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ABSTRACT The booming personalized and customized demands of customers in Industry 4.0 pose a
great challenge for manufacturing enterprises in terms of flexibility and responsiveness. Nowadays, many
effective dynamic scheduling approaches have been proposed for manufacturing systems to quickly respond
to changes in customer demands, where, however, the implementation of an automatic programming method
with high control accuracy and low control delay is still challenging. The above unaddressed issue brings
about a lot of labor-intensive and time-consuming manual offline programming work when adjusting the
scheduling scheme to meet dynamic customer demands, resulting in limited flexibility and responsiveness
in current manufacturing systems. To bridge this gap, a bi-level adaptive control architecture enabled by an
automatic programming method is proposed and embedded into a digital twin manufacturing cell (DTMC).
The bi-level architecture aims to automatically map an input task scheduling scheme with a batch of jobs
into a group of control programs through a behavior model network and a set of event models embedded
in DTMC. It also provides an adaptive program modification mechanism to quickly adapt to the dynamic
adjustment of the scheduling scheme caused by the changing of customer demands or production conditions,
thus equippingDTMCwith strong flexibility and responsiveness. Based on the bi-level architecture, a DTMC
prototype system is developed, where its application and evaluation examples demonstrate the feasibility and
effectiveness of the proposed method.

INDEX TERMS Digital twin, automatic programming, adaptive control, behavior model, event model,
industry 4.0.

I. INTRODUCTION
The vigorous development of new generation information
technologies [1], [2] provides unprecedented opportunities
for customers to participate in modern globalized manufac-
turing networks to transform their demands into personalized
products. This promotes the transformation of production
modes of industrial enterprises to mass-customization
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manufacturing [3], [4]. In mass-customization manufac-
turing, dynamic changes in personalized and customized
demands of customers together with increasingly reduced
product life-cycle pose a great challenge for manufacturing
enterprises in terms of flexibility and responsiveness [5], [6].

Fortunately, Industry 4.0 comes with intelligent manufac-
turing cells to meet the booming personalized and customized
demands by offering a flexible and automatic manufacturing
process [7]–[9]. An intelligent manufacturing cell [10] aims
to transform diverse customer demands into manufacturing
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tasks with a batch of scheduled jobs [11], where each job is
automatically processed by manufacturing devices controlled
with a group of control programs. Nowadays, many dynamic
scheduling approaches [12], [13] have been developed to pro-
duce an optimal scheduling scheme for manufacturing tasks,
while providing dynamic adjustment mechanisms to quickly
respond to changes in customer demands (such as delivery
time and product quantity) and production conditions (such
as machine fault and tool wear). Nevertheless, little research
has been conducted to develop an automatic programming
method that maps each of jobs in an original or adjusted
scheduling scheme into a group of control programs to auto-
matically control the operation process of the manufacturing
cell. Here, high mapping accuracy and low time delay are
two main challenges for the development of an automatic
programming method for quickly adapting to the dynamic
adjustment of the task scheduling scheme. The above unad-
dressed issue leads to a lot of manual offline programming
work [14] when adjusting the scheduling scheme to meet
dynamic customer demands, resulting in limited flexibility
and responsiveness for current manufacturing cells.

Digital twin (DT) [15], defined as ‘‘an integrated multi-
physics, multi-scale, probabilistic simulation of a vehicle or
system that uses the best available physical models, sensor
updates, fleet history, etc., to mirror the life of its flying
twin’’, could equip manufacturing cells with powerful real-
time perception, optimization and control capabilities, show-
ing great potential for addressing the above issue in the
context of Industry 4.0. Actually, DT has achieved initial suc-
cess in autonomously controlling of a single manufacturing
device. For example, Zhao et al. [16] established a DT-driven
cyber physical system for the context-aware autonomously
controlling of a micro-dots punching machine tool;
Kaigom and Roßmann [17] introduced a concept for the
development of robotic digital twins that help companies
gain a competitive edge through an intelligent robotized
automation; Liu et al. [18] introduced a DT-based frame-
work for time-varying error prediction and compensation for
the movement axis of a CNC machine tool. Comparatively
speaking, DT-driven system-level control is still in its infancy,
where most current related researches [19]–[21] focus on
providing control suggestions based on simulation or opti-
mization results to guide the manufacturing process. That
is, autonomously controlling of a manufacturing cell with
a DT-driven system-level control method is still challenging
due to the lack of a latency-aware adaptive controlmechanism
as well as a high-accuracy automatic programming method in
current DT systems.

To bridge the gap, this paper takes a digital twin
manufacturing cell (DTMC) introduced in our previous
works [7], [10], [22] as basis, on which a novel DT-driven
adaptive control mechanism enabled by an automatic pro-
gramming method is proposed and embedded into DTMC.
The proposed approach takes a real-time task scheduling
scheme generated by a dynamic scheduling strategy [23] as
input. Then, a batch of jobs in the scheduling scheme are

automatically mapped into a group of control programs
through a high-fidelity simulation process empowered by a
behavior model network (BMN) and a set of event mod-
els (EMs) embedded in DTMC. BMN and EMs also pro-
vide an adaptive programmodification mechanism to quickly
respond to changes in the scheduling scheme tomeet dynamic
customer demands, thus equipping DTMC with strong flex-
ibility and responsiveness. In addition, a DTMC prototype
system is implemented, where its application and evaluation
results demonstrate the feasibility and effectiveness of the
proposed approach.

The remainder of the paper is organized as follows.
Section II proposes a novel DT-driven bi-level adaptive
control architecture for DTMC. In section III, BMN is
constructed based on a timed automata theory. Section IV
constructs an EM-driven automatic programming model
for DTMC. Section V discusses a thus implemented proto-
type system to demonstrate the effectiveness of the approach.
The conclusions and future works are found in section VI.

II. DT-DRIVEN BI-LEVEL ADAPTIVE CONTROL
ARCHITECTURE
This section takes DTMC as basis, on which a novel
DT-driven bi-level adaptive control architecture enabled by
an automatic programming method is proposed. The pro-
posed architecture aims to automatically map a batch of
scheduled jobs generated by a dynamic scheduling strat-
egy [23] into a group of executable control programs for
autonomously controlling of DTMC. In addition, the archi-
tecture also provides an adaptive program modification
mechanism to quickly adapt to dynamic changes in the
scheduling scheme during the job execution process.

A. BRIEF INTRODUCTION OF DTMC
In the context of Industry 4.0, we introduced a new kind of
intelligent manufacturing systems – DTMC [7], [10], [22].
DTMC offers powerful learning and cognitive capacities
for autonomous manufacturing enabled by three functional
layers including perception layer (PL), optimal-state control
layer (OSCL) and service layer (SL), as shown in Fig. 1.

PL collects real-time data (such as device status, tool
wear condition, job execution progress) from physical space
with a sensor network, which is published to OSCL for
further analysis. PL also subscribes control programs from
OSCL through smart gateways for autonomously controlling
of DTMC.

OSCL aims to keep physical space operating at its opti-
mizal state with the cooperation of data space, virtual space
and knowledge space. Specifically, data space is responsible
for real-time data parsing and standardization through an
OPC-UA informationmodel embedded in driver agent, which
also provides an unified interface in access library for virtual
space and knowledge space to access data [24]. Virtual space
contains a set of DT models, such as CNC machine tool DT,
robotic DT, etc., which provide a high-fidelity simulation
capacity to understand the current or future performance of
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physical space. Knowledge space acts as the brain of DTMC
to handle various manufacturing problems in physical space
and virtual space based on the dynamic knowledge base and
knowledge models (such as a dynamic scheduling model).

FIGURE 1. A reference framework for DTMC [22].

SL packages manufacturing capacities and resources as
services to serve customers, managers, designers, etc.,
in social space [25]. SL integrates a variety of mature service
systems, such as the customer relation management system
and advanced production scheduling system, which bridge
the gap between the supply of DTMC and diverse demands
of customers.

DTMC could be one of the popular solutions for the con-
struction of a DT-enhanced new-generation intelligent man-
ufacturing workshop in mass-customization manufacturing.
However, DTMC is more of a concept than a mature system.
The implementation of DTMC is still made difficult due to
the lack of a latency-aware adaptive control mechanism as
well as an automatic programming method.

B. DESIGN OF BI-LEVEL ARCHITECTURE
To bridge the gap, a DT driven bi-level adaptive control
mechanism enabled by an automatic programming method
is proposed for DTMC. To this end, a BMN is incorporated
into the virtual space of DTMC, which maps a set of jobs in
a scheduling scheme into a group of discrete manufacturing
events through a high-fidelity simulation process. On that
basis, an EM-driven automatic programming method is pro-
posed to transfer each event into a group of control programs
for autonomously controlling of DTMC.

Specifically, given a task scheduling scheme S = {J1,
J2, . . . , Jn} containing n jobs scheduled by the advanced
production scheduling system in social space, the bi-level
adaptive control mechanism could be defined by a discon-
tinuous nonlinear mapping:

C (t) = E

(
B

(
n⋃
i=1

Ji + δext (t)

)
+ δint (t)

)
(1)

where C(t) is a discontinuous nonlinear mapping algorithm;
B(·) in (1) represents an external mapping that transfers Ji ∈ S

into a trace containing a set of verified events expressed as
<e1[t1], e2[t2], . . . , eq[tq]> through BMN; E(·) in (1) rep-
resents an internal mapping that transfers all verified events
in the trace into a group of control programs executed in
physical space of DTMC through an event-driven automatic
programming model; δext (t) is the external deviation of job
schedules caused by the changes in customer demands and
production conditions at time t; δint (t) is the internal devi-
ation that only influences the execution time and sequence
of manufacturing events at time t . The real-time deviation of
δext (t) and δint (t) could be derived by a dynamic scheduling
model [23].

FIGURE 2. Bi-level adaptive control architecture for DTMC.

The semantics of the discontinuous nonlinear mapping in
(1) could be expressed via a bi-level architecture as shown
in Fig. 2. The top level corresponds to an external mapping
B(·) carried out by a BMN that consists of a set of behavior
models (BMs). BMN could automatically generate a trace
containing a set of verified discrete events for the input S
through a logic simulation. The bottom level corresponds to
an internal mapping E(·) carried out by an EM-driven auto-
matic programming model. In this model, each manufactur-
ing device in physical space acts as an actuator controlled by
a programmable logic controller (PLC). To this end, an event
pool containing a set of EMs is constructed to establish corre-
spondences between an event and a group of PLC programs.
In addition, EMs are encapsulated as services to subscribe
events in a trace and turn them into PLC programs to logically
control manufacturing devices in physical space. With the
in-depth integration of cyber-physical spaces in the bi-level
architecture based on DT, three control loops including the
automatically programming loop ll, internal change control
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loop l2 and external change control loop l3 are formed to
adaptively handle external or internal changes.

Specifically, l1 takes a task schedule scheme as input and
generates an initial discrete event set through B(·) enabled by
BMN, which is further transformed to physical via control
plane in data space. The event set is automatically resolved
and mapped into control programs through E(·) enabled by
an EM-driven automatic programming method to guide the
operation of DTMC. During manufacturing process, l2 aims
to update the execution time and sequence of events to quickly
respond to the internal deviation δint (t) by continuously sim-
ulating the future state of tasks to seek optimal event execu-
tion time and sequence based on the current task execution
state with BMN. l3 aims to quickly generate a new discrete
event set based on the rescheduling scheme to respond to the
external deviation δext (t), which further updates the control
programs in millisecond level for autonomously controlling
of DTMC.

With the above observations, the following key enabling
technologies of the architecture could be summarized,
namely the behavior modeling method for BMN construc-
tion and EM-driven automatic programming model for
autonomously controlling of DTMC.

III. BEHAVIOR MODELING METHOD
DTMC is a typical discrete event dynamic system that fin-
ishes manufacturing tasks with a series of discrete events
encoded in control programs. Behavior modeling aims to
fully characterize the operation logic of manufacturing
devices in physical space of DTMC digitally, through which
a task scheduling scheme with a set of jobs could be auto-
matically mapped into a series of verified discrete manu-
facturing events. Besides, timed automata (TA) [26] have
been a popular theory widely used in modeling and analyz-
ing characteristics and behaviors of discrete event dynamic
systems. TA enjoys significant advantages in high model-
ing accuracy, strong interpretability/ verifiability, and fast
responding speed. Consequently, TA is utilized in this section
for behavior modeling of manufacturing devices according to
the operation strategies of DTMC.

A. DEFINING OPERATION STRATEGIES FOR DTMC
Operation strategies serve as the basis for behavior modeling
of DTMC, which are defined by the following interactive
mechanisms and conflict resolving rules: 1) A single job
(corresponding to a workpiece in workshop) exists indepen-
dently in a manufacturing device, which is not allowed to
be occupied by multiple manufacturing devices at the same
time; 2) Job processed on a manufacturing device needs to
be completed within a limited period of time defined in
the scheduling scheme; 3) Multiple jobs are processed with
a specific sequence, not disorderly; 4) Each manufacturing
device handles jobs with First Come First Serve (FCFS) rule,
which means jobs are preferentially processed according to
the order of arrival time; 5) Shortest Job First (SJF) rule would
be adopted when a manufacturing device receives multiple

jobs at the same time and; 6) Jobs will be randomly selected
for processingwhen amanufacturing device receivesmultiple
jobs with the same processing and arrival time.

Notice that the above strategies used in this paper are
flexible to be revised or replaced by other strategies to adapt
to different types of DTMC.

B. TA-BASED BEHAVIOR MODELLING
Based on the operation strategies, a TA-based behavior mod-
elling method is proposed for the construction of BMN.
To begin with, we define TA-based concepts for DTMC.
Definition I: Attribute constraints qualitatively represent

the capacity and availability of manufacturing resources in
physical space of DTMC, which determine whether a map-
ping between a job in the task and events executed by several
manufacturing resources could be approved. Given a finite set
of attributes A = {a1, a2, . . . , am}, the set ϕ(A) of all possible
attribute constraints over A is defined by:

ϕ(A) = {a1 ∼ υa1, a2 ∼ υa2, . . . , am ∼ υam} (2)

where ∼∈{=, ≥, >, ≤, <}; am ∼ υam indicates indicates
the m-th attribute of DTMC satisfies the constraint defined
by υam. For example, if the highest turning precision of a
lathe is 0.01mm, its attribute constraint – maximum turning
precision is defined as a1 = 0.01mm.
Definition II: Clock constraints indicate the processing

period for each of jobs based on its scheduling scheme. Given
a finite set of clocks C = {c1, c2, . . . , cn}, the set ϕ(C) of all
possible clock constraints over C is defined by the grammar:

ϕ(C) = {c1 ∼ τc1, c2 ∼ τc2, . . . , cn ∼ τcn} (3)

where ∼∈{=, ≥, >, ≤, <}; cn ∼ τcn indicates the n-th
clock for processing a job satisfies the time constraint defined
by τcn. For example, if the processing time of a job is 1min,
the clock constraint for that job is defined as c1 = 1min.
Based on Definition I and II, we employ attribute and clock

constraints ϕ(C) = ϕ(A) ∪ ϕ(C) to represent all possible
constraints for DTMC to complete a batch of jobs in the task
scheduling scheme.
Definition III: Locations & status represent a finite set of

relative spatial positions or operation status of manufacturing
resources in DTMC, which is defined as:

LS = {ls1, ls2, . . . , lsi} (4)

where lsi indicates a specific location or status for a manu-
facturing resource. For example, LS1 represents all possible
end locations of AGV in physical space, which is defined as
LS1 = {lsbuffer1 = (1, 5), . . . , lsbufferi = (5, 10)}.
Definition IV: Actions refer to a finite set of operations

performed by DTMC to finish jobs, which are defined as:

6 =
{
α1, α2, . . . , αj

}
(5)

where αj indicates a specific operation of a manufacturing
resource. For example, the startup, waiting, door open, pro-
cessing and shutdown of a machine tool.
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Definition V: The invariant clock constraint is a subset of
clock constraints, which indicates the condition for one of
two types of state transitions of TA that can occur in DTMC,
namely a time transition where the location or status stays
the same while the clock valuation τ advances δ ∈ R≥0 units
to the valuations τ + δ. Given a finite set of invariant clock
constraint I (ls), a time transition is defined by the grammar:

〈ls , τ 〉
δ
→〈ls , τ + δ〉 if ∀0 ≤ δ′ ≤ δ, τ + δ′ |H I (ls) (6)

where the semantics of (6) is that, for example, the location
of a job stays invariant when it is processed in a machine tool
until finished or specified time constrain reached.
Definition VI: The edge of TA e = (ls, α, g, λ, ls’) indi-

cates the condition of another type of state transition - the
action transition where location or status of a manufacturing
resource would be changed from ls to ls’, if ν satisfies the
action command α and guard g containing a set of constraints
defined in ϕ(C), while the clocks in λ are reset to 0 and the
invariant of ls’ must be satisfied after the clocks are reset.
Given a finite set of edges E , an action transition is defined
by the grammar:

〈ls , τ 〉
α,g,λ
−→ 〈ls ′ , τ 〉 ifτ |H g, τ ′ |H I (ls′) (7)

where the semantics of (7) is that, for example, the location of
a job could be changed from ls to ls’ when a logistics action
α is performed and its transition time satisfies the constraints
in guard g defined in the schedule plan.

Based on Definition I-VI, a TA-based behavior model for
a manufacturing resource is defined by a tuple:

BM = {LS, ls, 6,C, I ,E} (8)

where LS is a finite set of locations & status that represent
all possible operation positions or status of manufacturing
resources in DTMC; ls is the initial location & status; 6 is
a finite set of actions;C is a finite set of attributes and clocks;
I is a finite set of invariant clock constraints; E ⊆ LS × 6 ×
ϕ(C) × 2C × LS is a finite set of edges.

C. BM INTEGRATION AND INTERACTION
A set of BMs could be integrated into BMN, thus equipping
DTMCwith a high-fidelity operation logic simulation capac-
ity for the automatic generation of discrete manufacturing
events based on the input scheduling scheme.

Specifically, let BM = {BM1, BM2, . . . , BMN} be a set
of BMs representing each of all manufacturing resources in
DTMC, where BMi = {LSi, lsi, 6i,Ci, Ii,Ei}. BMs could be
integrated into BMN through the dot product of BMi and BMj
based on TA theory, which is calculated as:

BMN = {LS, ls0, 6,C, I ,E}
= BM1||BM2|| . . . ||BMN

LS =
⋃N

i=1
LSi

ls0 =
〈
l10,l20, . . . , lN0

〉
6 =

⋃N

i=1
6i

C =
⋃N

i=1
Ci

I
(〈
LS1,LS2, . . . ,LSN

〉 )
= ∧

N
i=1Ii(LSi)

E =
⋃N

i=1
Ei (9)

BMN takes a task scheduling/rescheduling scheme as input
and generates a set of verified actions as discrete manufactur-
ing events in a trace that could be performed by manufac-
turing devices in the physical space of DTMC to finish the
task. BMN is operated on four atomic rules widely used in
TA, including the sequence rule, spilt rule, choice rule and
if-then-else rule. Let Ti and Tj be the i-th and j-th transitions,
respectively, in BMN, the atomic rules are defined as: 1) the
sequence rule indicates that Ti could be performed only when
Tj is finished; 2) the spilt rule indicates that Ti and Tj could
be performed concurrently without barrier synchronization;
3) the choice rule indicates that Ti could be performed only
when Tj does not start, and vice versa; 4) if-then-else rule
indicates that Ti could be executed when if condition holds,
and Tj could be executed when if condition does not hold.
In addition, atomic rules are the concrete embodiment of
operation strategies of DTMC in BMN, where the selection
of atomic rules is determined by the input scheduling scheme
and operation strategies.

IV. EM-DRIVEN AUTOMATIC PROGRAMMING MODEL
This section introduces an automatic programming model
enabled by a set of EMs in the event pool and an event-driven
hybrid control network, which could dynamically transfer
the discrete manufacturing events generated by BMN into a
group of control programs.

A. DESIGN OF EVENT MODEL AND EVENT POOL
A set of events in a trace are transferred into control programs
with logic self-consistency and enforceability through EMs.
EM is defined based on the discrete event system
specification [27]:

em = {O,EMext , Sint , Sout ,Cout , ψ} (10)

where O refers to an objective for executing an event, such
as a robot or a machine tool; EMext is a set of external
events that would influence the execution of the current event;
Sint indicates a group of internal states of manufacturing
resources in DTMC, which are the prerequisites for the exe-
cution of the current event; Sout is a group of output states
of manufacturing resources after the execution of em, which
may influence the execution of other events; Cout is a group
of control programs that could control the operation process
of the objective when executing the event; ψ is an execu-
tion algorithm that enables EM with the capacity of logic
self-consistency and enforceability.

As shown in Table 1, ψ evaluates the influence of external
events for the execution of the current event based on Sint . ψ
further maps the event to the executable control programs to
guide the operation of DTMC, while outputting a group of
states influencing the execution of other events.
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Based on EM, an event pool is defined as a collection of a
finite set of EMs, that is EP = {em1, em2, . . . , emk}, where
emk refers to the k-th EM in the event pool EP. The event
pool records all possible events executed in DTMC, which
serves as the prior knowledge for bridging the gap between
events generated by BMN and control programs executed in
physical space of DTMC.

TABLE 1. EM execution algorithm.

B. EVENT-DRIVEN HYBRID CONTROL NETWORK
Traditional centralized control mechanism may significantly
influence the real-time performance of DTMC caused by
stochastic errors or latency, especially when the control pro-
grams are frequently modified. Distributed control mecha-
nism may address this issue through a decentralized control
network, which, however, may not guarantee the control sta-
bility and robustness. Hence, an event-driven hybrid control
network is proposed, which takes advantage of both cen-
tralized and decentralized control mechanisms. As shown in
Fig. 3, a set of EMs in the event pool are encapsulated as a ser-
vice based on their topic related to production process, such
as warehousing, logistics, processing, inspection, etc. Here,
each service acts as a leader and a set of events contained in
that service act as the followers in the hybrid control network.
Each leader and its followers consist of a centralized control
network triggered by a trace containing a set of discrete man-
ufacturing events generated by BMN. Each of followers with
its controller in the device end constitutes a distributed control
network with logic self-consistency enabled by an execution
algorithm ψ . The entire hybrid control network is operated
based on a publish-subscribe architecture that equips the
hybrid control network with greater network scalability and
a more dynamic network topology.

Specifically, a service is defined as a tuple:

s =
{
tl,EMf

}
(11)

where tl represents the l-th topic classified by the production
process, and EMf refers to a event set included in this topic.

As shown in Fig. 3, The entire hybrid control network
subscribes a verified trace {<e1[t1], e2[t2], . . . , eq[tq]>, cst}
generated byBMNas input. Here,<e1[t1], e2[t2], . . . , eq[tq]>
is an event set with total q discrete manufacturing events,
where each event eq[tq] is labelled with its event identifier eq
and execution time tq. cst is a constraint set for the execution
of events, which is defined by the relationships between each
event, including sequence, spilt, choice and if-then-else rela-
tionships. The hybrid control network could be triggered only
when the events and constraints in the trace are the subsets
of EP and constraint set defined in the publish-subscribe
architecture, respectively. Then, the hybrid control network
generates a group of control programs that are published
to the corresponding controllers to control the production
process of DTMC. With the above observations, the publish-
subscribe architecture is defined as:

PSA = {EP,CST , Sub,Pub, ζ } (12)

where EP is an event pool designed for a specific DTMC;
CST defines a constraint set to provide guidance for the
execution of events; Sub = tl(ei[ti], emi) is a subscription
interface, where emi is the corresponding EM for event ei[ti]
with tl as topic; Pub = tl(Souti, Couti) is a publish interface,
which publishes control programs to PLC deployed at device
end after the execution of emi; ζ represents the operation
strategies of DTMC defined in Section III.

FIGURE 3. Event-driven hybrid control network.

V. PROTOTYPE SYSTEM IMPLEMENTATION
This section develops a prototype system named BE-DTMC,
where its application and evaluation results demonstrate the
feasibility and effectiveness of the proposed approach.

A. DEVELOPMENT ENVIRONMENT
As shown in Fig. 4, a hardware and software integrated devel-
opment environment is constructed based on the reference
framework of DTMC, which serves as the basis for BE-
DTMC implementation. In addtion, an advanced production
scheduling system and a dynamic scheduling model [23]
are embedded into social space and knowledge space,
respectively, to generate a scheduling/ rescheduling scheme
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that is taken as the input for autonomously controlling
of BE-DTMC. The onstruction details of the development
environment could be found in [7], [10], [22]. Its operation
mechanism is introduced as follows.

FIGURE 4. A typical DTMC and its operation environment.

PL perceives the real-time status of the physical man-
ufacturing cell by a sensor network, where manufacturing
resources, including two robots, a CNC lathe, a CNC milling
machine, AGV, a warehouse and several IoT devices, are
deployed for automatic task execution. The perceived data
and real-time control programs are published and subscribed
by smart gateways, respectively.

OSCL makes physical manufacturing cell operate at its
optimal state with the cooperation of data space, virtual
space, and knowledge space. Data space collects real-time
data from physical manufacturing cell, which is further stored
in real-time database and accessed by other spaces through
an OPC-UA interface. Virtual space contains virtual manu-
facturing resources, including virtual manufacturing cell in
global view, and DT robot, DT lathe, DT milling machine in
device view, which could simulate and understand the per-
formance of physical manufacturing cell. Knowledge space
integrates dynamic knowledge base and knowledge models
(for example, the dynamic scheduling model) that act as the
brain of DTMC to handle various manufacturing problems
in physical space or virtual space. In addition, real-time
database, device twins and partial knowledge models are
deployed near devices to handle time-sensitive control issues.
Dynamic knowledge base, knowledge models and virtual
manufacturing cell are deployed at remote servers to handle
computationally intensive global optimization issues.

SL packages manufacturing capacities and resources as
services in social space to handle personalized and cus-
tomized demands of customers, while transferring them into
manufacturing task scheduling scheme processed adaptively
by BE-DTMC.

B. BE-DTMC IMPLEMENTATION
Based on the development environment, BMN and EMs are
constructed with the proposed approach. As shown in Fig. 5,
BMN and EMs are embedded into DTMC to formalize a
BE-DTMC prototype system, which could effectively sup-
port the bi-level adaptive control of physical manufacturing
cell. In addition, the data and control flow between BMN,
EM and physical manufacturing cell is enabled by a publish-
subscribe interface.

FIGURE 5. BE-DTMC prototype system.

As shown in the top of Fig. 5, BM for each of manufactur-
ing resources in physical manufacturing cell is constructed
based on TA. A set of BMs are integrated into BMN that
equips BE-DTMC with high-fidelity operation logic simu-
lation capacity. BMN are implemented in UPPAAL, which
provides an integrated tool environment for modeling, val-
idation and verification of the manufacturing cell modeled
as networks of TA through the following steps. Firstly, the
behaviour of BE-DTMC for task execution is described as
a network of TAs extended with clock and data variables
based on a non-deterministic guarded command language
in UPPAAL. Then, possible dynamic executions of BMN are
examined via a simulator in UPPAAL for the quick detection
and repair of faults in early modeling stage. Finally, the
exhaustive dynamic behavior of BMN is checked in terms of
its invariant and reachability properties by exploring the state-
space of BMN via a model-checker in UPPAAL. Through
the above strategies, a complete and effective BMN with the
invariant and reachability properties checking mechanism is
constructed and embedded in the virtual manufacturing cell.

As shown in the right of Fig. 5, a three-layer event-driven
hybrid control network is constructed. Here, the bottom layer
contains several physical controllers that directly control the
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corresponding devices. Middle layer defines thirteen basic
events through EM, such as out of stock, warehousing, RFID
scan, etc. The basic events are further encapsulated as five
services based on their topic related to task execution pro-
cess, including warehousing, logistics, loading/ unloading
of workpieces, turning, and milling represented by s1∼s5,
respectively. In addition, each service with the events (marked
with the same color) consists of a centralized control network
triggered by upper-level events generated by BMN; each
event with its linked controller in PL constitute a distributed
control network for latency-aware device control.

Based on the constructed BMN and EMs, a task-driven
adaptive control flow enabled by an automatic program-
ming method could be carried out with the following steps.
Firstly, BE-DTMC takes a task scheduling scheme as input
and generates a trace containing a set of verified events
through BMN. Then, the trace is resolved and mapped into
PLC programs through EMs for autonomously controlling
of BE-DTMC. During the operation process, BE-DTMC sim-
ulates the future state of tasks to seek optimal trace according
to the current task execution state, thereby quickly responding
to the internal changes. In addition, BE-DTMC could quickly
generate a new trace when the scheduling scheme is adjusted,
which is further mapped into PLC programs through EMs to
control the real-time operation state of BE-DTMC.

C. APPLICATION EXAMPLE OF BE-DTMC
Fig. 6 shows a typical application example for task-driven
adaptive control of BE-DTMC during the production process
of a batch of disc-type parts.

Speficially, Fig. 6 (a) illustrates a task for disc-type part
processing, which includes two flange parts, two end cup
parts and one impeller. The scheduling scheme of the task
generated by the advanced production shceduling system is

FIGURE 6. An event-driven adaptive control example for BE-DTMC.

as shown in the right of Fig. 6 (a), which is taken as the
input for BE-DTMC. As shown in Fig. 6 (b), based on the
scheduling scheme, a trace containing a set of events labeled
with timestamp is first generated through a simulation and
verification process of BMN. Secondly, each of events in
the trace is subscribed by a service defined in the hybrid
control network based on its topic. Thirdly, each event in a
service is mapped into a group of PLC programs through
its corresponding EM. Finally, PLC programs along with
the linked EMs are verified by device twins in terms of the
capacity and availability of physical devices. In addition, the
verified PLC programs are published to the corresponding
controllers for the logic control of BE-DTMC.

D. DISCUSSION
This section evaluates the performance of BE-DTMC in
terms of control accuracy and control delay. Then contribu-
tions and challenges ahead of the paper are discussed.

Control accuracy refers to the matching degree between
the control programs generated by BMN and EMs, and
the actual programs used to complete the same event in
physical space of BE-DTMC. For accuracy evaluation pur-
pose, 50 groups of events for disc-type part processing are
employed, where 50 groups of PLC programs are gener-
ated through the EM execution algorithm ψ . By comparing
with the pre-fixed programs, an average control accuracy of
100% are obtained. This may attribute to the triple verifi-
cation mechanism provided by BE-DTMC, namely invari-
ant and reachability properties checking via model-checker
in BMN, logic self-consistent checking via EMs, as well as
capacity and availability checking of manufacturing devices
via device twins, which ensures the reliability and stability
of BE-DTMC. Control delay is represented by time differ-
ence between the input timestamp of a task and device action
timestamp for finishing that task. Control delay is divided
into three subclasses, including global control delay (tgcd ),
control program generation delay (tcpgd ), and device respond-
ing delay (tdrd ). Here, tgcd is calculated by the difference
between task input timestamp in social space and device
responding timestamp in physical space. tcpgd is calculated
by the difference between task arrival timestamp in BMN
and event publish timestamp in EMs. tdrd is calculated by
the difference between event publish timestamp and device
responding timestamp. As shown in Fig. 7, 70 groups of
tasks are tested for control delay evaluation purpose. Here,
the average global control delay, control program generation
delay and device responding delay are 403.39ms, 2.47ms
and 242.34ms, respectively, which are suitable for industrial
applications.

This paper explores the key aspects of a DT-based auto-
matic programming method for adaptive control of DTMC.
However, there are still some challenges needed to be
addressed in near future. According to the experimental
results, tgcd and tdrd are relatively high, which may be
caused by the transmission delay. Fortunately, multi-access
edge computing [28], characterized by ultra-low latency and
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FIGURE 7. Evaluation of the control delay of BE-DTMC.

high bandwidth, might be introduced in DTMC to signifi-
cantly improve its transmission efficiency. In addition, the
increase in the number of manufacturing resources may
affect scale and computational complexity of BMN and EMs,
where a more effective edge-cloud collaboration mechanism
should be established to optimize the real-time performance
of DTMC.

VI. CONCLUSION
This paper proposes a novel DT-based automatic program-
ming method for adaptive control of DTMC which could
automatically map an input task scheduling scheme with
a batch of jobs into a group of control programs through
BMN and EM embedded in DTMC. In addition, the proposed
approach also provides an adaptive program modification
mechanism to quickly adapt to the adjustment of the schedul-
ing scheme caused by the changing of customer demands
or production conditions, thus equipping DTMC with strong
flexibility and responsiveness. Based on the experimental
results obtained in this paper, the following contributions of
the paper could be summarized.

1) To bridge the gap between limited flexibility and
responsiveness in current manufacturing cells and
dynamically changeable customer demands in mass-
customization manufacturing, a novel bi-level adaptive
control architecture enabled by an automatic program-
ming method is proposed for autonomously controlling
of DTMC. To our best knowledge, this is the first
time that combines DT with automatic programming to
construct an intelligent manufacturing cell with strong
flexibility and responsiveness.

2) A behavior modeling method for BMN construction
and an EM-driven automatic programming model for
autonomously controlling of DTMC are introduced as
the key enabling technologies for the bi-level archi-
tecture. Here, a BMN is incorporated into the virtual
space of DTMC to generate a set of discrete manufac-
turing events for finishing jobs in an input scheduling
scheme. On that basis, a set of EMs are performed
to map each event into a group of control programs
for autonomously controlling of DTMC. In addition,

BMN and EM also provide a triple verification mech-
anism, including invariant and reachability properties
checking via BMN, logic self-consistent checking via
EM, and capacity & availability checking of manufac-
turing devices via device twins, which guarantees the
control accuracy and robustness of DTMC.

3) A BE-DTMC prototype system is implemented, which
could provide an insight into the industrial implementa-
tion of an intelligent manufacturing cell towards Indus-
try 4.0. Its application and evaluation results show the
superiority of the proposed approach with a very high
control accuracy performance within the reasonable
delay at the millisecond level.

Potential medium-term future studies related to this paper
are as follows. We plan to combine multi-access edge com-
puting with digital twins to significantly improve the trans-
mission efficiency of DTMC. In addition, considering that the
increase of manufacturing resources may affect the scale and
computational complexity of DTMC, we plan to establish a
more effective edge-cloud collaboration mechanism to opti-
mize its real-time performance.
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