrelation is categorized into three main categories;
transform- based, prediction-based, and multi-resolution-
based techniques [52].
Entropy Coding – It is used to reduce data rates on coeffi-

cients resulting from decorrelation [8]. Literature has shown
that the Discrete Wavelet Transform (DWT) and Discrete
Cosine Transform (DCT) are widely used in video and image
compression fields. Removal of coding redundancy is based
on Statistical Coding and Run Length Coding (RLC). Statis-
tical coding includes Huffman Encoding, Arithmetic Encod-
ing, and LZE encoding.

b: LOSSY IMAGE COMPRESSION TECHNIQUES
Lossy techniques are for images, videos or audio and they
are used for compressing images, audio files and video files.
Lossy data is acceptable. These methods are cheaper, less
time and use less space. These techniques are identified with
a higher compression ratio as compared to lossless image
compression techniques. The compressed image is normally
of a different size to the original image with some form
of distortion. However, the reconstructed image is normally
a close match to the original image. Lossy compression
removes non-useful part of the data that is undetectable,
decrease the size of the file to a greater extent. Original data
is compressed to a greater extent and restored, quality of the
data degrades, the channel accommodates more data. Due to
some loss of data during this type of image compression, it is

vital to measure some form of distortion [16] on how close
a reconstructed image is to the original image. According
to literature, Mean Square Error (MSE) and Peak-Signal-To-
Noise ratio (PSNR) are the most adopted similarity metrics
used to measure the proximity between images. MSE and
PSNR for image compression are represented by (1) and (2),
respectively adopted from [16].

MSE, σ 2
=

1
N

N∑
n=1

(xn − yn)2 , (1)

where xn represents input data sequence, yn is the compressed
data sequence, and N being the data sequence length.

PSNR = 10log10
x2peak
σ 2
d

, (2)

where xpeak is the peak value of the signal, x2peak is equal to
255 for an 8-bit pixels.

The higher the value of PSNR the better image quality and
a lower MSE suggests that the original and the com pressed
images are closely similar.

Transform-based transmission and Non-transmission
based techniques are the two main categories for lossy image
compression techniques applied on resource-constrained
applications [47], [53]–[56].

i) TRANSFORM-BASED TECHNIQUES
Most video and image compression applications [8] use DWT
and DCT techniques as part of transform-based transmission
techniques. For appropriate basis functions, the original data
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FIGURE 7. A wavelet transform-based compression illustration. (a) is the
encoder and (b) is a decoder [46].

is transformed into a set of coefficients to be used in the recon-
struction of the image or signal at the receiver. Generally, non-
zero quantized coefficients reduced in number are enough for
the recovery of an approximation of the original image with
low distortion [8]. Their easier implementation makes them
the most preferable in real-time applications [57].
Discrete Cosine Transform (DCT) – Mostly used in JPEG

image compression scheme and it is the widely used trans-
form coding technique [8], [16] because it is very fast [58].
The original image is divided into blocks first and coding of
each block is done independently [58]. In JPEG compression,
these blocks are 8× 8 pixels each [58], [59], [48].

An image is projected into cosine components collection
at distinct 2-dimensional frequencies. That is, it acts on BxB
pixel blocks P zero-centered in obtaining BxB DCT block D
using (3) and (4) [60]:

D =
1
4
α ( ) α ( )×

B−1∑
B−1

B−1∑
B−1

Pxycos

×

[
(2x + 1) π

2B

]
cos

[
(2y+ 1) π

2B

]
, (3)

α ( ) =


1
√
(2)
, if = 0

1, otherwise,
(4)

Discrete Wavelet Transform (DWT) – Adopted in
JPEG2000. It represents a signal with good resolution in
frequency and time with the use of base functions called
wavelets [16]. Information on location and frequency are cap-
tured while discretely sampling the wavelets [58], [61]–[63].
A typical wavelet transform-based compression is illustrated
in Figure 7.
Embedded Block Coding with Optimized Truncation

(EBCOT): This is a complex coding system adopted for
entropy coding in the JPEG2000 image compression stan-
dard. It is a two-tier coding system with one tier dealing with
modelling of context quantized coefficients entropy coding
[57]. Control of the targeted rate of compression and code
stream output is done by the second tier. In Figure 8, the
EBCOT is illustrated.

FIGURE 8. Embedded block coding with optimized truncation
(EBCOT) [57].

FIGURE 9. Set partitioning in hierarchical tree technique [68].

Set Partitioning In Hierarchical Tree (SPIHT): SPIHT
coding performance is high and closer to embedded block
coding achieving rate scalability with optimized trunca-
tion [64]–[66]. The computational complexity of the algo-
rithm is lower with the ability to exploit DWT coefficients’
self-similarity across the different scales [64], [67].

Hence, making it one of the best encoders according to
literature. The technique is summarized in Figure 9.
Embedded Zero Tree Wavelet (EZW) Coding: Images are

compressed into bitstream with an increase in accuracy and
it uses wavelet transforms [58], [69], [70].

i) NON-TRANSFORM BASED TECHNIQUES
Due to lack of transforms usage, their computational
load from frequency domain coefficients is reduced [71].
The quantization process for these techniques is based
on vector quantizer in lossy compression. From the lit-
erature review, these types of image compression algo-
rithms are lowlily adopted as compared to transform-based
techniques.
Fractal Compression (FC) – It has an encoding method

that relies on mathematical theorems and its suitability is
on images with some similar parts. A fixed-point theorem
and collage are used in building the Iterative Function Sys-
tem (IFS) [71]. It also uses block partitioning on the source
encoder.
Vector Quantization (VQ) – In signal processing, it uses the

prototype vectors distribution in probability density functions
modelling through quantization classification [71]. Apart
from transform and non-transform-based compression tech-
niques, there exist other techniques in data compression that
are either lossy or lossless such asDistributed Source Coding
(DSC) and Compressed Sensing (CS), Text-based Compres-
sion, Data Aggregation, and Predictive Coding. These tech-
niques are discussed in Section III.
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2) IMAGE COMPRESSION DETERMINING REQUIREMENTS
Just like in data compression [52], the adoption of an image
compression technique is influenced by the application. For
instance, some applications may need visual information of
high quality while others may require the same with less
quality [72]. Some applications may need data in real-time
while others may require it in non-real time. Therefore, image
compression requirements can be categorized into generic
requirements and application-specific requirements as intro-
duced in Section II.

a: GENERIC REQUIREMENTS
• Redundant sensing: Data redundancy that will likely
occur during the collection, transmission and data saving
emanating from sensor regions covered overlapping by
nodes. This can be exploited after discovery by the
compression techniques.

• On-route compression: The standard adopted normally
in data compression is that data is compressed and
decompressed at the source nodes and sink, respectively.
Data is made available at forwarding nodes for on-route
compression for processing and changes to happen.

• Computational complexity and memory requirements:
These are mostly centered around hardware require-
ments that include parallelism to support the compres-
sion algorithm for efficiency purposes.

• Reliability: Spatial redundancy is one of the attributes
that can be deployed for the improvement of the relia-
bility of image data in communication.

• Robustness: Failures from the network link and nodes
should be anticipated and the compression techniques
should be able to adequately function if such case arises.

• Scalability: The image compression algorithm in aWSN
should be able to scale or grow with the network
size [27].

b: APPLICATION SPECIFIC REQUIREMENTS
• Real-time vs. non-real time: Some applications inWSNs
require image compression in real-time while others
require it offline.

• QoS-awareness: Each sensor node has a set of distinct
latency and reliability requirements [73] based on the
application.

• Security: Security levels on certain WSN applications
may create a conflict between data compression and the
level of security required. Hence, it is always important
to find a balance between the security protocols used and
the image compression to be adopted [74].

III. RELATED WORKS AND CLASSIFICATION OF IMAGE
COMPRESSION TECHNIQUES
Challenges with WSNs include target coverage and connec-
tivity, data collection, network lifetime, and data compres-
sion [75]. However, various algorithms have been developed
to overcome the WSN challenges in literature. These include

data collection algorithms such as chain, tree, cluster, multi-
path and hybrid topologies [5]. As for the network lifespan
problem, the Swap-Level algorithm, and Game Theoretic
Energy Balance Routing Protocol (GTEB) algorithms have
been discussed in literature.

A distributed image compression was proposed to over-
come the limitation of energy and computations among indi-
vidual nodes through tasks’ processing sharing. This was
introduced by authors in [5]. Two distinct methods to address
image quality and energy consumption were proposed. The
main objective was to achieve an efficient transmission and
compression of images on a multi-hop wireless sensor net-
work that is resource constrained. Achieved results showed
that the proposed method prolonged the network lifetime at a
promising energy consumption rate as compared to an image
compression that is centralized. However, the authors did not
validate their approach on the testbed for a sensor network.
In addition, link errors impacts associated with WSNs were
also not taken in consideration.

Authors in [76] focused on finding a compression opti-
mization model with less loss within a group of compressed
models on neural nets. Their framework was based on low-
rank compression, quantization, low-precision approxima-
tion, pruning, and lossless compression. Furthermore, the
authors provided a general overview of the Learning Com-
pression (LC) algorithm under standard assumptions. The
authors experimental results were compared to other compan-
ion papers. It was found out that the compressionmechanisms
frameworks were comparable with existing state-of-the-art
techniques, with some advantages of simplicity, convergence
guarantees, and generality. Hence, an addition of useful infor-
mation to neural networks toolboxes. However, the authors
were more general in their approach and the paper can be
used in further research as the compression framework model
proposed presents a significant advance as far as compression
optimization is concerned on neural nets.

Variation partial differential equation was adopted on the
grey image compression algorithm implementation as an
optimization model [77]. The authors introduced a quad
tree for image segmentation, encoding and transmission of
some pixels. In addition, at the decoding level, an image
interpolation technique with the use of variation of partial
differential equations were used to image reconstruction.
It was found out that the method provided a significant
improvement with high compression ratio and PSNR on less
textured and larger images. As compared to Quad, Pixel,
Data Manager (QPDM), Error-Dispersed based on Vector
Quantization (EDVQ), and Local Cluster Member (LCM),
the proposed algorithm demonstrated better results based on
image compression coding quality metrics for compression
ratio, coding efficiency, average code word length, source
entropy, redundancy and PSNR. Even though the proposed
method performed better than the algorithms it was compared
with, the PSNR is still low. Therefore, there is a need to focus
on improvement of PSNR for image compression as well as
the average phase error reduction for information on phase
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and amplitudemaintenance.More work on partial differential
equations has been discussed by authors in [78].

Different optimization approaches and methods on com-
pression exists in literature. Authors in [79] discussed
matrix compression methods such as the Supreme Mini-
mum (SM) and the Variable Length Blocks (VLB). Authors
in [80] discussed compression optimization implementation
approaches in the form of packets versus sessions, dictionary
sizes, blocks versus bytes, static versus adaptive compression,
and application versus network. Table 2 provides a classifi-
cation of related works on image compression algorithms in
WSNs.

IV. ANALYSIS OF A DATA COMPRESSION ALGORITHM
There is lack of error bound guarantee mechanism in tradi-
tional lossy data or image compression algorithms for WSNs
according to literature due to high reconstruction and data
decompression computational demands. Even though, there
are high computations demands on the error bound mecha-
nism, the process is still vital as some applications require
quality in the reconstructed images that can has to be mea-
sured and guaranteed to an acceptable range. Therefore, the
authors of this paper [63] proposed an algorithm focusing on
the following areas in data compression:

• An error-bound guarantee data compression technique
of low-cost on both compression and decompression
using only sigmoid and linear operations.

• The solution was customized to support both temporal
and spatial compression, a key feature that is lacking in
most conventional methods.

• Some level of free security is introduced due to recov-
ery of data that requires an offline learned decompres-
sion dictionary.

A. NEURAL AUTOENCODERS (AE)
As part artificial neural networks, autoencoders are a deep
learning model. Artificial neural networks have been widely
used on development of WSNs solutions due to capturing of
non-linear data structures and sensing coverage maximiza-
tion. They perform reduction in dimensionality through trans-
formation of data to lower dimensionality but meaningful
from high-dimensional data. The key hyperparameters [88] to
autoencoders that are to be set before training the autoencoder
are:

• Code size: These are the number of nodes or neurons in
the hidden layer of an encoder. A less number of them
results ismore compression and a higher number of them
results in less compression [88].

• Number of layers: Layers that define an autoencoder and
every defined autoencoder can have several of them.

• Number of nodes per layer:Each layer in an autoencoder
has one or more nodes. Moreover, the number of these
nodes per layer decreases on each subsequent encoder
layer and increase back to the decoder [88].

FIGURE 10. Projection of data to a lower representation using an
autoencoder [89].

• Loss Function: Binary cross-entropy or MSE are
adopted on training autoencoders depending on the input
data [88].

Even though the input of autoencoders will always be equal
to the output, their advantage is that the output is directly
derived from the input data through cost functions such as
sigmoid. In their paper the authors adopted autoencoders to
address the following key technical challenges associated
with data compression in WSNs:
• Learning of non-linear spatio-temporal WSN data cor-
relations.

• Data compression and decompression enabling at a low-
cost.

• Enabling of tolerable error bound margins of data recon-
struction.

• Energy consumption of the WSN minimization.
Autoencoders are three layered neural networks mapping
input vector d ∈ RL to hidden layer or representation y ∈
RK and lastly an output vector d̂ ∈ RL approximating the
input stream d. The illustration in Figure 10 demonstrates and
autoencoder as a three-layered neural network.

The autoencoder satisfies (5), (6), and (7).

y = F (Wencd+ benc) , (5)

d̂θ (d) = F (Wdecy+ bdec) , (6)

F (v) =
1

1+ exp (−v)
, (7)

where θ := [Wenc,benc,Wdec,bdec] are the real-valued
parameters to be learned by the right training algorithm,
while the sigmoid function for activations is represented by
F (•). Wenc and benc are the weight matrix for encoding and
bias, and Wdec and bdec are the weight matrix and bias for
decoding. The weights determine the significance of input
vectors to the network with reference to the expected output
data.

For optimization in learning optimal neural weights θ using
the training data D, a cost function for the standard AE was
defined using (8).

0AE (θ ,D) =
1
|D|

∑
d∈D

1
2

∥∥∥d−d̂θ (d)∥∥∥2, (8)
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TABLE 2. Comparisons between the related work on image compression techniques.
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TABLE 2. (Continued.) Comparisons between the related work on image compression techniques.
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TABLE 2. (Continued.) Comparisons between the related work on image compression techniques.
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TABLE 2. (Continued.) Comparisons between the related work on image compression techniques.

AEs use cost functions to determine relevance of input vec-
tors d and their reconstruction vectors d̂θ (d). The difference
between the input vector and the reconstruction are penalized.
Several standard optimization algorithms in literature exists
that may be used to calculate optimal neural weights such as
L-BFGS.

Other cost functions in literature include the following:
Weight Decaying Autoencoder (WAE): The function is rep-

resented by (9)

0WAE (θ,D) = 0AE (θ,D)+
α

2

(
‖Wenc‖

2
+ ‖Wdec‖

2
)
,

(9)

where ‖W‖2 is the sum of squares for the entries of matrix
W, a hyperparameter, variable selected priori, controlling the
weight decay term contribution represented as α.
Sparse Autoencoder (SAE): Used for extraction of the

sparsity of the data representation on the hidden layer for
entries of y to be as close as zero as possible. It is represented
by (10). Addition of the Kullback-Leibler (KL) divergence
function enables the sparsity. The functionality is represented
by (11).

0SAE (θ,D) = 0WAE (θ,D)+ β
K∑
k=1

KL
(
ρ
∥∥ρ̂k ) , (10)

KL
(
ρ
∥∥ρ̂k ) = ρ loge ρ

ρ̂k
+ (1− ρ) loge

(
1− ρ
1− ρ̂k

)
,

(11)

where β represents a hyperparameter, ρ being target activa-
tion close to zero, and k-th node average activation in the
hidden layer represented by ρ̂k .

B. LOSSY COMPRESSION WITH ERROR BOUND
GUARANTEE
The proposed algorithm applies an autoencoder for rep-
resentation of captured data with fewer bits, reduction in
dimensionality and data compression in WSNs. Collection of
compressed data is enabled at error margins that are tolerable
within three main steps: the use of sensor nodes to collect
historical data, modelling and training offline at the base

FIGURE 11. Flowchart of the error-bound algorithm proposed in [63].

station (BS), and online spatial or temporal data compression.
Figure 11 represents derived flowchart from the proposed
algorithm by the authors.

1) MISSING DATA IMPUTATION
In WSNs, missing data can occur due to sampling that is
unsynchronized from the sensors, interference, and failure in
communication. Therefore, to address the problem, a naïve
method with low computational demand using (12) was used
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for estimation of the missing entry xij.

x̂ij =

∑
k∈S xik∑
k∈S µk

µj, (12)

where j and i are sensor and time indices, xij being the
missing entry in an aligned matrix, observed sensors at a time
i represented by S, and µj as the observed sensor readings
mean for sensor j.

2) DATA SPHERING
Output vectors of AEs are between 0 and 1. As the AE will
try to reconstruct the input vector d, the input data had to be
normalized before being input into the AE and denormalized
after the data compression process by the AE. In addition,
AE works with input data vectors that are uniformly dis-
tributed close to a unit sphere in RL . A process named data
sphering in literature. Normalization of input data set and
denormalization of output data are represented by (13) and
(14), respectively:

d = 0.5+
0.4
3σ

max(min (x − mean (x) , 3σ,−3σ) , (13)

p =
3σ
0.4

(
d̂− 0.5

)
+ m, (14)

where x is the vector of the source data, σ being standard
deviation of x − mean (x) for all x in the training data. Data
fed to the AE network is denoted by d, p is the regeneration
of the input data x using the output vector d of the AE, and m
being the mean value of source data x vector.

PSEUDOCODE 1 Normalization
Input: A set of temperature values x
Output: Normalized Result d with values between 0 and 1
1 Initialize array h = [];
2 Calculate the mean k and standard deviation S of the set x
3 Compute the size of x, [∼, numCols] = size(x);
4 for j = 1 to numCols // j is an index to x values;
5 Subtract themean (k) from each value of x;
6 Result q to be stored in an array h;
7 end
8 Compute std2 as standard deviation S ∗ 3;
9 Compute p as the minimum of std2 and h asmin(h,std2);
10 Compute z, as max(p,-std2);
11 Compute normalized data (d) as 0.5 + ((0.4/std12)*z;
12 Output d;//a row vector

3) THE ERROR BOUND MECHANISM
The error bound ε is tuned through consideration of various
factors that include the precision of the sensor used and
requirements for the application. It is the maximum allowable
difference between readings captured by the sensor and those
received after a compressed representation by the receiver.
For error bound mechanism, the residual is first computed
from a reconstruction p of input x. Entries with residual

PSEUDOCODE 2 Denormalization
Input: A set of normalized temperature values d
Output: Denormalized Result p with values between 0 and 1
1 Initialize array v = [];// to store normalized values
2 Compute the size of p, [∼,numCols] = size(p);
3 for j = 1 to numCols//j is an index to p values
4 Create an array (v) of values of p;
5 end;
6 Calculate n = v – 0.5;
7 Compute std2 = 3 ∗ S;//S is the standard deviation of the
raw data x that is not normalized
8 Compute denormalized data (d) = (std12/0.4)*n +;
9 Output d;// denormalized data as row vector

vectors beyond the error bound r = x− p to be transmitted
by using a residual code in (15).

ε = residualCode (r, ε) =
(

J ,
(
rj
)
j∈J

)
, (15)

where J ⊂ {1, . . . . . . ,L} denoting a set of indices J for rj >
ε and J being the indicating vector for a subset J (where(
J
)
j = 1 for j ∈ J and

(
J
)
j = 0 for j /∈ J ).

PSEUDOCODE 3 Residual
Input: A Set of residual values (r = x− p)
Output: Residual R
1 Set the error bound k = 0.1; // error bound is a parameter
to be set based on the sensor accuracy.
2 Initialize an array wx = [];// to store error code values
3 Compute the size of r, [∼,numCols] = size(r);
4 for j = 1 to numCols//j is an index to r values
4 t = r(i); //store the value s of r in an array
6 if t > k
7 error_code= 1; // residual values greater than
the error bound are set to 1.
8 else
9 error_code = 0;; // residual values less than
the error bound are set to 0.
10 end
11 Create an array of residuals,

wx = [wx,error_code];
12 end
13 Output R

4) TRAINING, COMPRESSION AND DECOMPRESSION
The use of L-BFGS was adopted in minimization of the cost
function 0WAE (θ,D) as part of learning optimal weights θ
of the autoencoder. It is a computationally intensive process
happening once at the beginning of the network deployment
with parameters θ , σ being distributed to the receivers and
transmitters as part of training.

Summarized training AE, data compression and decom-
pression of sensor readings follows in pseudocodes 4 and 5.
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PSEUDOCODE 4 Training the Autoencoder
Input: A Set of readings x randomized into 10 subsets. Nine
subsets for training and one subset for testing in the 10 folds
cross-validation.
Output: Trained autoencoder, autoenc
1 Set hidden layer size, hiddenSize = 10; // it can be any
value and the smaller the number the higher the compression
ratio.
2 Intialize an array f = []; // to store the value of x(i,j);
2 Compute the size of r, [numCols,numCols] = size(x)
3 for j = 1 to numCols//j is an index to x y-values
4 for i = 1 to numRows// i is an index to x x-values
5 w = x(i,j);
6 f = [f,w];// store the values of x(i,j) in an array
7 end
8 Calculate the mean and standard deviation of x as m =
mean(f) and σ = std(f), respectively;
9 Normalize the initial readings (x) using (13) to get
normalized data (d) to be fed to AE as input data
10 autoenc = trainAutoencoder (d,hiddenSize);
11 end

PSEUDOCODE 5 Online Data Compression and Decom-
pression
Input: A Set of readings x;
Output: Reconstructed data, F;
1 Calculate the mean,mean(x);
2 Calculate the standard deviation, σ = std(x),
3 Normalize the iput data using (13);
4 Encode the normalized data using a trained autoencoder,
autoenc. z = encode(autoenc,d); //data compression using
AE parametersW enc, and benc
5 Decode normalized data using autoencoder, autoenc.
t = decode(autoenc, z); // data decompression using AE
parametersWdec, and bdec
6 Denormalize decoded data t using (14);
7 Calculate residual R using (15);
8 Reconstructed data, F = d + R;

V. EVALUATION AND DISCUSSIONS OF THE ALGORITHM
A. EVALUATION METRICS ADOPTED
In evaluating the algorithm, the metrics for compression ratio
(CR), root mean square error (RMSE), and coefficient of
determination (denoted as R2) were used. These are repre-
sented by (16), (17), and (18).

CR
(
x, x̂

)
=

(
B
(
x̂
)

B (x)

)
× 100, (16)

where B (x) and B
(
x̂
)
are for number of bits used to denote

the source and transmitted data, respectively.
Root Mean Square Error assists in measuring compression

error where an RMSE of zero (0) implies a fully regeneration

FIGURE 12. Training dataset learning curve.

of WSN data without an error.

RMSE
(
x, x̂

)
=

√
1
L

∑L

i=1

(
xi − x̂i

)2
, (17)

Coefficient of Determination determines a fraction of source
data that is being regenerated from the compressed data. For
example, a value of R2 = 0.6 implies that 60% of input data x
is regenerated in x̂. Hence a full reconstruction of the source
data is achieved when R2 = 1.0.

R2
(
x, x̂

)
= 1.0−

∑L
i=1

(
xi − x̂i

)2∑L
i=1 (xi − x̄)

2
, (18)

In summary, R2 and RMSE are for reconstruction fidelity
while compression efficiency is derived from CR.

B. DATASETS
Metrological datasets from Grand-St-Bernard and LUCE
deployments [90] were used to evaluate the data compres-
sion algorithms on RMSE, CR, and R2. The 10 folds cross
validation methodology [91] was adopted to train the autoen-
coders while refining it with Broyden-Fletcher-Goldfard-
Shano (L-BFGS) [92] optimization algorithm in tuning the
AE’s weights during data learning. A dataset was randomized
into 10 datasets. The 9 datasets were for training while the
remaining dataset was for testing the algorithm. In addi-
tion, the datasets had temporal and spatial information. Fig-
ure 12 demonstrates the RMSE and learning iterations during
training of the autoencoder before being tested online.

As shown in Figure 12, the best training performance of
the autoencoder is at 0.017646 after 21 iterations. This is an
RMSE of 0.132838.

C. BASELINES
Most data compression algorithms in literature lack the error-
bound mechanism. Therefore, to evaluate the algorithm that
was proposed by the authors in [63], the error bound mecha-
nism was set aside during the first evaluation stage on RMSE,
compression ratio, and coefficient of determination. Firstly,
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FIGURE 13. RMSE on various compression for different AE models.

FIGURE 14. RMSE on various compression for different compression
algorithms on spatial dataset.

the different AE models of different variants were evaluated
to determine how they relate regarding RMSE and various
compression ratios. This is demonstrated in Figure 13. Sec-
ondly, the algorithms were evaluated on spatial compres-
sion using the Grand-St-Bernard datasets without any error
bound mechanism to cater for the conventional algorithms
such as DCT, Fast Fourier Transform (FFT), CS, and the
Principal Component Analysis (PCA) [93] [86]. These algo-
rithms do not have an error bound mechanism. The relation-
ship between RMSE, CR, and R2 for the five algorithms is
illustrated in Figure 14. Lastly, an analysis on the temporal
compression of the algorithm in [63] is compared with the
Lightweight Temporal Compression (LTC) algorithm. The
LTC algorithm is known to be one of the algorithms in litera-
ture that has error bound mechanism [93]. The LUCE dataset
was used for the simulations and experiments for temporal
compression scenario.

FIGURE 15. Coefficient of determination on various compression ratios
for different compression algorithms on spatial dataset.

FIGURE 16. RMSE on various error bounds for different compression
algorithms on temporal dataset.

Although WAE and SAE variants are useful for classifi-
cation purposes, they reduce the regeneration performance
as shown in Figure 13. The basic autoencoder without any
overfitting capabilities provides the best performance com-
pared to the other two AEs with variants. This is due to the
smaller number of neurons than in the middle layer than they
are in the input layer. Overfitting problems emanate when the
code layer has more neurons than the input vector. It is on this
scenario that the WAE and SAE variants become more useful
than the basic AE.

In Figure 14, reconstruction fidelity without any error
bound mechanism is illustrated on spatial compression. The
results show that the adoption of AEs in WSN improves
RMSE at various compression ratios. Therefore, the proposed
algorithm in [63] continues to show some promising results
as compared to the conventional methods of PCA, CS, FFT,
and DCT.
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FIGURE 17. CR on various error bounds for different compression
algorithms on temporal dataset.

Moreover, in Figure 15, the proposed algorithm demon-
strates promising results with reconstruction fidelity high
than that of the other compared algorithms at various com-
pression ratios.

An analysis on the temporal compression was carried
out using the LUCE deployment [90]. Two methods were
evaluated, being the proposed method in [63] and the LTC
(Lightweight Temporal Compression) method in [93]. The
method provides for an error-bound guarantee. Therefore,
in Figure 16, compression error was measured on various
error bounds hyperparameters. The results demonstrated that
the proposed algorithm that adopted the AE model on data
compression performed better than the LTC method. How-
ever, a comparison of the two methods show a similarity in
response from the compression ratio at various error bounds.
This is demonstrated in Figure 17.

VI. CONCLUSION AND FUTURE DIRECTION
This paper reviewed and analysed image compression tech-
niques and approaches in WSNs. Available image compres-
sion approaches in WSNs in literature were then classified
according to the image compression technique adopted, and
their strengths and weaknesses. In addition, a rate-distortion
balanced data compression algorithmwith error boundmech-
anism based on artificial neural networks (ANN) in the form
of autoencoder (AE) was coded and simulated in MATLAB,
which was further evaluated and compared to conventional
approaches. The experimental results show that the simulated
algorithm has less root mean square error (RMSE) and a
higher coefficient of determination (R2) values on variable
compression ratios as compared to the Principal Component
Analysis (PCA), Discrete Cosine Transform, and Fast Fourier
Transform (FFT) when using the Grand-St-Bernard metro-
logical dataset. It was also found out that although several
data and image compression algorithms exist in literature,
they lack the error bound mechanism to balance between
compression ratio and distortion. Therefore, the analysed

algorithm provides a significant approach to data compres-
sion that can be applied to image compression for energy
conservation and network lifetime without compromising the
quality of the reconstructed data or image.
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