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ABSTRACT Objective: Lymphoma lesion segmentation and prognosis prediction from baseline FDG-PET
images are valuable for tailoring and adapting a treatment plan for patients with Diffuse Large B-cell Lym-
phoma (DLBCL). However, the tasks are challenging due to the fact that DLBCL is a highly heterogeneous
group of neoplasms and that the lymphoma cells are large and arranged in a diffuse pattern. Methods:
We propose a novel multi-task 3D convolutional neural network model for simultaneous lymphoma lesion
segmentation and prognosis prediction from baseline FDG-PET images. In our model, the learned image
features of one task are shared and thereby mutually reinforce the learning of the other task. Since the
dataset is limited, to reduce overfitting and to facilitate network convergence, we further introduce deep
supervision into both the segmentation task and the prognosis prediction task. Results: Evaluated on a
dataset of 269 patients, our method achieves an average Dice similarity coefficient of 0.868 for lesion
segmentation, an averageAUC (area under the curve) of 0.823 and an average accuracy of 0.821 for prognosis
prediction. Its predictions can differentiate patients with different PFS (progression-free survival) and OS
(overall survival) (p < 0.0001). Conclusion: Our method achieves joint lymphoma lesion segmentation
and prognosis prediction from baseline FDG-PET scans. Significance: Our model may be used to asset the
physician as a second opinion while making the final decision.

INDEX TERMS Diffuse large b-cell lymphoma (DLBCL), prognostic model, multi-task learning,
PET images.

I. INTRODUCTION
Diffuse large B-cell lymphoma (DLBCL), which accounts for
about 30% to 40% of non-Hodgkin lymphoma, is one of the

The associate editor coordinating the review of this manuscript and
approving it for publication was Cristian A. Linte.

most common subtypes of non-Hodgkin lymphoma and has
obvious heterogeneity in morphology, clinical characteristics
and prognosis [1]. The current treatment strategy for DLBCL
is to use standard first-line treatment based on R-CHOP
(rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisone). Although most patients can be relieved after
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treatment with this regimen, there are still 20% to 40% of
patients who relapse, and most of the relapses occur within
the first 2 years [2]. Early identification of patients with a poor
prognosis allows for the tailing of their curative remediation
plan for an improved chance of cure.

In DLBCL, pre-treatment prognosis is traditionally esti-
mated using the International Prognostic Index (IPI) or one
of its modifications [3], [4]. However, the role of these
prognostic factors, which are based on tumor burden surro-
gates, is limited [4]. Positron Emission Tomography (PET)
using 18F-fluorodeoxyglucose (18F-FDG) is a whole-body
metabolic imaging technique that can accurately characterize
tumor heterogeneity in a non-invasive manner and plays an
important role in staging, treatment monitoring and prognos-
tic evaluation of lymphoma. Among parameters measured
from PET images, Standardized Uptake Value (SUV) is the
most common for quantifying the degree of FDG uptake
and glucose metabolism in sites of disease. Analysis and
interpretation of 18F-FDG-PET images is challenging as it
is usually performed by trained radiologists or readers who
visually inspect the images slice by slice for tumors and
then delineate multiple regions of interest (ROI) manually
over each lymphoma lesion, in order to derive SUV-related
quantitative measures. Manually based analysis can be very
labor-intensive and time-consuming, especially in whole-
body FDG-PET scans, and is operator dependent, suffering
from intra- and inter-reader variability [5]. Moreover, inter-
pretation of these quantitative measures is still controversial,
reflected by the unstable manifestations of assessments and
prognostic values reported in many studies [6]. Thus, effec-
tive computer-aided diagnosis (CAD) systems are essential in
identifying high-risk patients who could benefit from inten-
sive or novel therapies early.

Lymphoma lesion segmentation and prognosis prediction
are two basic tasks in CAD systems. It has been previ-
ously shown that both high metabolic heterogeneity and total
metabolic tumor volume (TMTV) have strong prognostic
values before initiating therapy in DLBCL [7], [8]. Thus,
shape properties are useful in both lesion segmentation and
prognosis prediction. Consequently, it is worth to explore the
training of two tasks jointly in one network to encourage fea-
ture sharing between tasks but this has never been done before
for lymphoma lesion segmentation and prognosis prediction.

In this paper, we propose a novel multi-task 3D deep learn-
ing model to jointly train lesion segmentation and prognosis
prediction from baseline FDG-PET Images. We use 2-year
event-free survival (2y-EFS) as the gold standard for our
prognosis prediction, as it is a robust end-point for disease-
related outcomes in DLBCL treated with immunochemother-
apy [2]. Since dataset is usually limited, to reduce overfitting
and to facilitate network convergence, we further introduce
deep supervision into both the segmentation task and the
prognosis prediction task. The proposed method features
an encoder-decoder network for lesion segmentation and a
multi-scale classification network for prognosis prediction.
We employ 3DU-Net as the backbone network for both lesion

segmentation and prognosis prediction [9]. The lesion seg-
mentation and the prognosis prediction tasks share features
extracted from the encoding path. Our main contributions are
summarized as follows:

1) We propose a novel multi-task deep learning model for
simultaneous lymphoma lesion segmentation and prog-
nosis prediction from baseline FDG-PET images. The
proposed method uses an encoder-decoder network
for lesion segmentation. Multi-scale features extracted
from each level of the decoder path are fused for prog-
nosis prediction.

2) We introduce deep supervision into both the segmen-
tation task and prognosis prediction task. We show
that deep supervision mechanism boosts not only the
performance of prognosis prediction but also the per-
formance of lymphoma lesion segmentation.

3) To the best knowledge of the authors, this is the
first study which addresses joint lymphoma lesion
segmentation and prognosis prediction from baseline
FDG-PET images with an end-to-end CNN model and
has a clear advantage over previous work where only
single task is addressed.

In the following, we first summarize related work in
Section II. We then present our methods in Section III. Data
and experiments are presented in Section IV. We show our
experimental results in Section V, followed by a discussion
on Section VI. We conclude the paper in Section VII.

II. RELATED WORK
In this section, we review the relevant work on lymphoma
lesion segmentation and prognosis prediction.

A. LYMPHOMA LESION SEGMENTATION
It is challenging to develop automatic methods for lym-
phoma detection and segmentation on whole-body FDG-
PET images. Firstly, due to the distribution characteristics
of the lymphatic system, shape and size of lymphomas vary
greatly from location to location where different lymphomas
have different SUVs. Especially in DLBCL, the high distri-
bution variability of nodal and/or extranodal lesions among
patients makes automatic detection and segmentation of lym-
phoma lesions an even more challenging task. Secondly,
physiological FDG uptake (brain, myocardium, liver, brown
fat, digestive tract) and radiopharmaceutical clearance (kid-
neys, urethras, bladder) cause that some normal organs have
SUVs similar to target lesions. Conventional threshold-based
methods can easily mis-classify these normal organs as
lymphomas.

To meet the challenge, a large number of PET lesion
segmentation methods have been developed, ranging from
ROI-dependent methods to machine learning-based meth-
ods [10]–[15]. ROI-dependent methods require a physician
to manually define a ROI, followed by segmentation using a
thresholding by 40% or 50% of themaximumSUV (SUVmax)
in ROI. This type of methods is time consuming due to the
requirement of manual definition of ROI and generates poor
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results as the SUV values in a ROI are not homogeneous.
Different methods including clustering-based methods [13],
conditional random fields [12] and level set methods [16] are
proposed to improve it. Several studies have shown that auto-
mated algorithms such as conditional random fields or meth-
ods based on clustering or level set outperform thresholding
methods [12], [13], [16]. Recently, machine learning-based
methods have gained more and more interest. A crucial step
in the design of such systems is the extraction of discriminant
features from the images, which is usually done by human
researchers [17]. The limited representation capability of
these hand-crafted features makes it difficult to handle large
variations of appearance and shape of distributed lymphoma
lesions.

The more recent development of deep neural networks,
and in particular convolutional neural networks (CNN) [18]
suggests another course of method to solve the challenging
lymphoma lesion segmentation tasks [19]. A recent study
comparing 11 automated PET segmentation methods in lym-
phoma showed that 3DCNN, among other methods, achieved
both good lesion-level segmentation and patient-level quan-
tification performance [20]. Contrary to conventional shal-
low learning methods, where feature design is crucial, deep
learning methods automatically learn hierarchies of rele-
vant features directly from the training data. Based on
an industrial software prototype, Capobianco et al. [21] pre-
sented a study for automatic delineation and classification
of lymphoma lesions on PET/CT images. Jemaa et al. [5]
proposed to use cascaded 2D and 3D CNN for automatic
tumor segmentation and feature extraction from whole-body
FDG-PET/CT images. Blanc-Durand et al. [22] investigated
the performance of the open source 3D CNN architecture
called nnU-Net [23] on segmenting TMTV in large datasets
of patients with DLBCL. Xu et al. [24] proposed a deep
dilated convolutional encoder-decoder architecture for lymph
node segmentation on PET/CT images whileWang et al. [25]
proposed to leverage spatial-temporal correlation between the
decorder featuremaps for lymphoma segmentation. Although
these methods have been successfully applied to automatic
detection and delineation of lymphoma lesion from PET
images [5], [20]–[22], [24], [25], they suffer from the limita-
tion that these methods only do single task and do not exploit
useful information contained in multiple related tasks such
as segmentation and classification. Thus, the performance of
these methods can be further improved.

B. PROGNOSIS PREDICTION FROM BASELINE FDG-PET
IMAGES
Accurate pretreatment evaluation and response assessment
are critical to the optimal management of patients with
DLBCL. Much efforts have been made to identify accu-
rate prognostic imaging biomarkers or radiomics features
extracted from baseline FDG-PET scans. For example,
Sasanelli et al. [7] calculated TMTV on baseline 18F-FDG-
PET/CT scans of 114 patients diagnosed with DLBCL
and used Cox proportional hazard regression model to

show that TMTV was an independent prognostic predictor.
Nguyen et al. [26] found that the SUVmax and the maxi-
mum tumor diameter parameters of 18F-FDG PET images
were useful indicators of DLBCL prognosis. Zhang et al. [6]
combined the parameters of baseline and interim 18F-FDG-
PET/CT scans of 85 DLBCL patients, demonstrating the
independent prognostic abilities of baseline Tumor Lesion
Glycolysis (TLG) and M SUVmax. Aide et al. [27] veri-
fied that LZHGE (Long-Zone High-Grey Level Empha-
sis) texture features extracted from baseline 18F-FDG PET
images were independent predictors of 2y-EFS of DLBCL.
Zhang et al. [28] developed an analytic approach combining
radiomics signature and International Prognostic Index (IPI)
to predict the progression-free survival and overall survival
of patients with DLBCL. Eertink et al. [29] investigated the
added value of baseline radiomics features to the IPI in
predicting outcome after the first-line treatment. Although
encouraging results are reported, most of these methods
may be too simple, assuming that the outcome is a linear
combination of covariates. Thus, the prediction accuracy of
these methods may suffer from the remarkable complexity of
DLBCL.

Recently, more and more studies reported that deep CNNs
were superior to standard survival analysis [21], [30]. Com-
pared with manually drafted features, deep learning fea-
tures are learned directly from data, which are more adapted
to specific tasks and more naturally correlate with clini-
cal results [31]. Each convolutional layer of deep learning
networks contains hundreds of convolutional filters, which
can describe multi-level tumor information ranging from
low-level visual features to high-level abstract features. For
lymphoma, there are studies using deep learning to classify
18F-FDG-PET/CT uptake patterns [21], [30]. But to the best
knowledge of the authors, there is no study applying deep
learning methods on baseline FDG-PET images for predict-
ing 2y-EFS in patients with DLBCL, enabling outcome prog-
nostication directly from baseline FDG-PET scans.

III. METHODS
In this paper, we propose a multi-task learning framework.
The proposed framework integrates lymphoma lesion seg-
mentation and prognosis prediction in an end-to-end CNN
model which takes FDG-PET volumes as inputs and gener-
ates two outputs for each feature level, including a segmenta-
tion map and a probability of 2y-EFS.

A. MULTITASK LEARNING CNN
The proposed CNN is shown in Fig. 1.We adopt 3DU-Net [9]
as the backbone network as it achieves excellent performance
in 3D medical image analysis. There are three parts in the
3D U-Net architecture: 1) an encoding path, 2) a decoding
path, and 3) skip connections between them. As shown in
Fig.1, the encoder path utilizes three down-sampling oper-
ations and focuses on analysis and feature representation
learning from the input data. Symmetrically, there are three
up-sampling operations in the decoding path, which generates
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FIGURE 1. A schematic illustration of the overall architecture of our method, which is a multi-task U-Net with deep supervision on both tasks. The
number above each block shows the data dimension while the number below each block represents the number of feature maps.

segmentation prediction, relying on the learned features
from the encoder path. Shortcut connections are established
between layers of equal resolution in the encoder and decoder
paths to propagate spatial information and to facilitate for-
ward and backward information flow. In the proposed CNN,
all convolutional layers use a kernel size of 3 × 3 × 3 and
stride of 1 and all max pooling layers uses a kernel size of
2 × 2 × 2 and stride of 2. In the convolutional and decon-
volutional blocks of our network, batch normalization (BN)
and rectified linear unit (ReLU) are adopted to speed up the
training and to enhance the gradient back-propagation.

High-level abstract features learned by CNNs are used in
many classification algorithms [18], [32]–[34]. Furthermore,
multi-scale features can be used to incorporate both local
and larger contextual information for an improved perfor-
mance [35], [36]. Inspired by these observations, we pro-
pose to share high-level feature maps from U-Net for both
lymphoma lesion segmentation and prognosis prediction in
the multi-task learning framework. We add a classification
branch for each resolution of the decoder path of the 3D
U-Net as shown in Fig. 1 to predict prognosis. Specifically,
high-level features extracted from each resolution along the
decoder path are fed into the classification branch. Each
classification head consists of two fully connected (FC) layers
and one softmax layer to predict the 2y-EFS probability.
Then we fuse these predictions of the classification branch of
different resolutions for the final prognosis prediction task.

B. MULTILEVEL DEEP SUPERVISION
In the proposed multi-task learning framework, we share the
encoder path for prognosis prediction and lymphoma lesion
segmentation tasks to extract common features for these two
tasks. Because of the multi-scale characteristics of lymphoma

lesions, we design a deep supervision architecture for both
the segmentation task and the classification task as illustrated
in Fig. 1. Deep supervision is helpful to reduce overfitting
and facilitate network convergence when training a deep
neural network. It is also useful to extract more meaningful
features. Here, deep supervision is utilized in each stage,
so that the output of the middle stage can be directly utilized
as a supervision. For segmentation task, the output of each
decoder stage is followed with a convolutional layer, which
uses a kernel size of 3 × 3 × 3 and stride of 1. After the
convolutional layer, we can get a 2-channel feature map, fol-
lowed by applying softmax operation to get the segmentation
result of this stage. We then compute segmentation loss use
the segmentation result and the down-sampled ground truth
segmentation mask as shown in Fig. 1. For classification
task, except the feature maps at the lowest and the highest
resolutions of the 3D U-Net, all other feature maps extracted
from each resolution along the decoder path are further pro-
cessed with two convolutional operations followed with BN,
ReLU and max pooling to reduce the spatial resolution. For
the feature maps at the lowest resolution of the 3D U-Net,
we only applied once max pooling while all other operations
are the same as other feature maps. After that, we propose
to use spatial-wise global average pooling (GAP) to convert
feature maps from different resolutions to the same size. GAP
layer transforms feature maps of size (D × H × W × C) to
feature maps of size (1 × C) by simply taking the average
of each channel where (D × H × W ) is the size of the
volume, and C is the number of channels. Although we can
also use global max pooling (GMP) here, empirically we find
that GAP leads to better results than GMP, probably due to
the fact that GMP only uses the max value to represent the
whole feature map, disregarding useful spatial information.
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To this end, we obtain a 64-dimensional feature vector from
the feature maps of each resolution. These feature vectors are
then fed into the classification head of each decoder stage to
get the prognosis prediction. As shown in Fig. 1, we can get
three prognosis predictions in total andwewill combine those
predictions with a weighted average strategy to get the final
prognosis prediction.

C. MULTITASK AND DEEP SUPERVISION LOSS FUNCTION
Class imbalance is common in medical image classification
tasks. For example, in our dataset, the number of cases with
2-year complete remission (2y-CR) is more than twice that
of 2y-EFS. To address the issue, we adopt a weighted cross
entroy loss as follows:

Lcls(pcls, ycls) = −wpyclslog(pcls)−wn(1−ycls)log(1− pcls)

(1)

pcls = w1
clsp

1
cls + w

2
clsp

2
cls + w

3
clsp

3
cls (2)

where picls, i = 1, 2, 3 is the predicted 2y-EFS probability
from each stage of decoder path.wicls, i = 1, 2, 3 is the weight
of each stage. We empirically set w1

cls,w
2
cls and w

3
cls as 0.1,

0.2, 0.7, respectively. ycls is the ground-truth label of this
volume (ycls = 0 for 2y-CR and ycls = 1 for 2y-EFS). wp
and wn are weights for 2y-EFS cases and for 2y-CR cases,
respectively. They are defined as:

wp =
Nn

Np + Nn
, wn =

Np
Np + Nn

(3)

whereNp andNn are the numbers of 2y-EFS cases and 2y-CR
cases, respectively.

For the segmentation task, there exists imbalance between
foreground and background, which may cause segmentation
bias. To account for this, we use a segmentation loss based
on the Dice coefficient between the predicted segmentation
maps and ground truth segmentation masks. For stage i, it is
defined as:

L iseg(p
i
seg, y

i
seg) = 1−

2pisegy
i
seg + 1

piseg + yiseg + 1
(4)

where piseg and y
i
seg denote the predicted segmentation maps

from the proposed CNN model and the ground truth segmen-
tation masks of stage i, i = 1, 2, 3, 4, respectively. Therefore,
the overall segmentation loss of our deep supervision model
is the weighted sum of segmentation loss of each stage:

Lseg = w1
segL

1
seg + w

2
segL

2
seg + w

3
segL

3
seg + w

4
segL

4
seg (5)

where wiseg, i = 1, 2, 3, 4 is the loss weight of each stage.
We empirically set w1

seg,w
2
seg,w

3
seg and w4

cls as 0.53, 0.27,
0.13, 0.07, respectively.

Our multi-task learning loss is then a linear combination of
the classification loss Lcls and the segmentation loss Lseg by
a hyperparameter λ:

Lmul = λLseg + (1− λ)Lcls (6)

where Lmul is our multi-task learning loss, and λ is the weight
of the segmentation task. We empirically set λ = 0.1.

IV. DATA AND EXPERIMENTS
All study procedures were approved by the Ethics Committee
of Shanghai Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine. All procedures performed in this study
involving human participants were in accordance with the
ethical standards of Ruijin Hospital, Shanghai Jiao Tong Uni-
versity School of Medicine research committee and with the
Helsinki declaration and its later amendments or comparable
ethical standards.

A. DATA DESCRIPTION
1) PATIENT POPULATION
We conducted a retrospective review of patients with
DLBCL obtained from the database of the department of
nuclear medicine of Shanghai Ruijin Hospital for the period
from January 2013 to February 2018. All the patients
undertook baseline 18F-FDG-PET/CT scans. The inclusion
criteria were as follows: 1) New diagnosis of lym-
phoma confirmed by histology; 2) Availability of conven-
tional imaging and non-imaging data for staging disease;
3) 18F-FDG-PET/CT scan performed at staging, with evi-
dence of FDG-avid disease; 4) All patients were treated by
first-line immunochemotherapy; 5) Availability of clinical
information and/or imaging information for validation of
patient PETfindings; 6) Post-therapy surveillance, until death
or for at least 24 months after the diagnosis to evaluate the
risk of progression and the survival rate. In total we have
269 patients with 2y-EFS labels (89 cases with 2y-EFS and
180 cases with 2y-CR).

2) PET IMAGING AND SEGMENTATION PROTOCOL
All 18F-FDG-PET/CT images were acquired using a GE
Discovery VCT PET/CT scanner. The radiochemical purity
of 18F-FDG was over 95% (provided by Shanghai Atomic
Kexing Pharmaceutical Co., Ltd). The patients were fasted
for at least 6 hours before the PET study. Serum glucose
level was determined at the time of FDG injection using
a glucometer, and all patients demonstrated a glucose level
below 7.8mmol/L. PET scan was performed 60 min after
intravenous administration of 0.15mCi/kg of FDG. CT acqui-
sition was performed with the following parameters: 60 mAs,
140 kVp, pitch 1. Subsequently, PET images were acquired
from the base of the skull to the mid-thighs (legs were
included when necessary). All examinations were recon-
structed using the Ordered Subset Expectation Maximiza-
tion (OSEM) algorithm with point spread function (PSF)
modelling with three iterations and 21 subsets with filtering.
Scatter and attenuation corrections were applied.

After image acquisition, lymphoma lesions were manually
delineated from the acquired PET/CT data by four experi-
enced physicians using open-source software ITK-SNAP 3.8
(ITK-SNAP 3.x, http://www.itksnap.org/). All the physicians
have been certified by two boards (nuclear medicine and
radiology) including two senior physicians having more than
20 years’ working experience. Majority voting was used to
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TABLE 1. Data distribution in each fold.

assign voxel labels. In total physicians manually delineated
lymphoma lesions of 269 patients.

B. STUDY DESIGN
1) MAIN STUDY
We first conducted a five-fold cross-validation study to com-
pare the proposed method with other state-of-the-art (SOTA)
methods. The data distribution of the five folds is shown in
Table 1. Each time, data in one fold were used as the testing
data while the data in the remaining four folds were used for
training. As there was no previous work on joint segmentation
and prognosis prediction from baseline FDG-PET images,
we compared our method with a simple multi-task U-Net
without deep supervision as shown in Fig. 2-(b) and themulti-
task V-Net method as introduced in [37], which generalized
V-Net for joint segmentation and classification of tumors in
3D breast ultrasound images. It fused the feature maps from
the encoder layer before the bottom of the V-Net, the feature
maps at the bottom of the V-Net and the feature maps from
the decoder layer right after the bottom of the V-Net and then
fed the fused feature maps to a second branch to generate the
classification label. This method has been shown in [37] to
generate better segmentation and classification results than
other SOTA multi-task learning methods [38], [39], when
applied to 3D breast ultrasound images.

We compared the segmentation performance of our pro-
posed method with 3D U-Net, which was regarded as a base-
line method for medical image segmentation.We additionally
compared the classification performance of our proposed
method with ResNet34 [33] and DenseNet121 [40], which
were the SOTA deep learning methods for classification.

2) ABLATION STUDY
In this study, we took the data in a randomly selected fold as
testing data and all the data in the remaining folds as training
data. We conducted ablation study to investigate the effec-
tiveness of individual components of our proposed method.
Specifically, we conducted following ablation experiments:
1) single-task vs. multi-task; 2) multi-task without deep
supervision vs. multi-task with deep supervision; 3) multi-
task with deep supervision on a single task vs. multi-task
with deep supervision on both tasks (Ours). Table 2 summa-
rizes different CNN models that we investigated. We treated
the segmentation U-Net (model-A) and the classification
U-Net-Encoder (model-B) as shown in Fig. 2-(a) as single-
task models. For the classification U-Net-Encoder, we only
used the encoder path from the U-Net, followed by a GAP
layer and a classification head consisting of two FC layers
and one softmax layer to predict the 2y-EFS probability. For

TABLE 2. Different CNN models used in our ablation study. SEG:
segmentation; CLS: classification.; DP: Deep supervision; w/o: without;
w/: with.

multi-task learning, we first investigated a multi-task U-Net
without deep supervision (model-C) as shown in Fig. 2-(b),
which generalized 3D U-Net to joint segmentation and clas-
sification. This was done by feeding the feature maps at
the bottom of the 3D U-Net to a second branch to predict
the classification label. We further investigated two different
multi-task CNN models with deep supervision. The first one
(model-D) as shown in Fig. 2-(c) was designed to have deep
supervision only on segmentation task while the second one
(model-E) as shown in Fig. 2-(d) was designed to have deep
supervision only on classification task. We finally compared
the performance of all above mentioned CNN models with
the proposed method.

3) MODEL TRAINING AND TESTING
The size of all FDG-PET images used in our study
is 257 × 128 × 128 voxels with a voxel spacing of
3.3mm × 5.5mm × 5.5mm. We first cropped all images to
a size of 247 × 80 × 64 voxels in order to remove the region
with empty area. After cropping, we then resized all images
to 224 × 64 × 64 voxels for training and testing. We trained
all networks with a batch size 12. The learning rate was
originally set as 1e− 4 and decayed with a power of 0.1 after
100 epochs. In total we trained all networks 200 epochs. Data
augmentation was used to enlarge the training samples by
rotating each image around three axes with a random angle
sampled from the range from −8◦ to 8◦ and by scaling each
image along three axes with a random coefficient sampled
from the range of (0.8∼1.2).

All models were implemented using Python with PyTorch
library. We trained and tested all models on 4 NVIDIA tesla
V100 GPUs. Adam optimizer [41] was used to train all
models.

C. METRICS
For lesion segmentation, assuming the automatically seg-
mented set of lesion voxels as AS and the manually defined
ground truth lesion asGT , we employs Dice similarity coeffi-
cient (DSC), precision and recall to evaluate the performance
of different segmentation models. These metrics are calcu-
lated as follows:
• Dice Similarity Coefficient (DSC) - it quantifies the
match of two sets by normalizing the size of their inter-
section over the average of their sizes and is defined as
follows:

DSC =
2|AS ∩ GT |
|AS| + |GT |

(7)
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FIGURE 2. Illustration of different CNN models used in our ablation study. (a) U-Net-encoder for classification (model-B), (b) Multi-task U-Net without
deep supervision (model-C), (c) Multi-task U-Net with deep supervision on segmentation (model-D), (d) Multi-task U-Net with deep supervision on
classification (model-E).

where the operator |·| returns the number of voxels
contained in a region.

• Precision (PR) - It is defined as the fraction of all auto-
matically segmented lesion voxels that are correct:

PR =
|AS ∩ GT |
|AS|

(8)

• Recall (RC) - It is defined as the fraction of all ground
truth lesion voxels that have been corrected segmented
by an automatic method:

RC =
|AS ∩ GT |
|GT |

(9)

For prognosis prediction, performance metrics include
receiver operating characteristic (ROC), area under ROC
curve (AUC), sensitivity (SEN), specificity (SPE), and accu-
racy (ACC). Accuracy is a measure of the error rate (ratio
of correct predictions to all predictions made). The ROC
curve describes the true-positive rate (sensitivity) versus the
false-positive rate (100% - specificity) at various thresholds,
and an AUC of 100% represents a perfect test while an AUC
of 50% indicated random predictions. Differences in sensi-
tivity and specificity between different models are compared
using the Youden test.

Statistical significance is considered at p < 0.05. Data
are analyzed using SPSS software (IBM SPSS Statistics for
Windows, version 25; Amonk, NY; IBM Corp.).

FIGURE 3. ROC and AUC of different methods when evaluated with 5-fold
cross-validation study.

V. RESULTS
A. RESULTS OF MAIN STUDY
Table 3 shows the performance comparison of different meth-
ods in the main study. For lesion segmentation, the average
DSC, prediction, and recall achieved by the proposed method
are 0.868, 0.875, and 0.875, respectively. Our method out-
performs the baseline method 3D U-Net and the Multi-task
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TABLE 3. Main study results. SEG: segmentation; CLS: classification: deep supervision; w/o: without.

FIGURE 4. Coronal and sagittal views of multi-scale features for joint lesion segmentation and prognosis prediction. Left column: the input FDG-PET/CT
scans; middle four columns: multi-scale features extracted from different resolutions; the fixth column: segmentation probability obtained by our
method; the right column: ground truth segmentation. The ground truth label for the case shown in the top row is 2y-EFS and our system correctly
predicted the case as 2y-EFS with a probability of 0.801. We also obtained a DSC of 0.917 for lesion segmentation. Similarly, the ground truth label for the
case shown in the bottom row is 2y-CR and our system correctly predicted the case as 2y-EFS with a probability of 0.315 (i.e., predicted as 2y-CR with a
probability of 0.685). A DSC of 0.922 was achieved by our method for lesion segmentation.

U-Net (without deep supervision). In contrast, the SOTA
multi-task V-Net method introduced in [37] achieved an
average DSC of 0.853, an average precision of 0.891 and
an average recall of 0.853. Except average precision, our
method achieved better segmentation results in terms of
other two metrics than the method introduced in [37]. Fig.5
shows the 3D renderings of prediction segmentation of
some typical cases. Green rectangle shows the difference
between those 3D renderings. We can see that our method
get better segmentation result when compared with other
methods.

In regards to prognosis prediction, our method achieved
much better results than the ResNet34 [33], the DenseNet121
[40], the Multi-task U-Net (withou deep supervision) and
the SOTA multi-task V-Net method [37]. Specifically, our
method achieved an average accuracy of 0.821, an average
sensitivity of 0.730, an average specificity of 0.861 and a
Youden’s index of 0.596. In contrast, the method introduced
in [37] achieved an average accuracy of 0.792, an average
sensitivity of 0.651, an average specificity of 0.861 and a
Youden’s index of 0.512 while the Multi-task U-Net (without
deep supervision) achieved worse results with an average
accuracy of 0.784, an average sensitivity of 0.639, an aver-
age specificity of 0.855 and a Youden’s index of 0.495.

Our method also achieved better results than ResNet34 [33]
and DenseNet121 [40]. To identify the prognostic value of
different models, we draw ROCs of all methods to com-
pare the power between the proposed method and other two
SOTA methods, as shown in Fig. 3. The AUC of the pro-
posed method was 0.821, which was better than other SOTA
methods.

To further investigate the learning behavior of the proposed
method, we draw the coronal and sagittal views of multi-scale
feature maps from different resolutions. Fig. 4 displays the
joint lesion segmentation and prognosis prediction results for
two cases (Case 1: ground truth label as 2y-EFS and Case 2:
ground truth label as 2y-CR) together with the multi-scale
features. The proposed method can suppress the responses
from physiological uptake and enhance the responses from
lesion regions, leading to accurate lesion segmentation and
prognosis prediction.

The prognostic value of the proposed method was further
demonstrated by drawing the Kaplan-Meier curves of PFS
(progression-free survival) and OS (overall survival) accord-
ing to the predictions obtained by the proposed method.
As shown in Fig. 6, the predictions of the proposed method
were able to differentiate patients with different PFS and OS
(p < 0.0001).

VOLUME 10, 2022 81619



P. Liu et al.: Joint Lymphoma Lesion Segmentation and Prognosis Prediction From Baseline FDG-PET Images

FIGURE 5. 3D renderings of segmentation results. Green rectangle shows the difference between those 3D renderings.

FIGURE 6. Kaplan-Meier estimates of progression-free survival (PFS) (A) and overall survival (OS) (B) of patients with DLBCL grouped by the proposed
method’s predictions.

B. RESULTS OF THE ABLATION STUDY
Table 4 presents the ablation study results. For the two base-
line models, i.e., the 3D U-Net (model-A) [9] for lesion seg-
mentation and the U-Net-Encoder (model-B) for prognosis
prediction, the average DSC, precision and recall achieved
by the 3D U-Net are 0.847, 0.864, and 0.864, respectively,
while the average AUC, accuracy, sensitivity, specificity, and

Youden’s index achieved by the U-Net-Encoder are 0.784,
0.777, 0.588, 0.865 and 0.453, respectively. For model-C,
which is a multi-task U-Net without deep supervision, the
average DSC, precision and recall for lesion segmentation
is 0.857, 0.878, 0.870, respectively, and the average AUC,
accuracy, sensitivity, specificity, and Youden’s index for clas-
sification is 0.804, 0.796, 0.647, 0.865, 0.512, respectively.
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TABLE 4. Ablation study results. SEG: segmentation; CLS: classificaiton; DP: deep supervision; w/o: without; w/: with.

TABLE 5. Comparison of our method with SOTA methods in lymphoma segmentation and outcome prediction. SEG: segmentation; CLS: classification; MT:
multi-task; DP: deep supervision.

The results demonstrated that incorporating multi-task learn-
ing was helpful for both lesion segmentation and prognosis
prediction. Model-D combines multi-task learning with deep
supervision on segmentation, which achieved an average
DSC of 0.872, an average precision of 0.892 and an average
recall of 0.868 for lesion segmentation, and an average AUC
of 0.800, an average accuracy of 0.796, an average sensitivity
of 0.588, an average specificity of 0.892, and a Youden’s
index of 0.480 for prognosis prediction. The results demon-
strated that incorporating deep supervision on segmentation
task was helpful for lesion segmentation. In contrast, model-E
combinesmulti-task learningwith deep supervision on classi-
ficaiton, which achieved an average DSC of 0.860, an average
precision of 0.883 and an average recall of 0.865 for lesion
segmentation, and an average AUC of 0.831, an average
accuracy of 0.833, an average sensitivity of 0.706, an average
specificity of 0.892, and a Youden’s index of 0.598 for prog-
nosis prediction. The results demonstrated that incorporating
deep supervision on classification task was helpful for prog-
nosis prediction. Our method combines multi-task learning
with deep supervision on both segmentation and classifica-
tion tasks, achieving the best result on lesion segmentation
and an equivalent performance to model-E on prognosis
prediction.

VI. DISCUSSION
The treatment of patients with DLBCL is expensive. More-
over, compared with patients without relapse, the medical
resource utilization and the cost of patients who have pro-
gressed/relapsed after first-line treatment are higher [3]. The
high degree of heterogeneity of DLBCL poses unique chal-
lenges for predicting its prognosis. PET is a non-invasive
imaging modality that can provide both functional and
metabolic information of lymphoma lesions and is rec-
ommended for staging, restaging, therapy response assess-
ment and recurrence detection of cancers [13]. However,

quantitative analysis and interpretation of FDG-PET images
is challenging as it usually requires labor-intensive and
time-consuming manual delineation of multiple lymphoma
lesions. Thus, it is essential to design CAD systems for FDG-
PET images. Because of the large lesion shape and size
variations, the high distribution variability of nodal and/or
extranodal lesions, the existence of high SUVs in normal
organs caused by the physiological FDG uptake and radio-
pharmaceutical clearance, lymphoma lesion segmentation
and prognosis prediction are two challenging tasks.

In this paper, we proposed a multi-task 3D CNNmdoel for
simultaneous lymphoma lesion segmentation and prognosis
prediction from baseline FDG-PET images. We addition-
ally introduced deep supervision on both lesion segmenta-
tion and prognosis prediction tasks for a better performance.
In comparison with other deep-learning-based methods, the
proposed method achieved the best results on both lesion
segmentation (in terms of DSC) and prognosis prediction (in
terms of accuracy), as shown in Table 3. Results from our
ablation study, as shown in Table 4, further demonstrated the
effectiveness of the combination of multi-task learning with
joint deep supervision.

It is worth to compare the proposed method with SOTA
methods in lymphoma segmentation and outcome prediction.
Due to the fact that most of SOTA methods are not open
source and that there exist few public data on lymphoma
segmentation and outcome prediction available, direct com-
parison of different methods is difficult. Thus, the comparison
results in Table 5 should be interpreted cautiously. Never-
theless, as shown in Table 5, our method achieved the best
results on both lymphoma segmentation (in terms of DSC)
and outcome prediction (in terms of AUC). One possible
explanation why the present approach achieves better results
than the existing SOTA methods is attributed to the fact
that our approach leverages multi-task learning with deep
supervision such that the learned image features of one task
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are shared and thereby mutually reinforce the learning of the
other task.

Our study has several limitations such as the retrospec-
tive design and the modest cohort size. However, with a
sample size of 269 patients (89 cases with 2y-EFS and
180 cases with 2y-CR), our cohort size is larger than most
of the studies on prognosis prediction at present [6], [7],
[26], [27]. Second, we have only trained and validated our
model on data from one center, which were acquired using
one PET/CT scanner. Whether the proposed model can be
generalized to data acquired using other scanners or to data
from other centers needs to be further checked. Third, our
method combines multi-task learning with deep supervision
on both tasks, which leads to the requirement of large GPU
memory footprint. In the future, we will explore knowledge
distillation [42] to create a lightweight CNN.

VII. CONCLUSION
In this paper we proposed a novel multi-task 3D CNN model
for simultaneous lymphoma lesion segmentation and prog-
nosis prediction from baseline FDG-PET images. To reduce
overfitting and facilitate network convergence, we further
proposed to train our multi-task deep learning model using
deep supervision mechanism, which can improve the per-
formance of lesion segmentation and prognosis prediction.
After thorough validation, our model may be used to asset
the physician as a second opinion while making the final
decision. Our future work will focus on creating lightweight
CNN with knowledge distillation.
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