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ABSTRACT As an extension of Pythagorean fuzzy sets and linguistic term sets, Pythagorean fuzzy linguistic
sets (PFSs) are powerful to describe decision-making information quantificational and qualitatively, which
have receivedmuch scholars’ attention. The purpose of this paper is to propose a newmultiple attribute group
decision-making (MAGDM) approach with Pythagorean fuzzy linguistic (PFL) information. To this end,
we firstly analyze the drawbacks of existing operations of PFL numbers and propose new operational rules
based on linguistic scale function. The power average (PA) operator is famous for its capacity of reducing the
negative influence of unreasonable evaluation values provided by prejudiced decision makers on the decision
results. The generalized Maclaurin symmetric mean (GMSM) can not only capture the interrelationship
among multiple inputs but also manipulate the effect of related properties by adjusting the parameters. When
considering aggregation operators of PFL numbers, we combine PAwith GMSM and propose the PFL power
generalized Maclaurin symmetric and the PFL power generalized weighted Maclaurin symmetric operators.
We also study important properties and special cases of these operators. We continue to investigate MAGDM
problems with PFL decision information and propose a novel method to determine the optimal alternative.
Finally, we conduct numerical examples to demonstrate the effectiveness of our proposed method. We also
attempt to illustrate the advantages and superiorities of the proposed method via comparative analysis.

INDEX TERMS Pythagorean fuzzy linguistic sets, linguistic scale function, power average operator,
generalized Maclaurin symmetric mean, multiple attribute group decision making.

I. INTRODUCTION
The Pythagorean fuzzy sets (PFSs) originated by Prof.
Yager [1] are an efficient to portray decision makers’ (DMs)
fuzzy and complicated judgements in realistic multi-attribute
group decision-making (MAGDM) process. The prominent
characteristic of PFS is µ2

+ v2 ≤ 1, where µ and v
represent the membership grade (MG) and non-membership
grade (NMG) respectively. Due to this feature, PFSs have
been extensively employed in expressing fuzzy decision
information and PFSs based MAGDM has been a hot
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research topic in modern decision-making science. Gener-
ally, recent researches on PFSs in decision-making can be
roughly divided three categories. The first category is utility
values-based PF-MAGDM method. For handling different
decision-making situations, scholars proposed different AOs
to integrate PF numbers (PFNs) to compute the overall
preference information of alternatives. For example, to cap-
ture the interrelationship among attributes the PF Bonfer-
roni mean [2], [3] and Maclaurin symmetric mean [4], [5]
operators were proposed. To improve the reliability of the
final decision results by reducing the bad influence of DMs’
extreme evaluation values, Wei and Lu [6] proposed a series
of PF power average operators. To effectively deal with the
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heterogeneous interrelationship among PFNs, Liang et al. [7]
proposed a set of PF partitioned Bonferroni mean operators.
To make the decision results more reliable and consider the
interrelationship among any number of attributes, Li et al. [8]
put forward the PF power Muirhead mean operator. For
more AOs of PFNs, we suggest to refer [9]–[12]. In addi-
tion, to enrich the PF operation rules theories some scholars
also investigated operations of PF numbers (PFNs) under
different t-norms and t-corms (TNTC), such as the Einstein
TNTC [13], [14], Hamacher TNTC [15], Frank TNTC [16],
Dombi TNTC [17], and Archimedean TNTC [18]. So other
representative utility value based MAGDM methods are PF-
TOPSIS [19], PF-VIKOR [20], PF-MOORA [21] and so
forth. The second type is based on outranking method. Schol-
ars extended the traditional outranking methods to PFSs and
proposed the PF-ELECTRE [22] and PF-PROMETHEE [23].
The third category is based on information measures.
Scholars investigated the distance and similarity mea-
sures [24]–[27], entropy [28], and correlation coefficient of
PFSs [29], and studied their applications in PF-MAGDM
problems.

Besides, some scholars have focused on extensions of
traditional PFSs to improve their efficiency in depicting
fuzzy information, among which the Pythagorean fuzzy lin-
guistic set (PFLS) [30] is the one the representative. The
PFLS is a combination of PFSs with linguistic term set
so that it can portray both DMs’ quantitative and qualita-
tive evaluation information. Afterwards, in Ref. [30]–[32],
the authors proposed the PFL weighted average (PFLWA),
Muirhead mean, and power MSM (PMSM) operators and
employed them in MAGDM. Additionally, the authors dis-
cussed their advantages and superiorities through numerical
examples. However, the decision-making methods proposed
in [30]–[32] still have limitations. First, the operations of
PFL numbers (PFLNs) proposed in [30]–[32] are not so
reasonable, as they are simply calculated by using the
subscript of the linguistic terms (LTs). For example, let
S = {sθ |θ = 0, 1, . . . , 6 } be a predefined LTS and α1 =
〈s3, (0.4, 0.5)〉, and α2 = 〈s4, (0.6, 0.7)〉 be two PFLN, then
according to the PFL operations proposed by Peng et al. [30]
we have α1 ⊕ α2 = 〈s7, (0.68, 0.38)〉. Obviously, the lin-
guistic part of the result exceeds the upper bound of the
given LTS, which is irrational, counterintuitive and mean-
ingless. Second, the MAGDM method introduced by Liu
and Qin has the ability of considering the interrelation-
ship among attributes, but it is powerless to effectively
handle decision makers’ extreme evaluation values. Third,
although the method proposed by Liu et al. [32] based on
the PMSM operator can reduce the negative influence of
DMs’ unreasonable evaluation values and capture the inter-
relationship among multiple attributes meanwhile, it fails
to reflect the individual importance of aggregated argu-
ments. Hence, existing MAGDM methods based on PFLSs
still have flaws when dealing with realistic decision-making
problems.

Considering that existing MAGDM methods under PFLSs
still have some limitations, it is necessary to propose novel
PFLSs based MAGDM method, which is the main moti-
vation of this study. To this end, we conduct our research
from following aspects. First, to overcome drawback of
existing PFL operations, we introduce the linguistic scale
function (LSF) into PFLSs and propose novel operational
rues of PFLNs. The new operations not only have good
closure but also can flexibly adapt to the semantic changes
of DMs. As a matter of fact, LSFs has been widely applied
in intuitionistic uncertain linguistic sets [33], interval-valued
intuitionistic uncertain linguistic sets [34] and picture fuzzy
linguistic sets [35]. Hence, it is necessary and worth extend-
ing LSFs into PFL sets. Second, to overcome the draw-
backs of existing the aggregation operators when fusing
Pythagorean fuzzy linguistic information, some novel aggre-
gation operators are developed. Based on the new opera-
tional rules, the power average (PA) [36] operator is extended
to PFL environment, and the Pythagorean fuzzy linguis-
tic power average (PFLPA) operator and the Pythagorean
fuzzy linguistic power weighted average (PFLPWA) operator
are introduced. These two operators can be used to aggre-
gate individual decision matrix to calculate the comprehen-
sive decision matrix. In addition, the generalized Maclaurin
symmetric mean (GMSM) operator is a powerful aggrega-
tion function proposed by Wang et al. [37], which not only
reduces the bad effect of decision makers’ extreme values
and capture the interrelationship among attributes, but also
reflects individual importance of aggregated values. Due
to these advantages, the GMSM is has been widely used
to solve MAGDM problems under q-rung orthopair fuzzy
sets [38], Pythagorean fuzzy sets [4], intuitionistic fuzzy soft
set [39], and probabilistic linguistic terms set [40]. Moti-
vated by these researches, in this study we combine PA
with GMSMS under Pythagorean fuzzy linguistic context
and propose the Pythagorean fuzzy linguistic power general-
ized Maclaurin symmetric mean (PFLPGMSM) operator and
the Pythagorean fuzzy linguistic power weighted generalized
Maclaurin symmetricmean (PFLPWGMSM) operator. These
two operators can be applied in calculating the final overall
evaluation values of alternatives. Obviously, these two oper-
ators can overcome the drawbacks of the operators proposed
in [31], [32]. Final, we propose a newMAGDMmethod with
PFL information. In the proposedmethod, the PFLPWAoper-
ator is employed to compute the collective decision matrix
and the PFLPWGMSM is employed to calculate the com-
prehensive evaluation value of each alternative. Hence, the
final decision results are more reasonable and reliable. The
main contribution of this study is to propose a novelMAGDM
method under PFLSs, which can overcome shortcomings of
some existing decision-making method. More specifically,
contributions of this paper contain the following four aspects.

1) Novel operational rules for PFLNs based on LSF are
proposed. The proposed novel operations not only are
closed but also can flexibly adapt to the semantic
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changes of DMs, making them more powerful and
reasonable than existing operations.

2) Based on the new operations, the PFLPA and PFLPWA
operators are proposed, which have the ability of effec-
tively dealing with DMs’ unduly high or low evaluation
values can be applied in computing the overall evalua-
tion matrix.

3) Some novel aggregation operators, i.e., PFLPGMSM
and PFLPWGMSM operators are developed, which
integrate PA and GMSM under PFL sets. These
two operators absorb the advantages of both PA and
GMSM, making them more powerful than some exist-
ing operators.

4) A new MAGDM method is presented based on the
new operational rules as well as aggregation operators.
Moreover, our proposedmethod is applied to solve real-
istic MAGDM problems to illustrate its effectiveness.

To better illustrate the main findings of this study,
we present the rest of our paper as follows. Section 2 reviews
basic concepts and proposes novel operations of PFLNs
based on LSF. Section 3 introduces some new AOs of
PFLNs and discusses their properties. Section 4 introduces
a new MAGDM method and gives their detailed steps.
Section 5 illustrates the performance of the new method
and analyzes its advantages. Conclusions are presented in
Section 6.

II. PRELIMINARIES
In the present section, we will briefly review some fundamen-
tal notions which will be used in the following sections.

A. PYTHAGOREAN LINGUISTIC SETS AND THEIR NOVEL
OPERATIONS
Definition 1 [30]: Let X be an ordinary set and sθ(x) ∈

S, then a Pythagorean fuzzy linguistic set A defined on X is
expressed as

A =
{〈
x, sθ(x), (µA (x) , vA (x))

〉
|x ∈ X

}
(1)

where sθ(x) is a linguistic term in S, µA (x) : X →

[0, 1] , vA (x) : X → [0, 1], denoting the MD and NMD
of x ∈ X belong to the linguistic term sθ(x), satisfying
µA (x)2+ vA (x)2 ≤ 1. Then is hesitancy degree is expressed
as πA (x) =

(
1− µA (x)2 − vA (x)2

)1/2. The ordered pair〈
sθ(x), (µA (x) , vA (x))

〉
is called a PFLN for convenience,

which can be denoted as α = 〈sθ , (µ, v)〉 for simplicity.
Existing operational rules of PFLNs are shown as follows.
Definition 2 [30]: Let α1 =

〈
sθ1 , (µ1, v1)

〉
, α2 =〈

sθ2 , (µ2, v2)
〉
and α = 〈sθ , (µ, v)〉 be any three PFLNs and λ

be positive real number, then
(1) α1 ⊕ α2 =

〈
sθ1+θ2 ,

((
µ2
1 + µ

2
2 − µ

2
1µ

2
2

)1/2 , v1v2)〉;
(2) α1 ⊗ α2 =

〈
sθ1θ2 ,

(
µ1µ2,

(
v21 + v

2
2 − v

2
1v

2
2

)1/2)〉;
(3) λα =

〈
sλθ ,

((
1−

(
1− µ2

)λ)1/2
, vλ

)〉
;

(4) αλ =
〈
sλθ ,

(
µλ,

(
1−

(
1− v2

)λ)1/2)〉
.

However, the above operations of PFLNs have some draw-
backs. In the following we attempt to propose novel oper-
ational rules of PFLNs based on LSF. In order to so this,
we first review the concept of LSF.
Definition 3 [41]: Let S = {si |i = 0, 1, . . . , 2t } be a

linguistic term se, si ∈ S be a linguistic term and τi ∈ [0, 1]
be a real number. A linguistic scale function (LSF) f is a
mapping from is mapping from si to τi (i = 1, 2, . . . , 2t) such
that

f : si→ τi (i = 1, 2, . . . , 2t) (2)

where 0 ≤ τ0 < τ1 < . . . < τ2t . Hence, f is a strictly
monotonically increasing function with regard to linguistic
subscript i. Generally, there are three types of LSFs and we
give a brief review in the following.

(1) The most widely used LSF is expressed as

f1 (si) = θi =
i
2t
(i = 1, 2, . . . , 2t) (3)

which is a simple average calculation of the subscripts of
linguistic terms.

(2) The second type of LSF is expressed s follows

f2 (si)=θi =


at−at−i

2at − 2
(i=0, 1, 2, . . . , t)

at+ai−t − 2
2at − 2

(i= t+1, t+2, . . . , 2t)

(4)

(3) The third type of LSF is expressed as

f3 (si)=θi =


tα−(t−i)α

2tα
(i=0, 1, 2, . . . , t)

tβ+(i−t)β

2tβ
(i= t+1, t+2, . . . , 2t)

(5)

Based on the LSF, we introduce new operational rules for
PFLNs.
Definition 4: Let α1 =

〈
sθ1 , (µ1, v1)

〉
, α2 =

〈
sθ2 , (µ2, v2)

〉
and α = 〈sθ , (µ, v)〉 be any three PFLNs and λ be positive
real number, then

(1) α1⊕α2 =

〈
f ∗−1 (f ∗ (θ1)+ f ∗ (θ2)− f ∗ (θ1) f ∗ (θ2)) ,((
µ2
1 + µ

2
2 − µ

2
1µ

2
2

)1/2 , v1v2)
〉
;

(2) α1 ⊗ α2 =
〈
f ∗−1 (f ∗ (θ1)× f ∗ (θ2)) ,(

µ1µ2,
(
v21 + v

2
2 − v

2
1v

2
2

)1/2)〉;
(3) λα =

〈
f ∗−1

(
1− (1− f ∗ (θ))λ

)
,((

1−
(
1− µ2

)λ)1/2
, vλ

)〉
;

(4) αλ =
〈
f ∗−1

(
(f ∗ (θ))λ

)
,

(
µλ,

(
1−

(
1− v2

)λ)1/2)〉
.

Based on the newly developed operational rules, it is easy
to prove the following theorem.
Theorem 1: Let α, α1 and α2 be any three PFLNs and

λ, λ1, λ2 > 0, then
(1) α1 ⊕ α2 = α2 ⊕ α1;
(2) α1 ⊗ α2 = α2 ⊗ α1;
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(3) λ (α1 ⊕ α2) = λα1 ⊕ λα2;
(4) λ1α ⊕ λ2α = (λ1 + λ2) α;
(5) αλ1 ⊗ αλ2 = αλ1+λ2 ;
(6) αλ1 ⊗ α

λ
2 = (α1 ⊗ α2)

λ.
Based on the LSF, we propose new score function (SF) and

accuracy function (AF) of PFLNs.
Definition 5: Let α = 〈sθ , (µ, v)〉 be a PFLN, then the SF

of α is expressed as

S (α) =
1
2

(
1+ µ2

− v2
)
× f ∗ (θ) (6)

and the AF is given as

H (α) =
(
µ2
+ v2

)
× f ∗ (θ) (7)

Based on the SF and AF of PFLNs, in the following we
propose a comparison method of PFLNs.
Definition 6: Let α1 =

〈
sθ1 , (µ1, v1)

〉
and α2 =〈

sθ2 , (µ2, v2)
〉
be any two PFLNs, S (α1) and S (α2) denote

the SF of α and α1,H (α1) and H (α2) denote the AF of α
and α1, then
(1) If S (α1) > S (α2), then α1 > α2;
(2) If S (α1) = S (α2), then

if H (α1) > H (α2), then α1 > α2;
if H (α1) = H (α2), then α1 = α2;

Based on LSF, the distance between any two PFLNs are
defined as follows.
Definition 7: Let α1 =

〈
sθ1 , (µ1, v1)

〉
and α2 =〈

sθ2 , (µ2, v2)
〉
be any two PFLNs, then the Hamming distance

between α1 and α2 is defined as

d (α1, α2) =
1
2

∣∣∣(1+ µ2
1 − v

2
1

)
× f ∗ (θ1)

−

(
1+ µ2

2 − v
2
2

)
× f ∗ (θ2)

∣∣∣ (8)

B. POWER AVERAGE OPERATOR AND GENERALIZED
MACLAURIN SYMMETRIC MEAN
Yager [36] initiated the concept of power average (PA) oper-
ator, which is presented as follows.
Definition 8 [36]:Let ai (i = 1, 2, . . . , n) be a collection of

non-negative crisp numbers, then the PA operator is defined
as

PA (a1, a2, . . . , an) =

n∑
i=1
(1+ T (ai)) ai

n∑
i=1
(1+ T (ai))

(9)

where T (ai) =
n∑

j=1,i 6=j
Sup

(
ai, aj

)
, Sup

(
ai, aj

)
denotes the

support for ai from aj, satisfying the conditions
(1) 0 ≤ Sup

(
ai, aj

)
≤ 1

(2) Sup
(
ai, aj

)
= Sup

(
aj, ai

)
;

(3) Sup (a, b) ≤ Sup (c, d), if |a, b| ≥ |c, d |.
The Definition of PGMSMoperator is provided as follows.
Definition 9 [37]: Let ai (i = 1, 2, . . . , n) be a set of

non-negative real numbers, k ∈ [1, n] be an integer, and

p1, p2, . . . , pk ≥ 1. If

GMSM (k,p1,p2,...,pk ) (a1, a2, . . . , an)

=


∑

1≤i1<i2<...<ik≤n

k∏
j=1

a
pj
ij

Ck
n


1

p1+p2+...+pk

(10)

then GMSM (k,p1,p2,...,pk ) is called the generalized Maclaurin
symmetric mean (GMSMS) operator, where (i1, i2, . . . , ik)
traversals all the k-tuple combination of (1, 2, . . . , n) and Ck

n
is the binominal coefficient.

III. SOME NEW AGGREGATION OPERATORS OF
PYTHAGOREAN FUZZY LINGUISTIC NUMBERS AND
THEIR PROPERTIES
Based on the new operational rules of PFLNs, we propose
some AOs to fuse Pythagorean fuzzy linguistic information.

A. THE PYTHAGOREAN FUZZY LINGUISTIC POWER
AVERAGE OPERATOR
Definition 10: Let αi =

〈
sθi , (µi, vi)

〉
be a collection

of PFLNs. The Pythagorean fuzzy linguistic power aver-
age (PFLPA) operator is expressed as

PFLPA (α1, α2, . . . , αn) =

n
⊕
i=1
(1+ T (αi)) αi

n∑
i=1
(1+ T (αi))

(11)

where T (αi) =
n∑

j=1,i 6=j
Sup

(
αi, αj

)
, Sup

(
αi, αj

)
denotes the

support for αi from αj, satisfying the conditions
(1) 0 ≤ Sup

(
αi, αj

)
≤ 1;

(2) Sup
(
αi, αj

)
= Sup

(
αj, αi

)
;

(3) Sup (α, β) ≤ Sup (χ, δ), if d (α, β) ≥ d (χ, δ), and
d (α, β) is the Hamming distance between α and β.

If we let

ωi =
(1+ T (αi)) αi
n∑
i=1
(1+ T (αi))

(12)

then Eq. (11) can be simplified as

PFLPA (α1, α2, . . . , αn) =
n
⊕
i=1
ωiαi (13)

where 0 ≤ ωi ≤ 1 and
n∑
i=1
ωi = 1.

According to Definition4, we can obtain the following
theorem.
Theorem 2: Let αi =

〈
sθi , (µi, vi)

〉
(i = 1, 2, . . . , n) be a

collection of PFLNs, then the aggregated value by the PFLPA
operator is still a PFLN and

PFLPA (α1, α2, . . . , αn)

=

〈
f ∗−1

(
1−

n∏
i=1

(
1− f ∗ (θi)

)ωi) ,
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(1− n∏
i=1

(
1− µ2

i

)ωi)1/2

,

n∏
i=1

vωi

〉 (14)

Theorem 2 is trivial and we omit its proof. In addition, the
proposed PFLPA also has the following properties.
Property 1 (Idempotency): Let αi (i = 1, 2, . . . , n) be a set

of PFLNs, if αi = α = 〈sθ , (µ, v)〉 for any i, then

PFLPA (α1, α2, . . . , αn) = αi (15)

Property 2 (Boundedness): Let αi =
〈
sθi , (µi, vi)

〉
(i = 1, 2, . . . , n) be a set of PFLNs, if

α+ =

〈
n

max
i=1

(
sθi
)
,

(
n

max
i=1

µi,
n

min
i=1

vi

)〉
and

α− =

〈
n

min
i=1

(
sθi
)
,

(
n

min
i=1

µi,
n

max
i=1

vi

)〉
,

then

α− ≤ PFLPA (α1, α2, . . . , αn) ≤ α+ (16)

The proofs of Property 1 and 2 are trivial andwe omit them.

B. THE PYTHAGOREAN FUZZY LINGUISTIC POWER
WEIGHTED AVERAGE OPERATOR
Definition 11: Let αi =

〈
sθi , (µi, vi)

〉
be a collection of

PFLNs, and w = (w1,w2, . . . ,wn)T be the weight vector of
αi (i = 1, 2, . . . , n), such that 0 ≤ wi ≤ 1 and

∑n
i=1 wi =

1. The Pythagorean fuzzy linguistic power weighted aver-
age (PFLPWA) operator is expressed as

PFLPWA (α1, α2, . . . , αn) =

n
⊕
i=1

wi (1+ T (αi)) αi

n∑
i=1

wi (1+ T (αi))
(17)

where T (αi) =
n∑

j=1,i 6=j
Sup

(
αi, αj

)
, Sup

(
αi, αj

)
denotes the

support forαi fromαj, satisfying the properties inDefinition 9
(37). Similarity, if we assume

ηi =
wi (1+ T (αi)) αi
n∑
i=1

wi (1+ T (αi))
(18)

then Eq. (12) can be written as

PFLPWA (α1, α2, . . . , αn) =
n
⊕
i=1
ηiαi (19)

where 0 ≤ ηi ≤ 1 and
n∑
i=1
ηi = 1.

The aggregated value by the PFLPWA operator can be
obtained on the basis of Definition4.
Theorem 3: Let αi =

〈
sθi , (µi, vi)

〉
be a collection of

PFLNs, then the aggregated value by the PFLPWA operator
is still a PFLN and

PFLPWA (α1, α2, . . . , αn)

=

〈
f ∗−1

(
1−

n∏
i=1

(
1− f ∗ (θi)

)ηi) ,(1− n∏
i=1

(
1− µ2

i

)ηi)1/2

,

n∏
i=1

vηi

〉 (20)

It is easy to prove that PFLPWA operator has the properties
of idempotency and boundedness.

C. THE PYTHAGOREAN FUZZY LINGUISTIC POWER
GENERALIZED MACLAURIN SYMMETRIC MEAN
OPERATOR
Definition 12: Let be a collection of PFLNs, be an inte-

ger, and The Pythagorean fuzzy linguistic power general-
ized Maclaurin symmetric mean (PFLPGMSM) operator is
defined as

PFLPGMSM (k,p1,p2,...,pk ) (α1, α2, . . . , αn)

=

 1
Ck
n

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

n
(
1+T

(
αij
))
αij

n∑
t=1

(1+T (αt))


pj

1
p1+p2+...+pk

(21)

where (i1, i2, . . . , ik) traversals all the k-tuple combination of
(1, 2, . . . , n) and Ck

n is the binominal coefficient. In addition,

T (αi) =
n∑

j=1,i 6=j
Sup

(
αi, αj

)
, Sup

(
αi, αj

)
denotes the support

for αi from αj, satisfying the conditions presented in Defini-
tion 11. To simplify Eq. (21), we assume(

1+ T
(
αij
))

n∑
t=1

(1+ T (αt))
= ςij (22)

then Eq. (21) can be written as

PFLPGMSM (k,p1,p2,...,pk ) (α1, α2, . . . , αn)

=

(
1
Ck
n

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

(
nςijαij

)pj) 1
p1+p2+...+pk

(23)

where 0 ≤ ςi ≤ 1 and
n∑
i=1
ςi = 1.

Theorem 4: Let αi =
〈
sθi , (µi, vi)

〉
be a collection of

PFLNs, k ∈ [1, n] be an integer, and p1, p2, . . . , pk ≥ 1.
Then the aggregated value by the PFLPGMSM operator is
still a PFLN and (24), as shown at the bottom of the next page,

Proof: According to the operations, we can obtain

nςijαij =
〈
f ∗−1

(
1−

(
1− f ∗

(
θij
))nςij ) ,((

1−
(
1− µ2

ij

)nςij)1/2
, v

nςij
ij

)〉
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and

(
nςijαij

)pj
=

〈 f ∗−1
((
1−

(
1− f ∗

(
θij
))nςij )pj) ,((

1−
(
1− µ2

ij

)nςij)1/2pj
,(

1−
(
1− v

2nςij
ij

)pj)1/2
)

〉

Further,
k
⊗
j=1

(
nςijαij

)pj

=

〈 f
∗−1

(
k∏
j=1

(
1−

(
1− f ∗

(
θij
))nςij )pj) ,(

k∏
j=1

(
1−

(
1− µ2

ij

)nςij)1/2pj
,(

1−
k∏
j=1

(
1− v

2nςij
ij

)pj)1/2


〉

and ⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

(
nςijαij

)pj , as shown at the bottom of

the next page.

Therefore, 1
Ckn

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

(
nςijαij

)pj , as shown at

the bottom of the next page.

Finally,
(

1
Ckn

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

(
nςijαij

)pj) 1
p1+p2+...+pk

, as

shown at the bottom of the next page.
Property 3 (Idempotency): Let αi (i = 1, 2, . . . , n) be a set

of PFLNs, if αi = α = 〈sθ , (µ, v)〉 for any i, then

PFLPGMSM (k,p1,p2,...,pk ) (α1, α2, . . . , αn) = α (25)

Proof: When αi = α = 〈sθ , (µ, v)〉, then accord-
ing to Theorem 1, we can obtain PFLPGMSM (k,p1,p2,...,pk )

(α1, α2, . . . , αn), as shown at the bottom of page 8.
Property 4 (Boundedness): Let αi =

〈
sθi , (µi, vi)

〉
(i = 1, 2, . . . , n) be a set of PFLNs, if

α+ =

〈
n

max
i=1

(
sθi
)
,

(
n

max
i=1

(µi) ,
n

min
i=1

(vi)
)〉

and

α− =

〈
n

min
i=1

(
sθi
)
,

(
n

min
i=1

(µi) ,
n

max
i=1

(vi)
)〉

then

α− ≤ PFLPGMSM (k,p1,p2,...,pk ) (α1, α2, . . . , αn) ≤ α
+

(26)

Proof: As the LSF f is a strictly monotonically increas-
ing function, then it is easy to prove (at the bottom of page 8).

Then according to Definition5, we have α− ≤

PFLPGMSM (k,p1,p2,...,pk ) (α1, α2, . . . , αn). Similarly, we can
prove PFLPGMSM (k,p1,p2,...,pk ) (α1, α2, . . . , αn) ≤ α+ and
so that the proof of Property 4 is completed.

In the followings, we discuss special cases of the
PFLPGMSM operator with respect to the parameters k and
p1, p2, . . . , pk .
Special Case 1: When k = 1, then the PFLPGMSM

operator reduces to

PFLPGMSM (1,p1) (α1, α2, . . . , αn) =

(
1
n

n
⊕
j=1

(
nςjαj

)p1) 1
p1

=

〈
f ∗−1


1−

 n∏
j=1

(
1−

(
1−

(
1−f ∗

(
θj
))nςj)p1)1

n


1
p1

 ,

1−

 n∏
j=1

(
1−

(
1−

(
1−µ2

j

)nςj)p1) 1
n


1
2p1

,

1−

1−
n∏
j=1

(
1−

(
1− v

2nςj
j

)p1) 1
n

 1
p1


1
2

〉

(27)

In this case, if Sup
(
αi, αj

)
= t (t > 0), then

the PFLPGMSM operator reduces to the generalized
Pythagorean fuzzy linguistic average (GPFLA) operator, i.e.

PFLPGMSM (1,p1) (α1, α2, . . . , αn)

=

(
1
n

n
⊕
j=1

(
nςjαj

)p1)1/p1
=

(
1
n

n
⊕
j=1
α
p1
j

)1/p1

=

〈
f ∗−1


1−

 n∏
j=1

(
1−

(
f ∗
(
θj
))p1)1/n


1/p1

 ,


1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− µ2

ij

)nςij)pj 1
Ckn


1

2(p1+p2+...+pk )

,

1−

1−
∏

1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1− v

2nςij
ij

)pj1
/
Ckn


1
p1+p2+...+pk


1/2

〉
(24)
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

1−

(
n∏
j=1

(
1− µ2p1

j

))1/n
1/2p1

,1−

(
1−

n∏
j=1

(
1−

(
1− v2j

)p1)1/n)1/p1
1/2


〉

(28)

Special Case 2: When k = 2, then the PFLPGMSM
operator reduces to (29), as shown at the bottom of page 9,
which is the Pythagorean fuzzy linguistic power Bonferroni
mean (PFLPBM) operator with the parameters p1 and p2.

In this case, if Sup
(
αi, αj

)
= t (t > 0), then the

PFLPGMSM operator reduces to the Pythagorean fuzzy lin-
guistic Bonferroni mean (PFLBM) operator, i.e. (30), as
shown at the bottom of page 9.

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

(
nςijαij

)pj
=

〈
f ∗−1

1−
∏

1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− f ∗

(
θij
))nςij )pj ,


(
1−

∏
1≤i1<i2<...<ik≤n

(
1−

k∏
j=1

(
1−

(
1− µ2

ij

)nςij)pj))1/2

,

∏
1≤i1<i2<...<ik≤n

(
1−

k∏
j=1

(
1− v

2nςij
ij

)pj)1/2


〉
.

1
Ck
n

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

(
nςijαij

)pj
=

〈
f ∗−1

1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− f ∗

(
θij
))nςij )pj 1

Ckn

 ,



1−

( ∏
1≤i1<i2<...<ik≤n

(
1−

k∏
j=1

(
1−

(
1− µ2

ij

)nςij)pj)) 1
Ckn

1/2

,

∏
1≤i1<i2<...<ik≤n

(
1−

k∏
j=1

(
1− v

2nςij
ij

)pj)1
/
2Ckn


〉
.

(
1
Ck
n

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

(
nςijαij

)pj) 1
p1+p2+...+pk

=

〈
f ∗−1


1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− f ∗

(
θij
))nςij )pj 1

Ckn


1

p1+p2+...+pk

 ,


1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− µ2

ij

)nςij)pj 1
Ckn


1

2(p1+p2+...+pk )

,

1−

1−
∏

1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1− v

2nςij
ij

)pj1
/
Ckn


1
p1+p2+...+pk


1/2

〉
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Special Case 3: When k = 3, then the PFLPGMSM
operator reduces to (31), as shown at the bottom of page 10,
which is the Pythagorean fuzzy linguistic power generalized
Bonferroni mean (PFLPGBM) operator with the parameters
p1, p2, and p3.
In this case, if Sup

(
αi, αj

)
= t (t > 0), then

the PFLPGMSM operator reduces to the generalized

Pythagorean fuzzy linguistic Bonferroni mean (GPFLBM)
operator, i.e. (32), as shown at the bottom of page 10.
Special Case 4:When p1 = p2 = . . . = pk = 1, then the

PFLPGMSMoperator reduces to (33), as shown at the bottom
of page 11, which is the Pythagorean fuzzy linguistic power
Maclaurin symmetric mean (PFLPMSM) operator with the
parameter k .

PFLPGMSM (k,p1,p2,...,pk ) (α1, α2, . . . , αn)

=

〈
f ∗−1


1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− f ∗ (θ)

)n 1
n

)pj 1
Ckn


1

p1+p2+...+pk

 ,


1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− µ2

)n 1
n
)pj 1

Ckn


1

2(p1+p2+...+pk )

,

1−

1−
∏

1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1− v2n

1
n

)pj1
/
Ckn


1
p1+p2+...+pk


1/2

〉

= 〈sθ , (µ, v)〉

f ∗−1


1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− f ∗

(
θij
))nςij )pj 1

Ckn


1

p1+p2+...+pk



≥ f ∗−1


1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− f ∗

(
n

min
i=1

(θi)

))nςij)pj 1
Ckn


1

p1+p2+...+pk

 ,
1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− µ2

ij

)nςij)pj 1
Ckn


1

2(p1+p2+...+pk )

≥

1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1−

(
n

min
i=1

(µi)

)2
)nςij)pj 1

Ckn


1

2(p1+p2+...+pk )

,

and

1−

1−
∏

1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1− v

2nςij
ij

)pj1
/
Ckn


1
p1+p2+...+pk


1/2

≤

1−

1−
∏

1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
n

max
i=1

(vi)
)2nςij

)pj1
/
Ckn


1
p1+p2+...+pk


1/2
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In this case, if Sup
(
αi, αj

)
= t (t > 0), then the

PFLPGMSM operator reduces to the Pythagorean fuzzy lin-
guistic Maclaurin symmetric mean (PFLMSM) operator, i.e.
(34), as shown at the bottom of page 11.
Special Case 5: When p1 = p2 = . . . = pk = 1

/
n, then

the PFLPGMSM operator reduces to

PFLPGMSM (k,1/n,1/n,...,1/n) (α1, α2, . . . , αn)

=
n
⊗
j=1

(
nςjαj

)1/n
=

〈
f ∗−1

 n∏
j=1

(
1−

(
1− f ∗

(
θj
))nςj)1/n ,

 n∏
j=1

(
1−

(
1− µ2

j

)nςj)1/2n
,

1−
n∏
j=1

(
1− v

2nςj
j

)1/n1/2
〉 (35)

In this case, if Sup
(
αi, αj

)
= t (t > 0), then the

PFLPGMSM operator reduces to the Pythagorean fuzzy lin-
guistic geometric (PFLG) operator, i.e.

PFLPGMSM (k,1/n,1/n,...,1/n) (α1, α2, . . . , αn)

=
n
⊗
j=1
α
1/n
j

=

〈
f ∗−1

 n∏
j=1

(
f ∗
(
θj
))1/n ,

PFLPGMSM (2,p1,p2) (α1, α2, . . . , αn)

=

(
1

n (n− 1)
⊕

1≤i<j≤n

(
(nςiαi)p1 ⊗

(
nςjαj

)p2)) 1
p1+p2

×

〈
f ∗−1


1−

 ∏
1≤i<j≤n

(
1−

(
1−

(
1− f ∗ (θi)

)nςi)p1 (1− (1− f ∗ (θj))nςj)p2)
 1

n(n−1)


1
p1+p2

 ,


1−

 ∏
1≤i<j≤n

(
1−

(
1−

(
1− µ2

i

)nςi)p1 (
1−

(
1− µ2

j

)nςj)p2) 1
n(n−1)


1/2

1
p1+p2

,

1−

1−

 ∏
1≤i<j≤n

(
1−

(
1− v2nςii

)p1 (
1− v

2nςj
j

)p2) 1
n(n−1)


1

p1+p2


1/2

〉
(29)

PFLPGMSM (2,p1,p2) (α1, α2, . . . , αn)

=

(
1

n (n− 1)
⊕

1≤i<j≤n

(
α
p1
i ⊗ α

p2
j

)) 1
p1+p2

〈
f ∗−1


1−

 ∏
1≤i<j≤n

(
1−

(
f ∗ (θi)

)p1 (f ∗ (θj))p2)
 1

n(n−1)


1
p1+p2

 ,



1−

( ∏
1≤i<j≤n

(
1− µ2p1

i µ
2p2
j

)) 1
n(n−1)

1/2
1

p1+p2

,

1−

1−

( ∏
1≤i<j≤n

(
1−

(
1− v2i

)p1 (1− v2j )p2)
) 1

n(n−1)


1
p1+p2


1/2


〉

(30)
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 n∏
j=1

µ
1/n
j ,

1−
n∏
j=1

(
1− v2j

)1/n1/2
〉 (36)

D. THE PYTHAGOREAN FUZZY LINGUISTIC POWER
WEIGHTED GENERALIZED MACLAURIN SYMMETRIC
MEAN OPERATOR
Definition 13: Let αi =

〈
sθi , (µi, vi)

〉
be a collection of

PFLNs, k ∈ [1, n] be an integer, and p1, p2, . . . , pk ≥
1. Let w = (w1,w2, . . . ,wn)T be the weight vector of

αj (j = 1, 2, . . . , n), such that 0 ≤ wj ≤ 1 and
n∑
j=1

wj = 1.

The Pythagorean fuzzy linguistic power weighted general-
ized Maclaurin symmetric mean (PFLPWGMSM) operator

is defined as

PFLPWGMSM (k,p1,p2,...,pk ) (α1, α2, . . . , αn)

=

1
Ck
n

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

nwij
(
1+T

(
αij
))
αij

n∑
t=1

wt (1+T (αt))


pj

1
p1+p2+...+pk

(37)

where (i1, i2, . . . , ik) traversals all the k-tuple combination
of (1, 2, . . . , n) and Ck

n is the binominal coefficient. In addi-

tion, T (αi) =
n∑

j=1,i 6=j
Sup

(
αi, αj

)
, Sup

(
αi, αj

)
denotes the

support for αi from αj, satisfying the conditions presented in

PFLPGMSM (3,p1,p2,p3) (α1, α2, . . . , αn)

=

(
1

n (n− 1) (n− 2)

n
⊕

i,j,s=1.i 6=j 6=s

(
(nςiαi)p1 ⊗

(
nςjαj

)p2
⊗ (nςsαs)p3

)) 1
p1+p2+p3

〈
f ∗−1


1−

 ∏
,j,s=1.i 6=j 6=s

(
1−

(
1−

(
1−f ∗ (θi)

)nςi)p1 (1−(1−f ∗ (θj))nςj)p2 (1−(1−f ∗ (θs))nςs)p3)
 1

n(n−1)(n−2)


1
p1+p2+p3

 ,


1−

 ∏
i,j,s=1.i 6=j 6=s

(
1−

(
1−

(
1−µ2

i

)nςi)p1 (
1−

(
1−µ2

j

)nςj)p2 (
1−

(
1−µ2

s

)nςs)p3) 1
n(n−1)(n−2)


1/2

1
p1+p2+p3

,

1−

1−

 ∏
i,j,s=1.i 6=j 6=s

(
1−

(
1− v2nςii

)p1 (
1− v

2nςj
j

)p2 (
1− v2nςss

)p3) 1
n(n−1)(n−2)


1

p1+p2+p3


1/2

〉
(31)

PFLPGMSM (3,p1,p2,p3) (α1, α2, . . . , αn)

=

(
1

n (n− 1) (n− 2)

n
⊕

i,j,s=1.i 6=j 6=s

(
α
p1
i ⊗ α

p2
j ⊗ α

p3
s

)p3) 1
p1+p2+p3

=

〈
f ∗−1


1−

 ∏
i,j,s=1.i 6=j6=s

(
1−

(
f ∗ (θi)

)p1 (f ∗ (θj))p2 (f ∗ (θs))p3)
 1

n(n−1)(n−2)


1
p1+p2+p3

 ,


1−

 ∏
i,j,s=1.i 6=j6=s

(
1− µ2p1

i µ
2p2
j µ2p3

s

) 1
n(n−1)(n−2)


1/2

1
p1+p2+p3

,

1−

1−

 ∏
i,j,s=1.i 6=j 6=s

(
1−

(
1− v2i

)p1 (
1− v2j

)p2 (
1− v2s

)p3) 1
n(n−1)(n−2)


1

p1+p2+p3


1/2

〉
(32)
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Definition 11. To simplify Eq. (37), we assume

δj =
wj
(
1+ T

(
αj
))

n∑
t=1

wt (1+ T (αt))
(38)

then Eq. (37) can be written as

PFLPWGMSM (k,p1,p2,...,pk ) (α1, α2, . . . , αn)

=

(
1
Ck
n

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

(
nδijαij

)pj) 1
p1+p2+...+pk

(39)

where 0 ≤ δi ≤ 1 and
n∑
i=1
δi = 1.

Theorem 6: Let αi =
〈
sθi , (µi, vi)

〉
be a collection of

PFLNs, k ∈ [1, n] be an integer, and p1, p2, . . . , pk ≥ 1.
Then the aggregated value by the PFLPWGMSM operator is
still a PFLN and (40), as shown at the bottom of the next page.

Similarly, the proposed PFLPWGMSM operator has the
properties of boundedness.

IV. A NOVEL METHOD TO MULTIPLE ATTRIBUTE GROUP
DECISION-MAKING WITH PYTHAGOREAN FUZZY
LINGUISTIC NUMBERS
This section introduces the main steps of solving multi-
ple attribute group decision-making (MAGDM) problems
in which DMs’ judgements over alternatives are expressed
by Pythagorean fuzzy linguistic numbers (PFLNs). Suppose
there are m feasible alternative which are to be evaluated by
DMs under n attributes. For the convenience of description,
let the alternative set be A = {A1,A2, . . . ,Am} and attribute
set be G = {G1,G2, . . . ,Gn}. The weight vector of attributes
is w = (w1,w2, . . . ,wn)T , such that 0 ≤ wj ≤ 1 and∑n

j=1 wj = 1. To make a reliable decision, a set of DMs
are invited to evaluate the performance of each alternative.
Let D = {D1,D2, . . . ,Dt } be the DM set, whose importance
vector is λ = (λ1, λ2, . . . , λt)

T , satisfying 0 ≤ λl ≤

1 and
∑t

l=1 λl = 1. The DM Dl (l = 1, 2, . . . , t) employs

a PFLN αlij =
〈
sθ lij ,

(
µlij, v

l
ij

)〉
to denote his/her judgement

of the performance of alternative Ai (i = 1, 2, . . . ,m) under
the attributeGj (j = 1, 2, . . . , n). Finally, l Pythagorean fuzzy

PFLPGMSM (k,1,1,...,1) (α1, α2, . . . , αn)

=

(
1
Ck
n

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1

(
nςijαij

))1/k

=

〈
f ∗−1


1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− f ∗

(
θij
))nςij )1

/
Ckn


1/k




1−

( ∏
1≤i1<i2<...<ik≤n

(
1−

k∏
j=1

(
1−

(
1− µ2

ij

)nςj)))1
/
Ckn
1/2k

,1−

1−

( ∏
1≤i1<i2<...<ik≤n

(
1−

k∏
j=1

(
1− v

2nςij
ij

)))1
/
Ckn
1/k


1/2


〉

(33)

PFLPGMSM (k,1,1,...,1) (α1, α2, . . . , αn)

=

(
1
Ck
n

⊕
1≤i1<i2<...<ik≤n

k
⊗
j=1
αij

)1/k

=

〈
f ∗−1


1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
f
(
θij
))1

/
Ckn


1/k
 ,



1−

( ∏
1≤i1<i2<...<ik≤n

(
1−

k∏
j=1
µ2
ij

))1
/
Ckn
1/2k

,1−

1−

( ∏
1≤i1<i2<...<ik

(
1−

k∏
j=1

(
1− v2ij

)))1
/
Ckn
1/k


1/2


〉

(34)
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linguistic decision matrices are obtained and in the following
we present a method to determine the optimal based on the
proposed aggregation operators.
Step 1: Normalize the original Pythagorean fuzzy linguis-

tic decision matrices. Due to the existence of benefit and cost
types of attributes, to make alternatives more comparable,
it is necessary to normalize the original decision matrices
according to the following formula

αlij =


〈
sθ lij ,

(
µlij, v

l
ij

)〉
Gj ∈ T1〈

sθ lij ,
(
vlij, µ

l
ij

)〉
Gj ∈ T2

(41)

where T1 and T2 denote the benefit and cost types of
attributes, respectively. Go to the next step.
Step 2: Compute the support between αhij and α

g
ij with

respective to DMs,

Sup
(
αhij, α

g
ij

)
=1−d

(
αhij, α

g
ij

)
(h, g=1, 2, . . . , n; h 6= g)

(42)

where d
(
αhij, α

g
ij

)
is the Hamming distance between αhij and

α
g
ij. Go to the next step.

Step 3: Compute the weighted overall supports T
(
αhij

)
of

the PFLN by

T
(
αhij

)
=

t∑
h=1;h 6=g

Sup
(
αhij, α

g
ij

)
(43)

Step 4: Based on T
(
αhij

)
and the weight vector of DMs,

compute the power weight associated with PFLN αhij given
by DM Dh. Go to the next step.

ωh =
λh

(
1+ T

(
αhij

))
t∑

h=1
λh

(
1+ T

(
αhij

)) (44)

Step 5: Aggregate individual decision matrix by the
PFLPWA operator to compute the comprehensive decision

matrix, i.e.

αij = PFLPWA
(
α1ij, α

2
ij, . . . , α

t
ij

)
(45)

Then, a collective decision matrix is derived. Go to the next
step.
Step 6: Calculate the support between αij and αis

Sup
(
αij, αis

)
= 1− d

(
αij, αis

)
(i = 1, 2, . . . ,m; j, s = 1, 2, . . . , n; j 6= s)

(46)

where d
(
αij, αis

)
is the Hamming distance between αij and

αis. Go to the next step.
Step 7: Compute the weighted overall supports T

(
αij
)

according to the following formula and go the next step.

T
(
αij
)
=

n∑
j=1;j 6=s

Sup
(
αij, αis

)
(47)

Step 8: Compute the power weight associated with the
PFLN αij by the following formula and go to the next step.

δij =
wj
(
1+ T

(
αij
))

n∑
j=1

wj
(
1+ T

(
αij
)) (48)

Step 9: For each alternative, utilize the

αi = PFLPWGMSM (k,p1,p2,...,pk ) (αi1, αi2, . . . , αin) (49)

and for each alternative Ai (i = 1, 2, . . . ,m), a corresponding
overall evaluation value αi (i = 1, 2, . . . ,m) is determined.
Go to the next step.
Step 10: Compute the scores of αi (i = 1, 2, . . . ,m)

according to Eq. (8) and then go to the next step.
Step 11:Rank the corresponding alternatives and select the

optimal one.

PFLPWGMSM (k,p1,p2,...,pk ) (α1, α2, . . . , αn)

=

〈
f ∗−1


1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− f ∗

(
θij
))nδij)pj 1

Ckn


1

p1+p2+...+pk

 ,


1−

 ∏
1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1−

(
1− µ2

ij

)nδij)pj 1
Ckn


1

2(p1+p2+...+pk )

,

1−

1−
∏

1≤i1<i2<...<ik≤n

1−
k∏
j=1

(
1− v

2nδij
ij

)pj1
/
Ckn


1
p1+p2+...+pk


1/2

〉
(40)
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V. NUMERICAL EXAMPLE
Example 1: Let’s consider a low-carbon tourism des-

tination selection (LCTDS) problem. With the increasing
popularity of environmental protection concepts, low-carbon
tourism has gradually gained widespread attention. The so-
called low-carbon tourism is a kind of tourism that reduces
carbon. In other words, in tourism activities, tourists try to
reduce carbon dioxide emissions as much as possible. Low-
carbon tourism is green travel based on low energy con-
sumption and low pollution, advocating to minimize carbon
footprint and carbon dioxide emissions during travel, which
is also a deep-level expression of environmental protection
tourism. In low-carbon tourism, one of the most important
problems is LCTDS, i.e., choosing a suitable destination
which is low-carbon. When evaluating the performance of
low carbon of tourism destinations, decision makers usually
have to consider multiple aspects. Generally, when consider-
ing a LCTDS problem, the following four attributes should be
taken into consideration, i.e., traffic conditions (G1), attrac-
tions of the low carbon tourism destination (G2); tourist con-
sumption satisfaction (G3), and environmental quality (G4).
Let’s consider a realistic LCTDS problems. Suppose there
are four destinations (alternatives), which can be denoted
as A1, A2, A3, and A4. The weight vector of attributes is
w = (0.32, 0.26, 0.18, 0.24)T . In order to comprehensively
evaluate the performance of the four destinations, three deci-
sion experts are invited to express their opinions over the
four alternatives. Let S = {s0 = ‘‘extremely poor’’, s1 =
‘‘very poor’’, s2 = ‘‘ poor’’, s3 = ‘‘slightly poor’’, s4 =
‘‘fair’’, s5 = ‘‘slightly good’’, s6 = ‘‘good’’, s7 = ‘‘very
good’’, s8 = ‘‘extremely good’’} be a linguistic term set.
Decision experts use PFLNs over S to express their evaluation
information over alternatives and their evaluationmatrices are
listed in Tables 1-3. The weight vector of the three decision
experts is λ = (0.4, 0.32, 0.28)T . In the following sections,
our proposed novel MAGDM method is employed to select
the best low-carbon destination.

TABLE 1. The intuitionistic linguistic decision matrix R1 of example 1
provided by decision maker E1.

A. THE PROCEDURE OF CHOOSING THE OPTIMAL
ALTERNATIVE
Step 1: As all the attributes are benefit type, the original

decision matrix does need to be normalized.
Step 2: Compute the support between two PFLNs αhij and

α
g
ij, where i, j = 1, 2, 3, 4, h, g = 1, 2, 3 and h 6= g according

TABLE 2. The intuitionistic linguistic decision matrix R2 of Example 1
provided by decision maker e2.

TABLE 3. The intuitionistic linguistic decision matrix R3 of Example 1
provided by decision maker e3.

to Eq. (42). For the facility of expression, we Shg to represent
the support of αkij from α

d
ij andwe obtain the following results.

S12 = S21 =


0.9442 0.9958 0.6833 0.7150
0.8875 0.8033 0.8658 0.8042
0.9108 1.0000 0.9333 0.9208
0.7592 0.7633 0.9517 0.9558



S13 = S13 =


0.9458 0.9833 0.8867 0.9867
0.9333 0.9250 0.9692 0.8667
0.9542 0.8792 0.8308 0.9542
0.5925 0.9367 0.9267 0.8033



S23 = S32 =


0.8900 0.9875 0.7967 0.7283
0.8208 0.8783 0.9692 0.9375
0.9567 0.8792 0.8975 0.9667
0.8333 0.8267 0.8783 0.8475


Step 3: Compute the weighted overall supports T

(
αhij

)
associated with the PFLN αhij by Eq. (43). We use the symbol

T h (h = 1, 2, 3) to represent T
(
αhij

)
and we have

T 1
=


1.8900 1.9792 1.5700 1.7017
1.8208 1.7283 1.8350 1.6708
1.8650 1.8792 1.7642 1.8750
1.3517 1.7000 1.8783 1.7592



T 2
=


1.8342 1.9833 1.4800 1.4433
1.7083 1.6817 1.7008 1.7417
1.8675 1.8792 1.8303 1.8875
1.5925 1.5900 1.8300 1.8033



T 3
=


1.8358 1.9708 1.6833 1.7150
1.7542 1.8033 1.8042 1.8042
1.9108 1.7583 1.7283 1.9208
1.4258 1.7633 1.8050 1.6508


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TABLE 4. The comprehensive Pythagorean fuzzy linguistic decision matrix.

Step 4: Based on DMs’ weight vector and the weighted
overall supports T

(
αhij

)
, compute the power weight associ-

ated with the PFLN αhij by Eq. (44), and we obtain

ω1
=


0.4046 0.4001 0.3995 0.4120
0.4079 0.3991 0.4074 0.3912
0.3981 0.4048 0.3984 0.3977
0.3840 0.4026 0.4051 0.4024



ω2
=


0.3174 0.3206 0.3084 0.2981
0.3133 0.3138 0.3105 0.3213
0.3188 0.3238 0.3264 0.3195
0.3387 0.3090 0.3183 0.3270



ω3
=


0.2779 0.2793 0.2920 0.2899
0.2788 0.2871 0.2821 0.2875
0.2831 0.2714 0.2752 0.2828
0.2773 0.2884 0.2763 0.2706


Step 5: Compute the overall decision matrix by the

PFLPWA operator and the results are shown in Table 4.
Step 6: Calculate the support between Sup

(
αij, αis

)
by Eq.

(46). Similarly, we employ Supjs to denote Sup
(
αij, αis

)
, and

we have

Sup12 = Sup21 = (0.9170, 0.9807, 0.9629, 0.7307)

Sup13 = Sup31 = (0.9342, 0.8369, 0.9611, 0.7534)

Sup14 = Sup41 = (0.8679, 0.9447, 0.9796, 0.8313)

Sup23 = Sup32 = (0.8512, 0.8176, 0.9240, 0.9772)

Sup24 = Sup42 = (0.7850, 0.9254, 0.9833, 0.8994)

Sup34 = Sup43 = (0.9337, 0.8922, 0.9407, 0.9221)

Step 7: Compute the weighted overall supports T
(
αij
)
by

Eq. (47) and we can get

T =


2.7191 2.5532 2.7191 2.5866
2.7623 2.7237 2.5468 2.7623
2.9036 2.8702 2.8258 2.9036
2.3154 2.6073 2.6528 2.6528


Step 8: Compute the power weight δij associated with

PFLN αij and we obtain

δ =


0.3266 0.2535 0.1837 0.2362
0.3242 0.2607 0.1719 0.2432
0.3219 0.2593 0.1774 0.2414
0.3003 0.2655 0.1861 0.2481



TABLE 5. Decision results with different K in the pflpwgmsm operator.

Step 9: Compute the collective evaluation values of alter-
natives by the PFLPWGMSM operator. Without loss of gen-
erality, we assume k = 2 and p1 = p2 = 1, then we can
obtain

α1 = 〈s4.5399, (0.2885, 0.6326)〉

α2 = 〈s3.8708, (0.3356, 0.6213)〉

α3 = 〈s3.7644, (0.2386, 0.6864)〉

α4 = 〈s3.9446, (0.3066, 0.5996)〉

Step 10: Compute the scores of the alternatives and we
have

S (α1) = 0.2584 S (α2) = 0.2344

S (α3) = 0.1838 S (α4) = 0.2415

Step 11: Rank alternatives according to their scores and we
have A1 � A4 � A2 � A3, and A4 is the optimal alternative.

B. ANALYSIS OF THE INFLUENCE OF PARAMETERS ON
THE DECISION RESULTS
1) THE IMPACT OF K ON THE RESULTS
The parameter k in the PFLPWGMSM operator has impor-
tant impact on the decision results and in this subsection we
investigate its influence. To this end, we assign different value
to k in Step 9 and present the scores and ranking results in
Table 5. Without loss of generality, we assume p1 = . . . =

pk = 1 and the LST is taken as f (θ) = θ
2t (t = 3).

As we can see from Table 5, different scores and rank-
ing orders are obtained with different parameter values k
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TABLE 6. The score values and ranking orders of Example 1 with different parameters (k = 2).

in the PFLPWGMSM operator. This is because the value k
determines the number of dependent attributes among which
the interrelationship among them is taken into consideration.
When k = 1, our method does not consider the inter-
relationship between attributes. When k = 2 and 3, the
method captures the interrelationship between any two or
three attributes. When k = 4, then the interrelationship
among all the four attributes. As there is usually interrela-
tionship among attributes, our proposed method is flexible
to deal with practical MAGDM problems. Moreover, we find
out that the increase of the value k leads to the decrease of the
score values of each alternative. Hence, the value of k can be
regarded as DMs’ attitude towards the performance of alter-
natives. If DMs are optimistic to the alternatives, then they
should choose a smaller value of k . If DMs are pessimistic
to the alternatives, then they can select a larger value of k .
If DMs are neutral, then they can set k =

[
n
/
2
]
, where [] is

the round function and n is the number of attributes.

2) THE EFFECT OF THE PARAMETER VECTOR ON THE
RESULTS
In this section, we investigate the influence of the parameter
vector (p1, p2, . . . , pk) on the final decision results. The score
values of alternatives and the final ranking orders with differ-
ent parameters are presented in Tables 6 and 7.As seen from
Tables 6 and 7, different score values and ranking orders are
derived with different values of the parameters. In Table 6,
we find out that let p1 be fixed and then the increase of
the value of parameter p2 leads to the decrease of the score
values of each alternative. Similarly, if p2 is fixed then the
score values of alternatives will also decrease if the value
of p1 increase. However, the ranking orders are always the
same. In addition, when both the values of p1 and p2 increase,

the score values of alternatives also decrease. Hence, we can
determine appropriate values according to actual needs and
basically we should choose the value of p1 and p2, such that
0 ≤ p1, p2 ≤ 1. Because if p1 = 0(p2 = 1), then the
interrelationship between attributes is not taken into account,
which is usually inconsistent with the reality. In Table 7,
we can find the similar phenomenon, i.e., if any two of
the parameters p1, p2, and p3 are fixed, then the increase
of the other parameter leads to the increase of the score
values of each alternative. In addition, the parameters p1, p2,
and p3 should not be assigned zero, otherwise the proposed
method fails to consider the interrelationship among multiple
attributes.

C. ADVANTAGES AND SUPERIORITIES ANALYSIS
In this section, we attempt to demonstrate the advantages
and superiorities of our proposed MAGDM method by com-
paring to some existing PFL sets based MAGDM method.
These methods involve that proposed by Peng and Yang [30]
based on the PFL weighted average (PFLWA) operator,
that developed by Liu et al. [31] based on PFL weighted
Muirhead mean (PFLWMM) operator, and that presented
by Teng et al. [32] based on PFL power weighted MSM
(PFLPWMSM) operator.

1) THE RATIONALITY AND FLEXIBILITY OF THE PROPOSED
OPERATIONAL RULES
It is noted that the MAGDM methods presented in [30]–[32]
are based on the basic algebraic operational rules. However,
as pointed out in Introduction, the main shortcoming of these
operational rules is that they are not closed. In other word,
the calculation process may exceed the bound of the pre-
defined LTS. In addition, these operational rules may cause
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TABLE 7. The score values and ranking orders of Example 1 with different parameters (k = 3).

contrary to the subjective intuition of the decision makers in
the process of MAGDM. Our proposed method is based on
new operational rules for PFLNs, i.e., LSF based operations.
Advantages of these new operational rules are obvious. First
of all, the new operational laws proposed in this study have
properties of closure and can solve the cross-border prob-
lems of the operational rules used in [30]–[32]. Second, our
proposed operational rules can flexibly adapt to the semantic
changes of DMs, which is consistent with realistic decision-
making process. Hence, our proposed method is more pow-
erful, useful and flexible than those MAGDM approaches
presented in [30]–[32].

2) THE ABILITY OF CAPTURING THE INTERRELATIONSHIP
AMONG ANY NUMBERS OF ATTRIBUTES
Our proposed method is based on the PFLPWGMSM oper-
ator and hence it can considers the interrelationship that
widely exists in practical MAGDM problems. In addition,
our method is capable to consider the different important
of different aggregated values of attributes. Given these
advantages, our proposed method is more powerful than
some existing PFL sets based decision-making methods.
First, Peng and Yang’s [30] method is based on the simply
weighted average operator. As it is known that the sim-
ple weighted operator fails to consider the interrelationship
among attributes. In other word, Peng andYang’s [30]method
is based on the assumption that attributes are independent,
which is somewhat inconsistent with the reality. In most
real MAGDM problems, attributes are correlated and such
interrelationship among attributes should be taken into con-
sideration. Hence, the MAGDM method introduced by Peng
and Yang’s [30] is somewhat defective. Our proposed method
is able to consider the interrelationship when calculating the

final decision-making results and hence our proposed method
is better and more powerful than that proposed by Peng and
Yang. In addition, Teng et al.’s [32] method based on the
PFLPWMSM operators can also take the interrelationship
among attributes into account, which is the same as our
method. However, its flaw is also obvious, i.e., it assumes
that all input evaluation values have the same importance,
which is somewhat inconsistent with real cases. Our proposed
method is effective to consider the different importance of
input aggregated values. By assigning different values in the
vector P, the importance degrees of aggregated values are
manipulated. Moreover, the PMSM operator is a special case
of our proposed PGMSM operator. Hence, our method is
more powerful than Teng et al.’s [32] method.

3) THE ABILITY OF REDUCING THE BAD INFLUENCE OF
EXTREME EVALUATION VALUES
In many practical MAGDM problems, in order to make a
smart decision, a group of DMs instead of only one are invited
to evaluate the performance of alternatives. DMs usually
come from different fields and have different expertise and
experience. In addition, due to time shortage and complex-
ity of decision-making problems, it is difficult for DMs to
acquire all information related to decision-making problems.
Hence it is common that DMs maybe provide unduly high or
low evaluation values, which obviously have negative impact
on the final decision results. Tomake the final decision results
reasonable and acceptable, such kind of bad influence of
extreme evaluation values should be reduced or eliminated.
Peng and Yang’s [30] simple weighted average operator fails
to effectively handle DMs’ extremely high or low evaluation
values. In other word, the reliability of decision results pro-
duced by Peng and Yang’s [30] method maybe not reliable
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if DMs provide unreasonable evaluation values. Moreover,
Liu et al.’s [31] cannot effectively cope with DMs’ extreme
evaluation values, either. Hence, our proposed method more
powerful and reasonable than Peng and Yang’s [30] and
Lu et al.’s [31] methods.

VI. CONCLUSION
Recently PFLSs are have been regarded as an efficient
tool to express fuzzy information, which have been exten-
sively investigated and applied in MAGDM procedures.
The main contribution of this paper is to propose a new
MAGDM method wherein attribute values are given in the
forms of PFLNs. In order to do this, we firstly introduced
new operational rules of PFLNs based on LSFs. Then, we
presented novel AOs to fuse Pythagorean fuzzy linguistic
information, i.e. PFLPA, PFLPWA, PFLPGMSM, and PFLP-
WGMSM operators. Thirdly, we introduced an approached
to objectively determine the weighs information. Finally,
based on the newly developed AOs and weights determi-
nation approach we presented a novel MAGDM method.
Afterwards, we proved the effectiveness and advantages of
our method via numerical examples. In the future, we shall
continue our study form the following two aspects. First,
we shall investigate applications our proposed method in
more practical MAGDM problems, such as evaluation of
offshore oil spill response waste management strategies [42],
sustainable supplier evaluation [43], plan selection of urban
integrated energy systems [44], evaluation of groundwater
quality [45], etc. Second, our study does not consider whether
the final decision results are accepted by DMs. Actually,
consensus reaching process is an important and interesting
research topic in group decision-making and large scale
group decision-making [46]–[50]. Hence, we shall study
consensus reaching process in group decision-making under
PLF sets.
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