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ABSTRACT Snake-like modular robots (MRs) are highly flexible, but, to traverse a challenging terrain
or explore a region of interest, MR needs to attain efficient locomotion depending on a tradeoff between
objectives like forward velocity and power consumption of the robot. The objectives can vary with different
weights depending upon the situation, reflecting relative objective importance. This study developed a
multiobjective reinforcement learning algorithm based on a fuzzy inference system (FI-MORL) to select
the most appropriate gait parameters of snake-like MRs according to the objective weights. The developed
algorithm employs a fuzzy inference system to reduce the number of states in an environment, which
results in faster learning. The proposed approach uses the previously learned experience to rapidly achieve
the best objective values in response to a change in weights. While setting equal importance to the
objectives, FI-MORL delivers superior performance than single-objective reinforcement learning algorithms
by consuming 2% less power and gaining 2.5% higher velocity since it mitigates the effect of weight change,
similar performance found comparing an actor-critic algorithm. Likewise, the proposed method outperforms
by consuming 14% less power and achieving 11% higher velocity than traditional methods like proximal
policy optimization, deep Q-network, and vanilla policy gradient. Even after weight change, FI-MORL
achieved a 14% higher reward than the above methods. The proposed FI-MORL framework can effectively
converge quicker and efficiently handle the changes in objective weights.

INDEX TERMS Energy efficiency, fuzzy inference system, gait optimization, modular robot, multiobjective
reinforcement learning, snake-like modular robot.

I. INTRODUCTION
A modular robot (MR) consists of individual modules that
facilitate it to perform various tasks in an environment by
autonomously changing its shape and behavior. A module
generally includes actuators to assist in shape-changing, and
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locomotion [1]. New modules can be autonomously attached
to or detached fromMRs [2] to form a distinctive morphology
that makes MRs self-reconfigurable [3].

Among the various MRs, snake-like MRs have gathered
attention due to their flexibility and applicability in situ-
ations where the human presence can be critical, such as
military stealth operations, space exploration, and underwater
inspection [2]. Often, these robots encounter situations
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where an MR may need to change gaits for locomotion
at different stages. For example, during the teleoperation,
an MR equipped with a camera can move at a fast gait speed
for locomotion to reach the destination on a known terrain
while using a slower gait speed in an unknown environment
[4], [5]. In the oil and gas industries, snake robots might
inspect pipes underwater for a longer duration, requiring
energy-efficient gait control; during an oil leak, the robot
needs to move fast to support the repair [6]. These scenarios
require MRs to move fast in certain situations and stay
energy-efficient in others.

Although snake-like MRs are helpful, a tradeoff exists
between the robot speed and power consumption, primarily
due to the limited energy-carrying capabilities of the MR.
Thus it is essential to reduce power consumption whenever
applicable and increase the robot speed. However, achieving
such locomotion for snake-like MRs is not accessible due to
the complexity of controlling multiple degrees of freedom
(DoFs). Several snake-like MR control mechanisms have
been developed to achieve autonomous locomotion [7].

In 1994, Hirose [8] developed serpentine equations to
produce the sinusoidal type of locomotion mimicking the
gait of a snake. Serpentine has been the most straightforward
and energy-efficient locomotion compared to others [9].
Ma [10] proposed a serpentine curve to model locomotion
for snake-like MRs and achieved high locomotion efficiency.
Dehghani andMahjoob [11] developed a modified serpentine
equation to reduce slipping while varying the parameters.
Since then, several studies on MRs used the serpentine
equation to attain a faster speed for locomotion [12]–[15].

Using the serpentine equation, researchers used multiple
techniques to get locomotionwith optimized power consump-
tion. Bing et al.. [16] used Reinforcement Learning (RL)
and proximal policy optimization algorithm to develop
energy-efficient locomotion for different velocities. Kela-
sidi et al. [17] used a weighted-sum approach by combining
objectives such as power consumption and velocity. They
varied the weights heuristically and used particle swarm
optimization to obtain Pareto optimal solutions. Some studies
have also optimized the locomotion to get desired forward
velocity. Christensen et al. [18] proposed distributed rein-
forcement learning and independent morphological methods
to optimize the gait control table of different MRs to achieve
high velocity. Spröwitz et al. [19] investigated the locomotion
of a snake-like MR with a gradient-free optimization
algorithm that learns central pattern generator parameters
to control each module. Crespi and Ijspeert [20] employed
a biological central pattern generator by using a heuristic
optimization algorithm to adjust the travel speed of a snake-
like MR. Chee et al. [21] proposed a multiobjective hybrid
genetic algorithm and self-adaptive differential evolution
approach to optimize the parameters of a gait control equation
and co-evolve the morphology as well as controller of a
snake-like MR. Wu and Ma [22] proposed a central pattern
generator based approach to control the gait of a snake-like
MR. Cao et al. [23] implemented multiple locomotions on

different parts of the snake robot’s body to analyze the robot
performance concerning speed and energy on sloped terrain.
Many works have focused on various locomotions.

Objectives like lower power consumption or increased
velocity for locomotion have been optimized in the literature,
but these objectives were generally weighted using fix
weighting coefficients. When a new terrain or a new scenario
is encountered, different weights are given to reflect the
priority of one objective over the other. Using existing
approaches, the optimization or learning process must restart
in response to the different weighted objectives, incurring a
high time cost.

In this study, we solved the two contradictory objectives:
minimize the power consumption and maximize the aver-
age velocity. In contrast with conventional single-objective
reinforcement learning, we proposed a solution based on
multiobjective reinforcement learning and fuzzy inference
(FI-MORL). By solving the problem, a snake-like MR can
quickly switch between an energy-efficient mode and a fast
velocity mode for locomotion without incurring an extra time
cost.

In the proposed FI-MORL algorithm, observation states
are constructed based on the power consumed by each
module. In this manner, the proposed method learns
energy-efficient and faster gaits for a snake-like MR. The
fuzzy inference system helps discretize continuous observa-
tion states and reduce sensitivity to the environment, thus
achieving faster learning. The proposed method separately
updates two Q-tables: one relates to power consumption and
forward velocity. An action is then taken on the basis of a
weighted-sum of the the two Q-tables. This practice allows
the MR to avoid relearning when the weighted coefficient
changes.We compared the proposed algorithmwith the fuzzy
inference single-objective reinforcement learning (FI-SORL)
algorithm and benchmark deep single-objective reinforce-
ment learning algorithms. After a change of the weighting
coefficient, the proposed method reached steady-state objec-
tive values faster than the SORL algorithms.

The main contributions of this paper are as follows.

• The proposed FI-MORL method can systematically
balance two conflicting objectives: speed and power
consumption.

• The fuzzy inference system is developed to reduce
the number of possible states, thereby reducing the
computation burden and achieving quicker convergence.

• The proposed method can expeditiously achieve the best
locomotion after changing weights by addressing both
objectives.

The rest of this paper is organized as follows. The system
model of a snake-like MR is briefly described in Section II.
Section III describes the control mechanism of a snake-
like MR, the performance metric used in this study, and
the problem formulation. The proposed FI-MORL algorithm,
in which states are designed using a fuzzy inference system,
actions, and rewards, is explained in Section IV. The
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FIGURE 1. Parameters of 2D snake-like MR kinematics.

TABLE 1. Parameters of the snake-like MR.

simulation results obtained for the FI-SORL algorithm,
existing deep SORL algorithms, and the proposed algorithm
are presented in Section V. Finally, the conclusions are
reported in Section VI.

II. SYSTEM MODEL
This section presents the mathematical modeling of a
snake-like MR with N dual-joint Dtto Explorer MR (D-MR)
[24] modules, inspired by the M-TRAN module moving on
the horizontal surface.

A snake-like MR consists of multiple connected modules,
and each module has one or more actuators or joints. Servo
motors act as actuators for modules and have sufficient
torque to actuate the joints with reasonable force. With
appropriate actuator commands, the entire mechanism can
mimic snake-like movement. Fig. 1 represents the kinematic
parameters and coordinates of a snake-like MR and the
symbols defined in Table 1. In this study, N identical D-MR
modules connected along the same axis to build a snake-
like MR. Each module contains its Center of Mass (CoM)
in its center position with a length of 2α and the mass m.
Every module has two motorized joints (a ‘‘male’’ and
a ‘‘female’’ joint), which are collectively responsible for
providing motion to the snake-like MR at each time step
t ∈ {1, 2, 3, . . . ,T }, where T represents the last time step
of snake-like MR motion.

For the mathematical representation of snake-like MR’s
kinematic model, we adopt the Denavit Hartenberg conven-
tion [25], a systematic method for defining the kinematics

model of any serially connected mechanism [26]. The male/
female module along with the connection between male-
female / female-malemodule represents a link; see Fig. 1. The
angle of ith link, where i ∈ {1, 2, 3, . . . , 2N } is denoted by
2i(t), representing the angle between the link and the x axis
of global coordinate in the counterclockwise direction. The
links connected to the joints can actuate in both clockwise
and counterclockwise directions. The angle of the ith joint is
denoted by 8i(t) and obtains as follows:

8i(t) = 2i(t)−2i+1(t) ∀i ∈ {1, 2, 3, . . . , 2N }. (1)

The orientation or heading of the snake-like MR is denoted
by2(t), which can be described using the average link angle
as follows [27]:

2(t) =
1
N

N∑
i=1

2i(t). (2)

A snake-like MR moves in the global coordinate system.
The local coordinate system of each link starts at its CoM.
When the link angle 8i(t) is 0◦, the local coordinate axes of
the ith link, xi and zi aligns with the global x-axis and z-axis,
respectively. The rotationmatrix of the ith link with the global
coordinate system is as follows:

RGFi (t) =
[
cos2i(t) − sin2i(t)
sin2i(t) cos2i(t)

]
. (3)

The global CoM (xR, yR) of a snake-like MR is located
around/along the snake-like MR body, depending on its
shape. The link’s coordinates assist in determining the
position of a snake-like MR pR ∈ R2 in global coordinates.
The pR of a snake-like MR considering locomotion on the
xy-plane evaluated as follows:

pR =
[
pRx
pRy

]
=

1
N

[∑N
i=1 xi∑N
i=1 yi

]
(4)

where xi and yi are the CoM of module joint in local
coordinates. With help of above equations the locomotion of
snake-like MR can be created and later visualized.

III. LOCOMOTION OF A SNAKE-LIKE MR
In this section, we first introduce the concept of providing
snake-like locomotion to an MR. Then, we present our
performance metric for evaluating energy-efficient locomo-
tion. Finally, the problem formulation presents the need to
optimize the locomotion by considering energy efficiency.

A. LOCOMOTION CONTROL
To control the locomotion of a snake-like MR, we use the
serpenoid curve derived by Hirose [8]. Serially connected
multi-DoF robot mechanism can use serpenoid curve based
control to generate snake-like motion by adopting different
motion curves.

The serpenoid curve can be generated using the following
serpenoid equation:

8i(t) =

{
Am sin(Fmt + δmi), if i is odd
Af cos(Fft + δfi), if i is even.

(5)
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This equation generates a joint angle 8i(t) for each time
step t . Changes in the joint angle cause changes in the shape
and movement of a snake-like MR. We consider the male
joints of the jth D-MR module, where j ∈ {1, 2, 3, . . . ,N },
as odd joints and the female joints as even joints.

The six parameters in (5) controls the locomotion of
entire snake-like MR. The parameters Am and Af denote the
amplitudes of the curve for even and odd joints, respectively.
The phases δm and δf of the curves adjust the timing
between even and odd joints, respectively, to produce motion.
Multiplying the phase parameters with joint index i represents
waves’ propagation along with the snake-like MR. The
frequency parameters Fm and Ff for both joints provide
sine-wave-like and cosine-wave-like motion, respectively.
The frequency parameters are multiplied by the time step t
to determine the speed of the gait cycle.

FIGURE 2. Angle variation of each joint based on (5).

A real snake has negligible separation between the joints
in its body and can easily adjust its shape to resemble a
perfect linear sinusoidal curve; in contrast, MR has a finite
length 2α between two joints, restricting its motion. By using
a locomotion strategy based on the serpenoid equation,
a snake-like MR can achieve a nonlinear sinusoidal-curve-
like shape. We can provide different shapes to a snake-like
MR by varying the six parameters as mentioned above of the
serpenoid equation. This study primarily focuses on linear
progression motion obtained by maintaining constant values
for the six parameters in (5) for a particular time [28],
because linear progression motion conserves momentum
and thus is more energy-efficient than other types of
motion.

A snake-like MR uses linear progression motion to propel
its body forward when each joint actuates at every time step t
according to (5). As displayed in Fig. 2, the joint angle
variations of each male and female joint of a module can
be visualized as a sine wave and cosine wave, respectively,
by maintaining the following values: Am = Af = 30◦, Fm =
Ff = 10◦ and δm = δf = 45◦. The aforementioned setting is
suitable for moving a snake-like MR in the forward direction
with constant velocity. To change the speed of a snake-like
MR under linear progression motion, we must change the
frequency parameters Fm and Ff by maintaining fixed values
of Am = Af and δm = δf. It is worth mentioning that other
values of Am,Af, δm and δf are also possible for different

TABLE 2. Serpentine equation parameters and gaits.

gaits, as shown in Table 2. This study primarily focuses on
linear progression gait because of its straightforward motion,
higher velocity and lower power consumption compared to
other gaits.

B. PERFORMANCE METRICS
Snake-like MR has limited energy; therefore, the need arises
to control the gait to achieve economical locomotion.We con-
sider two performance metrics to evaluate a gait’s energy
efficiency: the power consumed by a snake-like MR and its
average forward velocity. The forward velocity and power
consumption as a performance metric ensure snake-like MR
moves faster with minimum power consumption [16].

1) POWER CONSUMPTION
For a snake-likeMRwithN modules (or 2N joints), the power
consumption of the ith joint during time slot k , denoted as
Pjointi,k , is the summation of the absolute product of the torque
τi,k,t and angular velocity φi,k,t at each step t within the kth
time slot [16]. The power consumption can be expressed as
follows:

Pjointi,k =

T∑
t=1

|τi,k,tφi,k,t | ∀i ∈ {1, . . . , 2N }. (6)

The power consumed by the jth module during time slot
k is denoted as Pmodule

j,k , calculated by summing the total
power consumption of both joint actuators in the jth module
as follows:

Pmodule
j,k = Pjoint2j−1,k + P

joint
2j,k ∀j ∈ {1, . . . ,N }. (7)

The power consumption of a snake-like MR with N modules
during time slot k can be expressed as follows:

PRk =
N∑
j=1

Pmodule
j,k . (8)

The total power consumed by a snake-like MR during a run
can be expressed as follows:

PR =
K∑
k=1

PRk . (9)

2) AVERAGE FORWARD VELOCITY
The average velocity of a snake-like MR is the ratio between
the distance covered in one-time slot k and the time taken to
cover this distance [17]. Assume that the, head module of a
snake-like MR is initially positioned at (xk−1, yk−1) and then
it reaches (xk , yk ) in the global frame after time 1k . In this
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case, the average velocity of a snake-like MR in time slot k
is as follows:

vRk =

√
(xk − xk−1)2 + (yk − yk−1)2

1k
. (10)

The average forward velocity of a snake-like MR during a
run can be found by averaging velocity of its head module as
follows:

vR =

∑K
k=1 v

R
k

K
. (11)

C. PROBLEM FORMULATION
By adjusting the control parameters Fm and Ff, the first
objective PRk is minimized under the following constraints:

Pmin
≤ PRk ≤ P

max. (12)

The second objective vRk is maximized under the following
constraints:

vmin
≤ vRk ≤ v

max (13)

where Pmin and Pmax are the minimum and maximum power
consumed by a snake-like MR during a time slot k , respec-
tively, and vmin and vmax are the minimum and maximum
average velocities of a snake-like MR during time slot k ,
respectively. One can easily find the minimum and maximum
values by optimizing each objective individually [29].

In this study, the optimization process uses normalized
objectives. Thus, we can obtain the following equations:

f normp,k =
Pmax
− PRk

Pmax − Pmin and f normv,k =
vRk − v

min

vmax − vmin . (14)

The optimization approach should maximize both objec-
tives in (14). Thus, the energy-efficient gait optimization
problem of a snake-likeMRwith two objectives is formulated
as follows:

max w
K∑
k=1

f normp,k + (1− w)
K∑
k=1

f normv,k

subject to (8), (10), (12), and (13) (15)

where w ∈ (0, 1) is the weighting coefficient reflecting
relative objective importance, this weighting coefficient may
change slowly with time. A natural way of solving (15) is to
apply single-objective reinforcement learning (SORL). In this
case, one Q-table is maintained to produce proper actions.
However, when the weighting coefficient changes, the
algorithm has to relearn and update the Q-table accordingly,
causing an extra time cost. A better solution in response to
possible weight changing must be conceived.

IV. MULTIOBJECTIVE REINFORCEMENT LEARNING
ALGORITHM WITH FUZZY INFERENCE SYSTEM
This section develops a fuzzy inference system for reducing
the number of possible states for a snake-like MR. The
developed method enables the proposed FI-MORL algorithm
to select an appropriate observation state by simultaneously

considering energy consumption and forward velocity, which
expedites the learning process. Moreover, we develop an
FI-MORL algorithm that can rapidly learn the locomotion
strategy of a snake-like MR when weight change occurs.

Suppose that a snake-like MR is performing a task in
an uncertain environment. Snake-like MR can use machine
learning techniques for gait parameter optimization, and
the RL algorithm is one of the most popular machine
learning algorithms. The RL algorithm can solve a complex
problem with or without prior knowledge of the uncertain
environment. Let S be the state space and sk be the state
during time slot k , where sk ∈ S. Given sk , the agent selects
an action ak from its action setA. It then proceeds to the next
state sk+1 and receives a reward Rk+1 as feedback from the
environment. The agent continues to repeat this process with
new experiences until it reaches optimality.

FIGURE 3. Membership functions of the fuzzy inference system: (a and b)
membership functions of both joints, and (c) membership functions of a
module.

Q-learning is a type of model-free learning and a simple
method for enabling the agent to learn how to act optimally in
a Markov decision process [30]. In Q-learning, an agent takes
action ak , in-state sk by following a ε-greedy policy. It then
receives a reward Rk+1 with next state, sk+1 and updates the
Q-table by using the following equation during every time
slot k:

Q(sk , ak ) ← (1− α)Q(sk , ak )

+α(Rk+1 + γ max
a
Q(sk+1, a)) (16)

where α and γ are the learning rate and discount factor,
respectively.

To apply Q-learning and update the Q-table for a snake-
like MR, it needed to convert the sensor’s information from
continuous states into discrete states.
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The state received from the environment can be sen-
sor information or calculated value. Including the power
consumed by each module as an observation state is
advantageous for achieving energy efficiency. This state
selection information helps the agent understand which
modules are consuming a high amount of energy so that
the proposed learning algorithm can adjust the movement
of modules to achieve a tradeoff between both objectives.
The power consumed by a module has a continuous value;
however, the algorithm requires discrete states to update the
Q-table. Fuzzy inference system can construct a discrete
state because fuzzification is a method of generalizing the
Boolean concept to partial truth or false [31]. Fuzzy inference
system with RL algorithms implemented in [32], [33], and
can be supportive to design a system that can reduce states
in an environment through human reasoning, known as
‘‘Rules.’’

FIGURE 4. Relationship between robot models, components of RL, and
Mamdani fuzzy inference system.

Using a fuzzy inference system for each module of a
snake-likeMR, fuzzy inference system can obtain the discrete
state for each time slot k . This discrete state with rule-based
expert knowledge is suitable for applying in RL algorithm
and results in fast learning. Fig. 4 presents the relationship
between the robot models, components of RL, and Mamdani
fuzzy inference system. Let sk be the current state, given
sk , a snake-like MR selects an action ak from A. It then
proceeds to the next state sk+1 and receives the rewards
R1,k = f normp,k and R2,k = f normv,k . The action set A represents
the different frequencies (Fm = Ff) in the discrete form,
which lead to different speeds during each time slot k . The
next state sk+1 is obtained by inferring each fuzzy inference
system.

During time slot k , both joints of each module of a
snake-like MR consume some power to move a certain
distance. The power consumption of the two joints of the

FIGURE 5. Mamdani fuzzy inference system for each module.

jth module, which are denoted as Pjoint2j−1,k and P
joint
2j,k , can then

be used as input for the fuzzy inference system. In this study,
the Mamdani fuzzy inference system [34] is used for each
module to obtain a linguistic form of the power consumed by
the jth module during time slot k (i.e., Plinguisticj,k ) as an output
by using min-max operations. The Mamdani fuzzy inference
system of a module is in Fig. 5.

Triangular and trapezoidal membership functions are
used in this study (Fig. 3). These membership functions
can overlap each other and indicates the degree to which
a given value belongs to different fuzzy sets [35]. The
membership functions for fuzzy set A and B are denoted as
µA(P

joint
2j−1,k ) and µB(P

joint
2j,k ), respectively, where A = B =

{‘‘Low’’, ‘‘Medium’’, ‘‘High’’} represents the set of linguis-
tic terms (fuzzy labels) for each input variable. The parameter
µC (P

linguistic
j,k ) represents the membership functions for fuzzy

set C = {‘‘Low’’, ‘‘Medium’’, ‘‘High’’}, where C represents
the linguistic terms for the output variable Plinguisticj,k .

Given the inputs to these membership functions, the
resultant values are between 0 and 1 for each joint of the jth
module. After the linguistic terms and membership function
values are defined, expert knowledge can formulate the fuzzy
inference system rules.

The rule u to obtain Plinguisticj,k can be expressed as follows

Rule u :

If Pjoint2j−1,k is Au and Pjoint2j,k is Bu

Then Plinguisticj,k is Cu

for u = 1, 2, . . . ,U , where U is the maximum number of
constructed rules; Au ∈ A and Bu ∈ B are the linguistic terms
from fuzzy sets A and B, respectively; and Cu ∈ C is the
output variable’s linguistic term from fuzzy set C .
On the basis of the values of Pjoint2j−1,k and P

joint
2j,k during time

slot k and the obtained membership function values, n rules
can be fired. Let I = {I1, I2, I3, . . . , In} be the set containing
the indices of all the fired rules out of all U rules. With more
than one input variable combined with the ‘‘and’’ logical
connection under all the n fired rules, the truth value of the
combined proposition of each fired rule XIi can be obtained
as follows:

XIi = min(µAIi (P
joint
2j−1,k ), µBIi (P

joint
2j,k ))

∀ Ii ∈ I and i = 1, 2, 3, . . . , n. (17)

The index of a fired rule having maximum truth value n∗ and
its corresponding rule index Irule can be obtained through the
argmax operation within the truth values of the fired n rules
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TABLE 3. Fuzzy rules of the fuzzy membership functions in Fig. 3.

as follows:

n∗ = argmax
n

(XI1 ,XI2 , . . . ,XIn )

Irule = In∗ (18)

where In ∈ I . The output of the fuzzy inference system,
namely Plinguisticj,k (Fig. 5) can be expressed as follows:

Plinguisticj,k = CIrule . (19)

This inferred linguistic term Plinguisticj,k is a state in the RL
algorithm. Nine rules are used for each fuzzy inference
system (details are presented in Table 3).
When optimizing the gait parameters of a snake-like MR,

it is necessary to determine the importance of objectives
during learning. In a specific situation, the importance of
objectives must change with changing weight. The learning
method should not take long to reach a steady-state in this
situation. The maximization problem in (15) can be solved
using the SORL optimization method; however, the proposed
FI-MORL optimization method is more effective than SORL
optimization during the change in weights of objectives to
provide one objective with higher importance than other
objectives.

FIGURE 6. Representation of the Q-table for the proposed FI-MORL
algorithm.

In the proposed FI-MORL algorithm two Q-tables for
power consumption and forward velocity are initialized ran-
domly. The Q-tables are displayed in Fig. 6, where Q1 is the
Q-table for R1,k = fp,k and Q2 is the Q-table for R2,k = fv,k .
The observation state sk ∈ S in both Q-tables represents the
linguistic output from each fuzzy inference system after each

time slot k . This state is designed as follows for N modules:

sk = [Plinguistic1,k ,Plinguistic2,k ,Plinguistic3,k , . . . ,PlinguisticN ,k ]. (20)

The action set A comprises different sets of frequencies
(Fm = Ff) in the two Q-tables. During learning, the rewards
R1,k and R2,k are designed to encourage the agent to
maximize the objectives in (15).

The Q-table representing these two objectives can be
updated as follows:

Qi(sk , ak ) ← (1− α)Qi(sk , ak )

+α(Ri,k+1 + γ max
a
Qi(sk+1, a)), (21)

for i = 1, 2.
Algorithm 1 presents the pseudocode of the proposed

FI-MORL algorithm. The details of this algorithm describe
the following texts. The Q-tables for both objectives are
initialized according to Fig. 6. At the start of each episode
in line 2, the snake-like MR is initialized at the origin. One
episode contains K steps from time slot 1 to time slot K . The
agent selects an action ak in line 5 according to the weighted-
sum Q-table (wQ1(sk , ·) + (1 − w)Q2(sk , ·)) to consider the
weight effect. Then, the agent takes the action ak and obtains
the rewards R1,k and R2,k as well as the next state sk+1 in line
6. In line 7, both Q-tables, namely Q1 of f normp,k and Q2 of
f normv,k , are updated. The algorithm continues to repeat the
process of lines 3-8 until termination occurs. The termination
of the episode occurs when the snake-like MR reaches a
particular destination. After Q-tables,Q1 andQ2 reach steady
values, the best objective value wQ1 + (1 − w)Q2 can be
achieved in a few learning episodes when a weight change
occurs.

V. SIMULATION RESULTS
We simulated our snake-like MR in a virtual robot experi-
mentation platform (V-REP) [36], which is a physics engine
for simulating robot models according to real experiences.
The V-REP software receives information regarding the joint
angles of a snake-like MR in every time step t from a Python
script to perform locomotion. A snake-like MR consisting of
four D-MR modules simulated in V-REP and Python script
generates the joints angle based on (5). Each D-MR module
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Algorithm 1 Proposed FI-MORL for Energy-Efficient Gait
Optimization
Require: learning rate α ∈ (0, 1], exploration rate ε > 0,

discount factor γ , weight w.
Initialize Qi(sk , ak ) for all sk ∈ S, ak ∈ A, arbitrarily.

Ensure: control parameters (Fm = Ff) to ensure minimum
PR and maximum vR.
1: Loop for each episode:
2: Initialize the snake-like MR at origin.
3: Loop for every time slot k in an episode:
4: Obtain current state sk from (20).
5: Choose ak using ε-greedy derived from

wQ1(sk , ·)+ (1− w)Q2(sk , ·).
6: Take action ak by setting control parameters in (5),

observe rewards R1,k , R2,k and sk+1.
7: Update Q1(sk , ak ) and Q2(sk , ak ) using (21).
8: Until sk is terminal

had two joints that rotate along the z-axis in a range of −90◦

to 90◦ and has a maximum actuator torque of 0.52 Nm.
During the experiment, the following amplitude and phase
values were used for each male and female joint: Am =
Af = 30◦ and δm = δf = 180◦. The frequency values
Fm and Ff were set to be equal and considered as different
actions inA. These frequencies, representing the five actions
Fm = Ff ∈ {10◦, 12◦, 18◦, 22◦, 31◦}, vary the speed of
the snake-like MR and result in different values of power
consumption and average velocity during each time slot k .
The control parameters mentioned above are applied in (5) to
generate a gait for the snake-like MR during each time slot k .
Each episode containsK learning steps, and one learning step
or time slot k of the learning algorithms contains t = 10 time
steps for V-REP.

The sensors inside V-REP facilitate calculating the power
consumption and average velocity of the snake-like MR.
The sensor values were transmitted to a Python script
asynchronously as a feedback signal after every time step t .
The time steps t in (5) for the snake-like MR controller
varied from 0 to 950 ms in an interval of 50 ms (as per
the V-REP default value) because ten sets of gait values
were required for a one-time slot k . As the snake-like MR
moved linearly along the x-direction, an episode terminates
when the moving distance is 0.5 m. During this run, the
total power consumption PR and average velocity vR were
obtained using (9) and (11), respectively.

We compared the proposed method with FI-SORL and
benchmark deep SORL algorithms, namely deep Q-networks
(DQN) [37], PPO [38], actor-critic (AC) [39] and vanilla
policy gradient (VPG) [40]. These benchmark algorithms
used Tensorforce, which is an open-source deep RL frame-
work [41], built on top of Tensorflow framework [42] and
compatible with Python. The FI-SORLmethod used the same
observation states (obtained with the fuzzy inference system)
as the proposed method. The major difference between the
FI-MORL and FI-SORL is that the FI-MORL maintains two

FIGURE 7. Scatter plots of the objective values of the proposed FI-MORL
method and the FI-SORL method: (a) equal objective importance with
w = 0.5, (b) higher importance of the power objective with w = 0.9, and
(c) higher importance of the velocity objective when w = 0.1.

Q-tables for the value update while the FI-SORL has only one
Q-table during the learning and execution process. As such,
FI-MORL uses separate reward signals associatedwith power
consumption and forward velocity; FI-SORL uses combined
reward signals (a weighted sum) as follows:

UR = wf normp,k + (1− w)f normv,k . (22)

The other methods used continuous states derived from the
torque angular velocity of each joint (also used for calculating
the power consumed by each joint in the fuzzy inference
system input) and angular position of each joint. The action
settings were the same for all the methods. The parameter
UR in (22) was used as reward for all methods, and the
Q-table in FI-SORL was updated using (16). The weighting
coefficient wwas used to balance the tradeoff between power
consumption and average velocity in the reward UR of all
SORL algorithms.

The simulation was executed ten times with the results
averaged to neglect the randomness of all algorithms. In our
simulations, w was initially maintained at 0.5 (both power
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FIGURE 8. Comparison of the learning curves before and after a weight
change during episode 2501: (a) from equal importance for both
objectives to higher importance for the power objective and (b) from
equal importance for both objectives to higher importance for the
velocity objective.

TABLE 4. Steady-state values obtained with various learning methods.

and velocity with equal importance). After all the matching
algorithms reached a steady state, the weights were changed
to 0.9 and 0.1 to reflect the relative importance of the
power and velocity objectives, respectively. The simulations
were performed using a desktop with an Intel(R) i5-9400F,
2.90 GHz CPU with 16 GB of RAM.

Fig. 8 displays the plot of the average reward UR during
each episode. The plot averages over every 100 episodes to
evaluate which algorithm is the quickest to learn and reach
a steady-state under equal objective importance (w = 0.5)
until 2500 episodes. As displayed in Fig. 8(a), the proposed
algorithm and FI-SORL algorithm reached a steady-state
after approximately 800 and were faster than the other
algorithms. The proposed FI-MORL achieved an average
of 14% higher rewards than DQN, PPO, and VPG. Also,
it was able to outperform AC and FI-SORL by a sheer
1%. This result is due to the proposed approach involving
a fuzzy inference system to approximate the state space,
thus reducing the number of states to explore. The proposed
and FI-SORL methods have finite states (only 81 linguistic
states), whereas the other methods have infinite possible

states because they consider continuous values. Another
reason explains that the proposed method and FI-SORL
approach are simple and involve learning only through
Q-tables, whereas the other methods involve using deep
learning networks, which require considerable computational
resources.

The proposed algorithm reached a steady-state after
approximately 800 episodes, ensuring that the proposed
approach achieved a minimum power consumption and
maximum average velocity faster than the benchmark deep
SORL methods with w = 0.5. Fig. 9(a) to 9(d) depicts the
variations in the power consumption and average velocity
over each episode, respectively. In the beginning, the
proposed FI-MORL approach and FI-SORL underperformed
other algorithms and thus their boxplots associated with the
velocity and power in Figs. 9(b) and 9(d) contained some
outliers. After 500 episodes, the FI-MORL, FI-SORL, and
AC performed competently in reducing power consumption
and increasing velocity. At the steady-state, the proposed
FI-MORL outperformed DQN, PPO, and VPG by consuming
an average of 14% less power and attaining 11% higher
velocity. Thus in the power consumption boxplot Fig. 9(b),
the interquartile range for FI-MORL remains the lowest
than other algorithms. Similarly, in average velocity boxplot
Fig. 9(d), the interquartile range for the proposed method
remains the highest.Meanwhile, AC and FI-SORL performed
equally well, yet the proposed method overtook them by
consuming an average of 2% less power and gaining 2.5%
higher velocity. Table 4 summarizes the steady-state values of
comparable methods (the average of the final 100 episodes).
The simulation results indicate that the proposed method can
find a solution faster than comparable methods when both
objectives are equally weighted.

We then changed the weights during the learning process
to determine the speed with which an algorithm reached a
steady-state balance between the power consumption and
forward velocity of a snake-like MR.

As displayed in Fig. 8, the weight change occurred at
2500 episodes. The learning plots in Fig. 8(a) and 8(b)
indicate that the proposed method can reach a steady
state faster than the other comparable methods after a
weight change. Two weight settings were considered: from
w = 0.5 to w = 0.9 and from w = 0.5 to w =

0.1. The objective with a higher weight was considered
more important than the other. The weights were changed
to 0.9 (more emphasis on power consumption) and 0.1
(more emphasis on forwarding velocity) from 0.5 after
2500 episodes. To reach a steady-state, the FI-SORL method
required approximately 1000 episodes after the weight was
changed to 0.9 [Fig. 8(a)] and approximately 2000 episodes
after theweight was changed to 0.1 [Fig. 8(b)]. The FI-MORL
obtained the best weighted-sum value faster than all the
algorithms, including the benchmark deep SORL algorithms.

Fig. 7 presents a scatter plot of f normp,k and f normv,k objective
values during each episode for the FI-MORL and FI-SORL
algorithms. Fig. 7(a) indicates the scatter points for the
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FIGURE 9. (a), (b) Power consumption and (c), (d) average velocity of a snake-like MR during each run when w = 0.5.

FIGURE 10. Different values of exploration rate ε and its effect on
(a) power consumption and (b) average velocity.

objective values are confined toward the region where both
objectives have equal importance (w = 0.5). When the
weight changes to 0.9, the scatter points of FI-MORL
in Fig. 7(b) are confined toward the expected region as
per the weight setting (the y-axis representing the power
consumption objective, which has higher importance than
the velocity objective); however, for FI-SORL, the scatter
points are distributed in different areas. When the weight
changes to 0.1, the scatter points of FI-MORL in Fig. 7(c)
follow the weight setting and are confined toward x-axis

(which represents the velocity objective, which has higher
importance than the power consumption objective); however,
the scatter points of FI-MORL are distributed in a different
area.

The results shown in Figs. 8 and 7 indicate that after
a weight change, the FI-MORL method achieves the best
objective values faster than the FI-SORL methods do and
exhibits the desired weight change effect.

Although our model provided better results than existing
ones, several threats that can affect its performance exist.
For example, our model adopted a discrete action set.
A continuous action set can be chosen to provide higher
resolution so that a larger action space can be explored, but
this can increase model complexity and time cost.

For Q-learning, the exploration rate ε was maintained
at 0.1 throughout the training process. Fig. 10 shows the
learning curves of various values of ε ranging from 0.1 to
0.8. The changes in power consumption during ε ∈ [0.1, 0.8]
varied less than 3% compared with ε = 0.1. The average
velocity fluctuation remained less than 5% during ε ∈

[0.1, 0.5] and increased by 7% if ε = 0.8. The small changes
in average velocity and power consumption illustrated that
the proposed method was insensitive to the variation of the
exploration rate if ε ∈ [0.1, 0.5].

VI. CONCLUSION
This study investigates the energy-efficient gait optimization
of snake-like MRs using multiobjective reinforcement learn-
ing with a fuzzy inference system, presenting a weighted-sum
problem formulation for the power consumption and average
velocity of a snake-like MR. In the literature, objective
weights are assumed to be fixed without considering possible
changes over time. After a weight change, the proposed
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FI-MORL algorithm rapidly achieved the best steady-state
objective values. Deep SORL based optimization methods
required a longer learning time than the proposed method
due to deep learning networks. By contrast, the proposed
method involved using a fuzzy inference system to reduce
the number of possible states and achieve rapid Q-table
based learning. After a weight change, all the SORL based
approaches required additional learning time to reach steady-
state values, whereas the proposed method determined a
14% faster steady-state weighted-sum value compared to the
traditional method and 1% faster than the AC and FI-SORL.
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