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ABSTRACT Electrical power system abnormalities may have several negative consequences on its stable
operation. As a result, preserving its stability under such operational states has become an ongoing challenge
for power engineers. PSSs are created as auxiliary controllers to address the instability issues produced
upon disturbances. They dampen the oscillations induced by the disturbances by giving the system the
necessary damping torque. This research aims at presenting a comprehensive study for the optimum tuning
of power system stabilizer (PSS) of different structures. This aim is accomplished with the help of a
novel modified optimization algorithm called Quantum Artificial Gorilla Troops Optimizer. The modified
optimizer’s validation is first investigated with the well-known benchmark optimization functions and shows
superiority over Gorilla Troops Optimizer and competitive algorithms. The research is extended to the
application of the optimum tuning of various PSS structures of the single machine to the infinite bus model.
The proposed optimization algorithm shows fast convergence over investigated optimization algorithms.
Moreover, the Tilt-integral-derivative based PSS shows better performance characteristics in terms of lower
settling time and lower maximum and undershoot values over the conventional lead-lag PSS, dual input PSS,
and fractional-order proportional-integral-derivative based PSS.

INDEX TERMS Power system stabilizer, tilt-integral-derivative, quantum artificial gorilla troops optimizer,
dual input PSS, lead-lag PSS.

NOMENCLATURE
PSS: Power system stabilizer.
CPSS: Conventional lead-lag PSS.
SMIB: Single machine to the infinite bus model.
FOPID-PSS: Fractional-order proportional integral-

derivative based PSS.
AVR: Automatic voltage regulator.
ITAE: Integral of time absolute error.

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Rabiul Islam .

Tm: Mechanical torque.
Ts: Simulation period.
GX : Gorilla candidate position.
DIPSS: Dual input PSS.
TID: Tilt-integral-derivative.
GTO: Artificial Gorilla Troops Optimizer.
QGTO: Quantum Artificial Gorilla Troops Optimizer.
MOS: Maximum overshoot.
MUS: Maximum undershoot.
STD: Standard deviation.
1ω: Rotor speed deviation.
X (): Current vector of the gorilla position.
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Xr (): A member of the gorillas randomly selected
Xsilverback : Best solution.
it: Current iteration.
r1,2,3,4: Random values ranging from 0 to 1.
lb & ub: Lower and upper bounds of the variables.

N : The total number of gorillas.
Maxit: Maximum iterations.
Mbest: Mean best of the population.

I. INTRODUCTION
A. BACKGROUND AND CHALLENGES
Electrical power systems are complex interconnected net-
works that aim to supply electric loads with the required level
of quality andwithminimum interruptions. Like any dynamic
system, the electrical power systems are subjected to dis-
turbances over their operations. Preserving power systems’
reliability and security necessitate the need for comprehen-
sive analysis. With the growing demand for electrical energy,
the transmission lines can be heavily loaded. As a result,
the power system will operate closer to the small-signal
stability margins. One of the small-signal stability solici-
tudes is the power system oscillations that are not adequately
dampened. Mechanical power variations caused by loading
disturbance can cause low-frequency oscillations in local
mode or interarea [1]. The automatic voltage regulator’s
(AVRs) primary duty is to continuously regulate the generator
excitation level in response to changes in generator terminal
voltage. The fast-acting AVR is salutary in enhancing the syn-
chronizing torque component, but lamentably, the negative
damping action is one of its disadvantages [2]. Resolving
this conflict can be attained with the help of power system
stabilizers (PSS) which enhance damping torque to damp-
out low-frequency oscillations. In [3], the IEEE has stan-
dardized the PSS types model that is used in industry. Over
the recent decades, numerous stabilizers and controllers have
been deployed.

B. LITERATURE SURVEY
For the design of PSS, various methodologies were
employed, such as self-tuning regulators, pole shifting, and
pole location. Nonetheless, these methodologies encounter
severe calculations that require a long time for computer pro-
cessing [4]. As an alternative methodology, machine learn-
ing approaches can be utilized. Unfortunately, it requires
data collection that covers a broad range of operating sit-
uations in addition to the long consumed time in system
training with suitable data sets [5]. Overcoming these short-
comings as well as getting along with the merits of using
the metaheuristic optimization algorithms like escaping from
local optima, the PSS can be optimally tuned efficiently.
Recently, a significant number of such algorithms have been
published like, Chaotic Particle Swarm Optimization [6],
whale optimization algorithm [7], enhanced whale optimiza-
tion algorithm [8], improved Moth flame optimization [9],
An antlion optimization [10], Slime Mould Algorithm [11],

Coyote Optimization Algorithm [12], Henry Gas Solubility
Algorithm [13], collective decision algorithm [14], Particle
Swarm Optimization [15], Cuckoo Search Algorithm [16],
Salp Swarm Algorithm [17], hybrid dynamic GA-PSO
algorithm [18], atom search algorithm [19], Runge Kutta
optimizer [20], Genetic Algorithms [21], kidney-inspired
algorithm [22], modified harmonic search algorithm [23],
sine cosine algorithm [24], Harmony Search [25], farmland
fertility algorithm [26]-[29], Bat Algorithm [30], Honey Bee
Mating Optimization [31], Jaya Algorithm [32], [33], Grey
Wolf Optimizer [34], Backtracking Search Algorithm [35],
Grasshopper Optimization Approach [36], Rat Swarm Opti-
mization[37]. Harris Hawk Optimizer[38].

The recognized fractional-order calculus-based controllers
like FOPID and TID are invited for various power sys-
tem applications like load frequency control[39]-[41], hybrid
power system control[42],[43] microgrids frequency stabil-
ity [44],[45]. . . etc. This is due to its remarkable potential
for disturbance rejection and increased sensitivity to model
parameter changes. The TID-PSS will be employed in this
research. Also, its performance will be compared with the
FOPID-PSS and the dual input PSS (DIPSS).

C. MOTIVATION
As per the ‘No free lunch theorems for optimization’, it is
impractical to say which optimization technique will achieve
the global optimum for all optimization problems[46]. The
Artificial Gorilla Troops Optimizer (GTO) [47] is one of the
recently introduced optimization algorithms. This algorithm
inherits its idea from the natural social intelligence of Gorilla
Troops. Owing to GTO’s advantages of easy-to-implement
and strong adaptability, the original GTO algorithm con-
verges fast. However, once it gets stuck into the local optima,
it will be very hard to get out from the local minima. To over-
come this issue, quantum mechanics are introduced into the
GTO algorithm. These suggested changes also enhance the
ability of the GTO to balance exploitation and exploration
for a better investigation of the solution. The proposed Quan-
tum Artificial Gorilla Troops Optimizer (QGTO) technique
depends on adopting a quantummodel of the search space and
operators in the GTO algorithm to achieve the best solution
for the objective function. In this paper, the application of
the QGTO to optimally tune various structures of PSSs is
employed to prove its capability to solve such non-linear
optimization problems.

D. CONTRIBUTION
The main contribution of this research can be summarized in
the following points:

a) Introducing a novel optimization algorithm called
QGTO.

b) Validation of the proposed optimizer through the appli-
cation of the well-known benchmark functions.

c) Studying the response of CPSS, dual input, and
TID-PSS to disturbances in the SMIB model.
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FIGURE 1. SMIB accompanied by PSS.

d) Investigating performance of the QGTO, GTO, and
other optimization algorithms for the capability of opti-
mum tuning of various structures of PSSs.

E. PAPER ORGANIZATION
The rest sections of this manuscript are shortly presented as
follows. In section II, the mathematical modeling and formu-
lation will be presented. Also, section III gives an overview of
the QGTO, while sections IV and V illustrate the application
of QGTO to the optimal tuning of investigated PSS structures
and discuss the obtained results. Finally, sectionVI spots light
on the main findings of this research.

II. PROBLEM MATHEMATICAL FORMULATION
This section aims at presenting the mathematical model of the
single machine to the infinite bus along with the modeling
of various PSSs structures. The SMIB model consists of a
synchronous machine that is connected to an infinite bus
through a transmission line. The synchronous machine is
accompanied by the automatic voltage regulator (AVR), the
exciter, and the PSS, as shown in Figure 1. In this research, the
4th order model of a synchronous machine will be employed
to analyze local mode oscillations. The following set of equa-
tions can be used to mathematically model the SMIB [44]:

δ̇ = ωb (ω − 1) (1)

ω̇ =
1
M
(PM − PE − PD) (2)

Ė ′q =
1
T ′do

[
Efd − E ′q −

(
xd − x ′d

)
id
]

(3)

Ėfd =
1
TE

[
KA
(
vtr − vt + uPSS

)
− E fd

]
(4)

PE = E ′qiq +
(
xq − x ′d

)
id iq (5)

The linearized incremental models around a steady-state
point are commonly used in the design of PSSs. Hence, the

previous equations can be linearized as follows to consti-
tute the well-known Heffron-Philips model with constants
(K1–K6):

1̇δ = ωb1ω (6)

1̇ω = −
K1
2H

1δ −
D
2H

1ω −
K2
2H

1E ′q (7)

˙1E ′q =
K4
T ′do

1δ −
1

T ′doK3
1E ′q +

1
T ′do

1E fd (8)

˙1E fd = −
kAK5
TA

1δ −
kAK6
TA

1E ′q −
1
TA
1E fd +

kA
TA
1uPSS

(9)

All these equations can be arranged in a matrix form to
present the state-space model as given in Eqs. (10, 11).

1̇δ

1̇ω
˙1E ′q
˙1E fd
˙1vω
˙1uPSS



=



0 ωb 0 0 0 0
−
K1
2H −

D
2H −

K2
2H 0 0 0

K4
T ′do

0 −
1

T ′doK3
1
T ′do

0 0

−
kAK5
TA

0 −
kAK6
TA

−
1
TA

0 kA
TA

−
K1KPSS
2H 0 −

K2KPSS
2H 0 −

1
TW

0

−
T1K1KPSS

2HT2
0 −

T1K2KPSS
2HT2

0 1
T2
(1−

T1
TW

) − 1
T2



×


1δ

1ω

1E ′q
1E fd
1vω
1uPSS

+


0 0
1
2H 0
0 0
0 kA

TA
KPSS
2H 0

T1K1KPSS
2HT2

0


(10)
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FIGURE 2. Conventional lead-lag PSS.


1ω

1E fd
1Vt
1Te



=


0 1 0 0 0 0
0 0 0 1 0 0
K3 0 K6 0 0 0
K1 0 K2 0 0 0




1δ

1ω

1E ′q
1E fd
1vω
1vs

+

0 0
0 0
0 0
0 0

[ 1Tm1E fd

]

(11)

As per the essential role of PSS to provide compensation
for the negative damping torque component produced by the
AVR, various PSSs structures will be investigated in this
research.

The conventional lead-lag PSS (CPSS) is depicted in
Figure 2, which is mathematically defined by:

∇uPSS
1ω

= KPSS .
sTw

1+ sTw
.
(1+ sT1)
(1+ sT2)

(12)

where, Tw denotes the wash-out filter time constant (10s in
this research). T1 and T2 are phase-lead and phase lag time
constants respectively.

Moreover, the FOPID and TID-based PSS will be
employed for evaluation as per improved disturbance
rejection capabilities and superior sensitivity tomodel param-
eter variations. The stabilization signal of both FOPID and
TID-based PSSs is given in Eqs. (13) and (14). Figure 3 shows
a schematic representation of the TID controller, while
Figure 4 shows the block diagram of the DIPSS (i.e., the
PSS3B model).

∇uPSS =
(
KP +

KI
sλ
+ KDsµ

)
1ω (13)

∇uPSS =
(
Kt

s(
1
n )
+
KI
s
+ KDs

)
1ω (14)

The rotor speed deviation (1ω) is employed in the fitness
function to reach the optimal parameter values of investigated
PSSs. As a result, the integral of time absolute error (ITAE) is
used as a performance index which is given by Eq.(12) with

FIGURE 3. TID controller schematic diagram.

FIGURE 4. PSS3B block diagram.

Ts is the simulation period:

f =
∫ Ts

0
t × |1ω|dt (15)

To provide the appropriate stabilization signal from the PSS,
it is required to tune its parameters. The QGTO will be
employed for the optimum tuning of investigated PSS struc-
tures with the aid of ITSE as a fitness function. Figure 5 illus-
trates this process in the case of utilizing TID-based PSS.

III. THE PROPOSED APPROACH OF OPTIMIZATION
The Artificial Gorilla Troops Optimizer (GTO) algorithm
is briefly presented in this section then the process of the
quantum GTO (QGTO) technique is described.

A. ARTIFICIAL GORILLA TROOPS OPTIMIZER (GTO)
1) EXPLORATION PHASE
Three different operators were used in the exploration phase:
Move to an unknown location to further explore the GTO
algorithm. The second factor, the transition to other gorillas,
increases the balance between exploration and exploitation
[47]. The third factor is in the exploration phase; that is,
migrating to a known location greatly increases the ability
of the GTO algorithm to search for different improvement
spaces. These different operators can be represented using the
following equation:

GX (t + 1)

=


(ub− lb)× r1 + lb, rand < z

(r2 − C)× Xr (t)+ D× B, rand ≥ 0.5
X (i)− D× (D× (X (t)− GXr (t))

+r3 × (X (t)− GXr (t))) , rand < 0.5
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FIGURE 5. Block diagram of using QGTO for TID-based PSS optimum tuning.

C = (cos (2×r4)+ 1)×
(
1−

it
Maxit

)
D = C × k

B = E × X (t)

E = [−C,C] (16)

where GX (t + 1) is the gorilla candidate position in the next
iteration. lb and ub denote the lower and upper bounds of
the variables, respectively. r1, rand, r2, r3, and r4 are random
values ranging from 0 to 1. The z parameter has a range
from 0 to 1. Also, X (t) denotes the current vector of the
gorilla position while Xr (t) is a member of the gorillas ran-
domly chosen from the entire gorillas and also GXr (t).The
parameter k denotes a random value ranging from −1 to 1.

2) EXPLOITATION PHASE
During the exploitation phase, two strategies are applied. The
first strategy is to follow the silverback, and it is applied
when C ≥ W , where W denotes a parameter to be set
before the optimization operation. The first strategy can be
mathematically evaluated as follows [47]:

GX (t + 1) = D×M × (X (t)− Xsilverback)+ X (t)

M =

∣∣∣∣∣ 1N
N∑
i=1

GXi (t)

∣∣∣∣∣
g 1

g

g = 2D (17)

where Xsilverback denotes the best solution, N is the total
number of gorillas.

The secondmechanism is the competition for adult females
and it is applied when C < W . This mechanism is computed

using the following equation:

GX (i) = Xsilverback − (Xsilverback × Q− X (t)× Q)× A

Q = 2× r5 − 1

A = β × H

H =

{
N1, rand ≥ 0.5
N2, rand < 0.5

(18)

where β is a parameter to be given value before the optimiza-
tion operation. r5 is a random value ranging from 0 to 1.

B. THE PROPOSED QUANTUM ARTIFICIAL GORILLA
TROOPS OPTIMIZER (QGTO)
In this subsection, quantum mechanics is used to develop the
original GTO technique. This quantummodel of a GTO tech-
nique is named the QGTO algorithm. Quantum Algorithm
(QA) was firstly proposed in [49]. It was declared that QA
could solve many difficulties based on the concepts and prin-
ciples of quantum theory, including superposition of quantum
states, entanglement, and intervention. Quantum-Inspired
Evolutionary Algorithm (QEA) is one of the developing
algorithms which was inspired by the concept of quantum
computing [50]. This algorithm was successfully applied
to solve several combinational optimization problems. The
good performance of the QEA algorithm for finding a
global best solution in a short time has attracted the atten-
tion of researchers to use quantum computing to develop
algorithms such as quantum genetic algorithm (QGA) [51],
multiscale quantumharmonic oscillator algorithm (MQHOA)
[52], quantumRungeKutta algorithm (QRUN) [53], quantum
salp swarm algorithm (QSSA) [54], quantum chaos game
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FIGURE 6. Flowchart of the proposed QGTO algorithm.

optimizer (QCGO) [55], and Quantum Henry gas solubility
optimization algorithm (QHGSO) [56]. Quantum mechanics
were employed to improve the PSO algorithm in [57]. In the
quantum model, by employing the Monte Carlo method, the
solution xnew is calculated as follows:

p =
c1 × w× X (t)+ c2 × (1− w)× Xsilverback

c1 + c2
if h ≥ 0.5

GX (t + 1) = p+ α. |Mbest i − X (t)| . ln (1/u)

else

GX (t + 1) = p− α. |Mbest i − X (t)| . ln (1/u)

end (19)

where α is a design parameter, u and w represent uniform
probability distribution in the range [0,1], and h is the random
value ranging from 0 to 1. Mbest is the mean best of the
population, and it is defined as the mean of the Xsilverback
positions. It is calculated from this equation:

Mbest =
1
N

N∑
i=1

Xi(t) (20)
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FIGURE 7. Qualitative metrics of nine benchmark functions: 2D views of the functions, search history, average fitness history, and convergence curve
using the QGTO algorithm.
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FIGURE 7. (Continued.) Qualitative metrics of nine benchmark functions: 2D views of the functions, search history, average fitness history, and
convergence curve using the QGTO algorithm.

FIGURE 8. The convergence curves of all algorithms for seven unimodal benchmark functions.

The flow chart of the proposed QGTO technique is shown in
Figure 6.

IV. SIMULATION OUTCOMES
This section will highlight the capability of the proposed
optimization algorithm (QGTO) for reaching the optimum
destination. This can be attained in two ways. Validation with
the well-known benchmark functions is the first one and later

is an important power system stability problem (i.e., low-
frequency oscillations damping using PSS).

A. THE PROPOSED QGTO TECHNIQUE’s PERFORMANCE
The effectiveness and performance of the QGTO algorithm
are assessed on several benchmark functions in this subsec-
tion, including the minimum values, mean values, median
values, maximum values, and standard deviation (STD) for
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TABLE 1. The statistical results of unimodal benchmark functions using the proposed QGTO algorithm and other techniques.

the solutions attained by the proposed QGTO algorithm, the
original GTO algorithm and the three recent optimization
algorithms, including the artificial hummingbird algorithm
(AHA) [58], supply-demand-based optimization (SDO) algo-
rithm [59], and grey wolf optimizer (GWO) [60]. The results
of the QGTO algorithm are compared with these well-
known optimization algorithms. These techniques have been
performed for the maximum number of iterations is 200,
the population size is 50, and 20 independent runs using
MATLAB R2016a. All simulations have been implemented
on a laptop, including Core i5-4210U CPU@ 2.40 GHz of
speed and 8 GB of RAM. The Qualitative metrics using the
QGTO algorithm for nine benchmark functions, including 2D
views of the functions, search history, average fitness history,
and convergence curve, are illustrated in Figure 7.

The proposed QGTO algorithm and other techniques are
applied for three benchmark functions (unimodal, multi-
modal, and composite benchmark functions) to assess the
performance of the QGTO algorithm in comparison with four
recent algorithms including original GTO, AHA, SDO, and
GWO algorithms. The optimal values were achieved with
these algorithms shown in bold. The performance of the
unimodal benchmark functions is given in Table 1. In uni-
modal benchmark functions, the proposed QGTO algorithm
found the optimal solution in the functions F1, F2, F4, F5,
and F7. The original GTO algorithm was only best in the
F3 and F6. In this category of benchmark functions, since
there is only one global optimum, the performance of the
relevant algorithms is evaluated during the exploitation phase.
Based on the results, the performance of the proposed QGTO

82568 VOLUME 10, 2022



M. A. El-Dabah et al.: Robust Parameters Tuning of Different PSSs Using a Quantum Artificial Gorilla Troops Optimizer

FIGURE 9. Boxplots for all algorithms for seven unimodal benchmark functions.

FIGURE 10. The convergence curves of all algorithms for six multi-modal benchmark functions.

algorithm is seen to be superior in the related functions, so it is
observed to be fast and successful in the exploitation phase.

In Tables 2 and 3, the results of the multi-modal and multi-
modal, and composite functions are given. The multi-modal
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TABLE 2. The statistical results of multi-modal benchmark functions using the proposed technique and other algorithms.

FIGURE 11. Boxplots for all algorithms for multi-modal benchmark functions.
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TABLE 3. The statistical results of composite benchmark functions using the proposed technique and other well-known algorithms.

functions have multiple local minima and one global opti-
mum. These functions can be a very important roadmap

for assessing exploration and exploitation phases. Table 2
tabulated the simulation results of each algorithm over F8
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FIGURE 12. The convergence curves of all algorithms for composite benchmark functions.

TABLE 4. Optimum parameters of DIPSS using GTO and QGTO.

to F13 functions. The proposed QGTO technique reaches
the best solution in the F8, F9, F10, F11, and F13. The
original GTO algorithm found the better solution in F12.
Based on the results of the multi-modal functions, it has
been determined that the proposed QGTO algorithm has a
better performance compared to the others. Similarly, Table 3
presents the statistical results for the functions F14 to F23.

The composite function evaluates the exploration of the opti-
mization technique. The QGTO technique achieves the best
solution for all functions F14 to F23. In these functions, the
proposed QGTO algorithm is the best optimizer compared
to others. That indicates the QGTO technique’s efficient per-
formance in the exploration phases. Figure 8 displays the
convergence curves of all these algorithms for the unimodal
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FIGURE 13. Boxplots for all algorithms for composite benchmark functions.

TABLE 5. Optimal parameters of TID-PSS using various optimization algorithms.

benchmark function, while Figure 9 displays the Boxplots
for these algorithms for this type of function. Also, the
convergence curves of these algorithms for the multi-modal
benchmark functions are presented in Figure 10, while the

Boxplots for each algorithm for these functions are illustrated
in Figure 11. Finally, Figure 12 shows the convergence curves
of all techniques for the composite benchmark functions,
while Figure 13 illustrates the Boxplots for all algorithms for
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FIGURE 14. Convergence curves of GTO and QGTO employed for optimum parameters estimation of the DIPSS.

FIGURE 15. Change in rotor speed in case of using DIPSS.

this type of benchmark function. From these figures, it is seen
that the proposed QGTO technique achieves a stable point for
all functions and the boxplots of theQGTO algorithm are very
narrow for most functions compared to the other algorithms.

B. REAL-LIFE APPLICABILITY
Upon demonstrating the superiority of QGTO through the
well-known benchmark functions, this section spots light on
its applicability of it in one of the electrical power systems
applications. Assessment of the effectiveness of QGTO to
optimally tune investigated PSS parameters will be achieved
with the help of SMIB embedded with PSS. The SMIBmodel
data can be attained from [20]. The system response will
be studied while there is a change of 0.1 p.u in Tm. The

simulation is carried out with the help of an Intel core TM
i7- 4790 CPU, 8 GB RAM laptop using the MATLAB 2020a
platform.

The employed evaluation will be achieved through three
stages. First, the GTO and QGTO will be used to attain the
optimal parameters of the DIPSS. After that, the QGTO will
be used for the optimum parameter tuning of TID-PSS. The
obtained results will be compared with the CPSS and DIPSS.
Finally, the investigation of QGTO to reach the optimum
parameters of FOPID-PSS will be applied. All the obtained
results will be compared to take a full picture of the perfor-
mance of investigated PSSs.

In the case of employing the DIPSS, the QGTO shows fast
convergence and lower fitness function over the course of
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FIGURE 16. Convergence curves for optimum tuning of the TID-PSS with various optimizers.

FIGURE 17. Change in rotor speed in case of using QGTO-TID PSS.

iterations, as illustrated in Figure 14. Also, from Figure 15,
it can be proven that the maximum overshot (MOS) of change
in rotor speed signal in the case of QGTO is lower than
its value while using GTO. The optimized parameters of
DIPSS, as well as the attained cost functions, are tabulated
in Table 4.

On the other hand, the QGTO ensures superior per-
formance over the Artificial ecosystem-based optimization

(AEO), RUN, GTO, and Gradient-based optimization (GBO)
optimization algorithms, as shown in Figure 16. It reaches the
lowest ITAE value of (4.7877e-06), while the GTO reaches
the highest value of (4.993e-06), which can be obtained
from Table 5.

Figure 17 shows the effect of using the CPSS, DIPSS, and
QGTO optimized TID- PSS. There is no doubt that the QGTO
optimized TID- PSS shows better performance over the other
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FIGURE 18. Convergence curves for optimum tuning of FOPID-PSS with various optimizers.

FIGURE 19. Change in rotor speed in case of using QGTO-FOPID PSS.

PSSs. This can be clarified from the lowest MOS, MUS, and
lower settling time.

As one of the fractional-order controller families, the capa-
bility of the QGTO for the optimum tuning of FOPID-PSS is
also employed. Also, the QGTO convergence characteristics

show fast convergence and lower ITAE over the AEO, RUN,
GTO, and GBO algorithms which are shown in Figure 18 and
tabulated in Table 6.

A complete evaluation of the obtained results using
QGTO for the CPSS, DIPSS, FOPID-PSS, and TID-PSS.
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TABLE 6. Optimal parameters of FOPID-PSS using various optimization algorithms.

The TID-PSS has better performance indices in terms of
lowest MOS, MUS, and settling time overall compatible
structures of PSS, as can be proven in Figure 19.

V. CONCLUSION
Aberration in the electrical power system can have a range
of detrimental effects on its stability. Hence, maintaining
its stability in such operational conditions has become a
constant issue for power engineers. Power system stabi-
lizers (PSSs) are one of the proposed solutions that are
designed to act as auxiliary controllers in order to address the
instability difficulties caused by disturbances. This research
manuscript proposes a comprehensive evaluation of opti-
mal parameters tuning of different PSSs using a novel
Quantum Artificial Gorilla Troops Optimizer. Validation of
the proposed algorithm is proofed using the well-known
benchmark functions. The novel proposed optimization
algorithm shows superiority over the gorilla troops opti-
mizer and compatible optimization algorithms. Moreover,
four different structures of PSS, namely dual input PSS
(DIPSS), Tilt-integral-derivative (TID-PSS), fractional-order
proportional-integral-derivative (FOPID-PSS), and the con-
ventional lead-lag PSS are employed for the comprehensive
investigation of proposed algorithm performance and opti-
mum tuning capability. With the utilization of the proposed
algorithm, the fitness function of TID-PSS has the lowest
value of 0.000004993 compared to DIPSS and FOPID-PSS,
which reach 0.000027229 and 0.0000066394, respectively.
Moreover, the TID-PSS has superior performance indices in
terms of lowest maximum overshoot, maximum undershoot,
and lower settling time. This research will be extended to
include sensitivity analysis as future work. This analysis will
prove the capability of the proposed PSS structure.
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