IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 11 July 2022, accepted 29 July 2022, date of publication 1 August 2022, date of current version 8 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3195872

== RESEARCH ARTICLE

KNN Normalized Optimization and Platform
Tuning Based on Hadoop

CHEN MA™ AND YUHONG CHI

School of Computer Science, Xijing University, Xi’an 710123, China
Corresponding author: Chen Ma (997528107 @qq.com)

ABSTRACT Big data has become part of the life for many people. The data about people’s life are being
continously collected, analysized and applied as our society progresses into the big data era. Behind the
scene, the computer server clusters need to process hundres of millions pieces of data every day. It is very
important to choose the right big data processing platform and algorithm to deal with different kinds of
datasets. Therefore, in order to be fully familiar with the related work of driving big data processing, it is
necessary to master the classification algorithm of data. It aims to help us carry out a classification model
or operation analysis of classification function by screening and classifying the current data in data mining.
In addition, the given data can be mapped to the specified category area, and the development trend of future
data can be predicted through classification models. So this kind of algorithm helps to reduce the difficulty
of work operation and improve people’s work efficiency. This paper optimizes the classical classification
algorithm—KNN, and designs a new normalized algorithm called PEWM_G KNN. From the perspective
of distance measurement, we use Pearson correlation coefficient to replace the traditional Euclidean Metric,
then we further refine the study for attribute values of datasets and introduce the entropy weight method,
combined with Pearson’s measure to optimize the distance calculation equation. After the K value is fixed,
we added Gaussian Function to carry out the selection of classification. In this study, we compared the effects
of every step, and tested datasets with different data types and sizes, in order to test the performance of the
algorithm under different scenarios. The datasets we used include Iris, Breast Cancer, Dry Bean and HTRU2
(All datasets are from The University of California, Irvine). Finally, we further analyze the performance of
different system configuration parameters on the prediction rate and time. The experimental results show that
PEWM_G KNN algorithm has better optimization effect for datasets with more complex attribute values and
more records than the original KNN algorithm. Moreover, the optimization of platform parameters improves
prediction rates of algorithms and reduces the time. We tested PEWM_G KNN on the Hadoop platform,
confiured with HDFS, Hadoop-YARN, ZooKeeper, Hadoop-HA and MapReduce.

INDEX TERMS KNN, classification algorithm, HDFS, Hadoop-YARN, ZooKeeper, Hadoop-HA, Hadoop,
MapReduce.

I. INTRODUCTION

With social progress and technological development, big data
has gradually become an indispensable part of people’s daily
life. So, choosing the right big data processing platform and
big data processing algorithms for different datasets is also
one of the challenges today. Among many big data processing
algorithms, classification algorithm has always been a hot

The associate editor coordinating the review of this manuscript and

approving it for publication was Wentao Fan

81406

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

topic and one of data mining application technologies, and
tasks it handles generally fall into two broad catrgories:

(1) predictable tasks, which predicts the value of a
particular attribute based on the values of other attributes.

(2) describable tasks and outline patterns (correlations,
trends, clusters, trajectories, and anomalies) of potential
connections in data.

Classification is a supervised learning process. It learns
the attributes of an existing dataset. The categories in the
target dataset are known, and what the classification process

VOLUME 10, 2022

https://orcid.org/0000-0002-0598-127X
https://orcid.org/0000-0001-7291-9137
https://orcid.org/0000-0001-6694-7289

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

m :

s

©

8 .\

s [

o L= oo

= = C
© c C
© @
o ()
= © VTR
< R

<

2 S

= ? T

WP <

SR

= g
L O E

FIGURE 1. Classification algorithm workflow.

needs to do is to classify each record into the corresponding
categories. The classification algorithm work flow is as
follows:

It can be seen from Fig 1 that the data in datasets is
divided before classification, and programmers can divide
it into Test data and Training data in a customized
ratio. Each record in both has the same set of attributes
{Atr1, Atra, ..., Atry_1, Atr, }. Firstly, data cleaning opera-
tions (Data Cleansing) are required to detect and correct (or
delete) the recordset. The inaccurate or corrupted records
in a dataset are purged if all or part of their data are
identified as incorrect, incomplete, irrelevant, inaccurate
or otherwise problematic (dirty) before the data can be
formally classified. Secondly, the correlation analysis of
datasets(Correlation) is carried out. When there are too
many attributes in a dataset, several attributes that can not
only determine the characteristics of the dataset but also be
representative can be selected by analyzing the relationship
between different attributes or data, in order to simplify the
training steps and obtain most representative training results.
Data conversion(Data Transformation) is then performed,
that is, data types can be converted, cleaned up, enriched,
or aggregation can be performed by removing null or
duplicate data. It can also make values that are strings or more
complex data types into a simple type to facilitate calculation
of the rest of data characteristics. After the above three steps
of data filtering, we can get relatively clean Training data
and Test data. Then Training data is first trained by the
Algorithm Model, which is used to fit the model and train
it by setting its parameters. After training, an optimal fitting
model (Optimization) will be generated. The Test data can
then be tested against it to get results, including accuracy,
recall and other predicted information.

In general, there are a wide varieties of classification
algorithms that can be applied to real world use cases. For
example, e.g. [1] proposed two new incremental support
vector machine approaches to improve the classification.

VOLUME 10, 2022

ptimization

Results

They added several sensor networks to the smart home,
to monitor residents and the environment, interpret the
current situation and respond immediately. The paper also
proposed and evaluated an extended sensor window approach
to perform activity recognition in a streaming manner, that is,
identify activity when a new sensor event is recorded. The
experiment shows that the introduced incremental learning
based on similarity has been shown to be 5 to 9 times
faster than other methods in terms of training performance.
Similarly, the final state sensor feature approach introduced
improved f1 scores by at least 5% when a baseline SVM
classifier was used. The e.g. [2] proposed four different
PD detection decision tree integration methods based on
the ForEx++ rule framework. In this paper, SysFor and
ForestPA decision forest algorithms are used to control
the number of trees in forest during training, which has
significant detection accuracy. The Forex++ framework is
used to improve the establishment process of decision forest
via improving detection capability. The experiment validated
these methods separately through tenfold cross-validation,
LOSO cross-validation, and an ideal training—testing split of
instances. Compared with other feature sorting and selection
schemes, four methods are proved to be a robust one. The
e.g. [3] examines the use of artificial neural networks using
GPS-based large datasets and additional generated data to
predict the choice of mode of transport for a new metro line
in the Amsterdam metropolitan area along the north-south
axis of the city. The study found that if the data on which
the model was trained and tested were collected over a very
similar underlying transport network, the model performed
better on improving the prediction rate. And the results
also seem to imply that behavioral patterns have changed
significantly with the opening of new subway lines and
the reorganization of the network, so it would certainly be
interesting to study these in more detail. In order to deal
with the uncertainty of human behavior, an improved fuzzy
finite state machine (FFSM) model is proposed in e.g. [4] by

81407

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

combining it with LSTM neural network and convolutional
neural network (CNN). In this study, LSTM is added to
enhance the learning ability of FFSM model and accurately
generate fuzzy rules that control the transition between
system states. CNN is added to better simulate daily human
activities and collect digital and temporal information from
sensory data. The experiment also proves the effectiveness
of the proposed method, especially when it is applied to
large data sets, the performance will be more steady and
reliable. The e.g. [5] proposed a method combining fuzziness
and semantic knowledge (called semFBnet) to optimize
the poor performance of discrete Bayes due to the strict
boundary values of discretization data, the uncertainty of
parameter values and the lack of domain semantic knowledge.
The method reduces uncertainty in the parametric school
process and evaluates multiple daily time series predictions of
temperature, wind speed, relative humidity and precipitation
rates for different climatic regions in India. The study shows
that compared with other methods, the semFBnet analysis
results are encouraging, and the prediction performance is
improved with less uncertainty.

The algorithm discussed and optimized in this paper is
K-Nearst Neighbors (KNN for short). The basic idea is: the
labels of categories are known for the training data. when the
test data is processed, the algorithm compares the test data’s
features with those of the training data, and find the top K
data points that are the most similar to the test data. Then
the category of the test data is the category that appears most
frequently among the top K data. Because KNN mainly relies
on the surrounding limited adjacent samples, not the method
of discriminating the class domain to determine the category,
this algorithm is more suitable than others for samples to be
divided with more overlapping class domains. KNN can be
used not only for classification, but also for regression. The
attributes of a sample can be obtained by finding the k nearest
neighbors of it and assigning the average value of attributes of
these neighbors to it. A more useful way is to assign different
weights to neighbors at different distances on the sample, like
the weight is inversely proportional to the distance. In this
paper, based on the traditional KNN algorithm, the following
three operations are done:

(1) In terms of distance measurement, Pearson correlation
coefficient is used to replace Euclidean Metric to check and
calculate the similarity between each attribute of test and
training data from the perspective of correlation.

(2) In terms of refining attribute values, entropy weight
method is adopted to determine attribute weights according
to the variation degree of each attribute of data, which makes
the result of distance measurement more objective.

(3) In terms of determining the type of samples, Gaussian
optimization is used to optimize weights of samples with
different distances to prevent the error of prediction types
due to the imbalance of numbers of different samples, and
the purpose is to improve prediction rates.

In this paper, the new algorithm is called PEWM_G KNN.

The main contributions are summarized as follows:

81408

1. This paper presents a new algorithm——PEWM_G
KNN, based on Pearson measure, entropy weight method and
Gaussian function optimization.

2. It can be seen from the above optimization steps (1) and
(2) that Pearson measure is used to replace the traditional
Euclidean distance to solve the low prediction rate caused
by the dimensional problem. In addition, entropy weight
method is added to bring the weight of features into distance
measurement, so as to refine the calculation with more
comprehensive research.

3. According to the optimization step(3), this algorithm
uses Gaussian function to solve the problem of low prediction
accuracy caused by different numbers of instances in datasets.

4. The model is superior to other classifiers, such as KNN,
Decision Tree, Adaboost and Random Forest. And the more
large number of instances is, the more significant prediction
effect of the model is.

5. The optimization algorithm is really applied to a big data
platform, and related parameters are adjusted and optimized
by combining platform parameters and operation process.
Experimental results show that the parameter optimization
has little influence on the prediction rate, but can effectively
reduce the platform running time.

The remaining sections of this paper are as follows.
In Sect. I, the relevant work of Hadoop and MapReduce are
presented. In Sect. III, the relevant background knowledge
and model of Hadoop are presented. In Sect. IV, the algorithm
knowledge and model of PEWM_G are illustrated. In Sect. V,
the comparison results of prediction rates of PEWM_G for
different datasets are given. In Sect. VI, the process of tuning
Hadoop configuration parameters is given, and after that, the
prediction rate and processing time of PEWM_G for different
datasets are compared. And the Sect. VII is the summary.

Il. RELATED WORK OF PLATFORM AND COMPUTING
FRAMEWORK

In addition to the optimization of KNN, this paper
also optimized parameters of big data management
platform —— Hadoop, in order to better simulate the real big
data processing environment. Hadoop is a distributed system
infrastructure developed by the Apache Foundation, which
mainly solves massive data storage, analysis and calculation
problems. It has the high reliability of bit-based storage and
data processing capabilities, When data is allocated through
available clusters to complete storage and computing tasks,
these clusters can be easily extended to thousands of nodes
with high scalability. Moreover, it can dynamically move
data between nodes and ensure the dynamic balance of each
node. As such, the processing speed is very fast and highly
efficient. It can also automatically save multiple copies of
data and reassign failed tasks with high fault tolerance.
Therefore, this paper chooses this platform for data training
and testing. Of course, the optimization of Hadoop platform
parameters involves lots of conceptual model principles, and
the analysis of them has also been mentioned in many studies.
For example: e.g. [6] proposes a method named KNN-DP to

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

alleviate the load imbalance caused by data skewness. The
primary goal is to evenly divide data to be processed in the
MapReduce framework into a large number of partitions,
which are then used to process small samples representing
large datasets supported by a sampling technique. It also uses
local nearest neighbors to obtain global nearest neighbors,
and adds a small amount of local redundant data to each node,
so as to improve the accuracy of approximate solution and
the speed of data processing. In this paper, when optimizing
platform operation parameters, the underlying principles
involved will be analyzed on the basis of conceptual model
principles. For example, when refining MapReduce, the ring
buffer at the Map end is systematically described, and the
relationship between the modulation and its operation logic
is analyzed to ensure optimization effect is consistent with
the parameter logic.

Besides studies on Hadoop parameters mentioned above,
there are also many literatures on the derivation of KNN
and big data computing framework MapReduce. In e.g. [7],
a new optimized hybrid research method is proposed, which
combines optimized genetic algorithm with principal and
independent component analysis to identify optimal subsets
and potential related features, respectively. Finally, KNN
algorithm is used to classify the anopheles gambiae dataset,
which contains 7 features and 2457 samples. Although the
actual instance size and features are not very large, there
are 708 significant features selected by the the optimized
genetic algorithm. After that, the Principal Component
Analysis (PCA) was used to select 10 potential features in
a short period of time, and KNN classification algorithm was
used for classification. However, although the dataset can
specifically solve the question of a certain type, the effect that
a single dataset may achieve is not significant. If there are
more or fewer features and samples, will it have an impact
on the prediction rate and precision of results? In addition,
configuration parameters of the experimental environment
may also affect experimental results, which are all factors
to be considered in the experiment. Therefore, this paper
selects datasets with different attributes, numbers of samples
and adjusts configuration parameters of the experimental
environment to compare effects of optimization algorithms,
and strive to objectively analyze algorithm optimization and
processing conditions from different perspectives.

The e.g. [8] proposes a three-partition active learn-
ing (TALK) through k-nearest neighbors, whose objective is
to minimize total training cost and misclassification cost. The
experiment focuses on reducing the total cost and aims to
create a new cost sensitive classification and active learning
algorithm, and it is representative in the selection of datasets.
Eight different types of data sets are selected, with different
eigenvalues, classification types and number of instances,
and they are used to compare classification costs with other
active learning algorithms so that the experimental results are
representative. This paper analyzes whether the complexity
of dataset has a certain degree of influence on PEWM G,
and also studies turning parameters of Hadoop to check its

VOLUME 10, 2022

applicability for various types of datasets. The four datasets in
this paper are all from the University of California, Irvine [9],
which are consistent with the datasets in e.g. [8], including iris
[10], breast cancer diagnosis in Wisconsin [11], dry bean [12]
and pulsar [13]. The properties of pulsars can be explained in
more detail in e.g. [14], and dry bean dataset is also often
used to discuss classification problems, as can be seen from
e.g. [15].

The e.g. [16] integrates the MapReduce parallel program-
ming framework [17] with heuristics to overcome scalability
challenges and provide much-needed privacy protection,
while producing efficient analysis results in limited execution
time. Features such as simplicity and high fault tolerance are
key to making MapReduce a promising framework, and this
is one reason why this paper chose to use it on Hadoop. The
study carries out multiple sets of experiments on the number
of compute nodes, size of data sets, and data hiding methods,
then it is concluded that the combination of MapReduce with
these adopted heuristic algorithms can achieve scalable and
multifold speed, thus producing efficient analysis results. It is
worth mentioning the continuous refinement of configuration
parameters in e.g. [16], from various aspects to analyze
the impact of platform architecture on the efficiency of
algorithms, experimental speed and so on. So, this paper will
also analyze the influence of various platform configuration
parameters on the prediction rate and time of PEWM G
based on underlying principles and experimental results of
MapReduce.

Based on MapReduce programming, e.g. [18] proposes
a meta-learning applied on MapReduce [19] to avoid
parallelization of machine learning algorithms and improve
their scalability to large datasets. Authors’s main point
was that the lack of iteration support in MapReduce may
result in the high overhead of creating circular methods
in Hadoop ([20], [21]), and it is easier to realize the
iterative algorithm in models using meta-learning mode
than directly using MapReduce to modify its own internal
algorithm. For example, in literature [22]-[25]. It can be
seen that MapReduce is still a popular parallel programming
framework so far, and the discussion and research on it are
still being enriched.

IlIl. PLATFORM RELATED TECHNICAL BACKGROUND

In this section, we will introduce the related technical back-
ground of Hadoop, the big data management platform used by
the experiment in this paper. And this includes Hadoop Dis-
tributed File System(HDFS), Yet Another Resource Nego-
tiator(YARN), ZooKeeper, hadoop high availability(HA) and
the computing framework MapReduce. Some details
of them related to the experiment will be mentioned in
subsequent experiments.

A. HDFS

The full name of HDFS is Hadoop Distributed File System,
which is a distributed file system designed to run on general-
purpose hardwares. In modern enterprise environments,

81409

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

single machine capacity is often insufficient to store large
amounts of data, and cross-machine storage is required. And
once the network is introduced into the system, it inevitably
adds programming complexity, such as ensuring that data is
not lost when nodes are not available. Traditional network
file systems (NFS) is a type of distributed file system with
limitations. Since files are stored on a single server, when
many clients access the server at the same time, the server
may be overloaded. In addition, operations on NFS files need
to be synchronized to the local PC, and the modification is
invisible to clients until the modification is synchronized to
servers. NFS is also a file system that shares data through
the Remote Procedure Call(RPC) communication protocol,
so it must run while ensuring that works. When files are
read and written, servers actually operates on a shared
file address. Once they fail, other machines cannot read,
written files and data cannot be retrieved. But HDFS can
be integrated with local systems, Amazon S3([26]-[29],
[30], [31]) and other systems, and can even be operated
through Web protocols. Its files are distributed on clustered
machines and copies are provided for fault tolerance and
reliability. For example, the client’s direct operations of
writing and reading files are distributed across machines
in the cluster, with no performance pressure of single
point. Compared with NFS, HDFS has system backup and
managed nodes can perform backup processing, which is
more secure and reliable. After data is stored in multiple
copies, it can resist various disasters. As long as one copy
is not lost, data will not be lost. Therefore, the data security is
high.
The storage architecture of HDFS is as follows:

ﬁ Metadata(NameNode)

NameSpace Block Map
State

NameNode

[—
- Local disk

Secondary
NameNode

Heartbeat&
BlockReport

DataNode DataNode DataNode DataNode

[=](z]

FIGURE 2. The storage architecture of HDFS.

It uses a master-slave architecture to store data, which
mainly consists of four parts in Fig 2: HDFS Client,
NameNode, DataNode and Secondary NameNode. Let’s take
a look at what each part does and how it works.

(1) HDFS Client is the client and user of HDFS. It can
manage HDFS through commands, such as starting or
stopping it, and access it through commands. When accessing
the HDFS, it first needs to upload files, which are divided into
small blocks {by, by, b3, by}. These blocks are then stored
in DataNodes, with which clients can interact to read or

81410

write data. However, before doing that, the HDFS Client
needs to interact with the NameNode to obtain the metadata
information stored in it.

(2) NameNode is the master in master-slave scheduling
structure, a supervisor manager. It keeps the directory tree
of all files in the file system, and tracks where across the
cluster the file data is kept. It does not store the data of
these files itself. One of its functions is to save and manage
HDFS metadata, which is the system data used to describe
the characteristics of a file, such as access rights, file owners,
and the distribution of data blocks. In a clustered file system,
distribution information includes the location of the file on
disk or cluster. Clients who need to operate a file must
firstly get its metadata before they can locate the location
and get the content or related attributes of the file. In HDFS,
the files that manage metadata are edits(operation log files)
and fsimage(namespace image files). When NameNode
is started, operations performed by HDFS are recorded
in edits, and fsimage contains metadata information in
HDFS (such as modified time, access time, data block
information). Therefore, NameNode can manages blocks on
DataNodes.

(3) DataNode is the slave in the master-slave scheduling
structure, when NameNode gives the commands to it, the
DataNode will performs the actual operations. HDFS firstly
divides a large file into several small blocks, and then
writes them to different nodes(called DataNodes), which
are responsible for storing file data. First, DataNode’s most
obvious function is to store data, store blocks as Linux files
on disk, and read and write them according to block id and
byte range. One block is backed up on multiple Datanodes.
In addition, DataNode will communicates with NameNode
periodically and receive instructions from it. If NameNode
does not receive the heartbeat message from one DataNode
within a specified period of time, the DataNode is marked
dead and the NameNode won’t forward further data operation
to it.

(4) HDFS has a node that periodically creates namespace
checkpoint operations, which is Secondary NameNode.
NameNode first records write operations such as creating,
moving and deleting files submitted by HDFS Clients in
edit logs(edits). The fsimage is a snapshot of metadata
in NameNode, which contains all metadata information
of DataNodes and their blocks. After NameNode starts,
changes to the file system are saved in edits. On the
next reboot, edits will be merged into fsimage to get
the latest snapshot. Secondary NameNode’s duty is to
merge edit logs(NameNode) into fsimage(NameNode). First,
it periodically fetches edit logs(edits) from NameNode and
updates them to fsimage(Secondary NameNode). It loads
the downloaded fsimage into local disk(Fig 2), and then
executes update operations in edits, keeping fsimage in
memory up to date. After the update succeeds, it will
copy fsimage back to NameNode, which will use this
new fsimage the next time it restarts, reducing the restart
time.

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

B. YARN

Apache Hadoop YARN(Yet Another Resource Negotiator)
is a new Hadoop explorer responsible for providing server
resources for computing applications, which is equivalent
to a distributed operating system platform. It can provide
unified resource management and scheduling for upper-layer
applications, and its introduction brings great benefits to
clusters in unified resource utilization management and data
sharing. YARN does not know the operating mechanism
of programs submitted by clients, but only provides the
scheduling of computing resources. That is, programs apply
for resources to YARN, and YARN allocates resources.
It is completely decoupled from running user programs,
which means that various types of the distributed computing
architecture can be run on it, like MapReduce [17], Storm
[32], DataMPI [33] and any framework of the resource
request mechanism that complies with YARN specifications.
so it is a universal resource scheduling platform. All existing
computing clusters in an enterprise can be integrated into a
physical cluster to improve resource utilization and facilitate
data sharing. Its architecture and workflow are as follows:

Resource Manager

Node Manager

FIGURE 3. The architecture and workflow of YARN.

First, let’s take a look at four major components of the
YARN architecture: ResourceManager(RM), Application-
Master(AM), NodeManager(NM) and Container.

(1) As a core component of YARN, Resource Manager
is the main control node of a YARN cluster that schedules
resources based on application requirements. It coordinates
and manages resources of the entire cluster (all NodeMan-
agers) and responds to resolution, scheduling, and monitoring
of applications submitted by clients. It is mainly composed
of Resource Scheduler and Application Manager. Resource
Scheduler allocates resources to running applications accord-
ing to certain policies based on system resource capacity and
queue constraints imposed by administrators. The Resource
Scheduler is not responsible for monitoring or tracking
application execution status, or for restarting failed tasks
caused by execution or hardware failure. These tasks are the
responsibility of the ApplicationMasters. Applications Man-
ager is responsible for managing all applications throughout
the system, including application submissions requesting

VOLUME 10, 2022

resources from the task scheduler to start ApplicationMaster,
monitoring the running state, and restart it if it fails.

(2) Each time a client submits an application, a correspond-
ing ApplicationMaster is generated for that, and this single
process is running on Node Manager. Its effect is to apply
for resources (represented by Containers) from ResourceM-
anager for applications, communicates with NodeManager
to start or stop tasks, and monitors the running status of all
tasks. If one task fails, it will apply for resources again and
restart this task. And after registering with ResourceManager,
ApplicationMaster will provides clients with job progress
information.

(3) NodeManager is the real resource provider in YARN
and one provider of the Container that actually executes the
application and monitors the resource usage of applications.
It is the resource and task manager on each child node,
the agent that manages the current node. Each node in
the YARN cluster runs a NodeManager. On the one hand,
NodeManager reports resource usage on the current node and
the running status of each Container to RM through heartbeat
information. On the other hand, it receives and processes
various requests from AM to start or stop Containers,
monitors the lifecycle management and resource usage
of Containers, tracks node health, and manages logs and
ancillary services used by different applications.

(4) Container is an abstraction of system resources in
YARN and a basic unit of resource allocation. It encapsulates
multi-dimensional resources on nodes, including CPU, mem-
ory, disk, and networks. When an AM applies for resources
from RM, resources returned by RM are represented by
Containers. It assigns a Container to each task, which can
only use the resources described in the Container. It is
also a dynamic resource division unit that is automatically
generated based on the resources required by submitted
applications.

The mentioned above are the four major components
involved in YARN. On this basis, let’s learn about the working
process and procedure of YARN in Fig 3:

1. The client submits an application program to Yarn,
including files related to it, ApplicationMaster(AM) com-
mands, ApplicationMaster(AM) programs, and etc.

2. ResourceManager(RM) assigns a Container to the appli-
cation, and communicates with NodeManager(NM) where
the Container is located. And this NM is required to start
the application’s corresponding ApplicationMaster(denoted
by MR APP Mstr) in the Container.

3. MR APP Mstr first registers with RM so that the client
can see the running status of the application directly from
RM, then requests resources for various tasks of the current
application and monitors their running status until the end of
the run(performed by Applications Manager).

4. AM applies for and obtains resources from RM through
RPC(Remote Procedure Call Protocol) protocol in polling
mode.

5. Once the AM requests resources, it communicates with
NM corresponding to the requested Container and asks it to

81411

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

start tasks. It is important to note that both NM and Container
are not unique, that is, there are multiple NM nodes and
Containers within the cluster to share the computation of
current application. In addition, there may be different types
of computing tasks, such as Map Task and Reduce Task in
Fig. 3.

6. NM configures the environment for tasks to be started
and writes the startup commands in a script that runs them.

7. Each task reports its running status and progress to the
corresponding MR APP Mstr through RPC protocol, so that
MR APP Mstr can master the running status and restart tasks
when they fail.

8. After application mentioned by the client is running,
MR APP Mstr logs out to RM and shuts itself down.

YARN allows multiple distributed systems to be well
integrated, greatly reducing the operation and maintenance
cost of the whole cluster. YARN monitors the status of
each distributed task. For the mutable part Application-
Master, clients can write their own App Mstr for different
programming models to allow more types of programming
models run in the Hadoop cluster. YARN can use cluster
resources greatly to avoid wasting them, and also realizes the
data sharing of clusters so that different distributed computing
framework can complete data interaction.

C. ZooKeeper

ZooKeeper is an open-source distributed application service,
an implementation of Google’s Chubby and a key component
of Hadoop. It provides consistency services for distributed
applications, so that they can implement functions such
as data publishing or subscribing, load balancing, naming
services, and etc based on ZooKeeper. It is designed to
encapsulate complex and error-prone services and provide
clients with easy-to-use interfaces, efficient and functional
systems.

A distributed system is a system which is composed of
multiple softwares running independently across multiple
physical hosts, and the performance of each server is
limited. But in a distributed system, many servers can be
consolidated into a cluster, whose capacity can be expanded
indefinitely. The advantages of this type of system are fast
data processing, high data security and mutual backup, but
then there’s a problem: how is information synchronized and
shared between nodes on a distributed system? The method
ZooKeeper uses is shared storage, and the process is as
follows:

In fact, the principle of distributed collaboration in
ZooKeeper is the same as project team synchronizing tasks
in Subversion(SVN). ZooKeeper is like SVN, which stores
shared information about the completion of tasks and so
on. Each distributed application node is a member subscribs
to this shared information. When the master node (leader)
changes the labor division information of a slave node, this
slave that subscribles to the ZooKeeper will be notified and
get its latest task assignment. When finishing tasks, the slave
will store the completion to master node that subscribed to

81412

1.The master node updates the task

ZooKeeper(Subversion)

3.Slave nodes obtain the latest task
data from ZooKeeper

2.ZooKeeper notifies slave nodes of
changes in task data

FIGURE 4. The process of shared storage.

this task’s completion information, so it will be notified that
ZooKeeper is complete. Problems in most distributed systems
are caused by information sharing. If information between
nodes can’t be shared and synchronized in a timely manner,
various problems will occur in the collaboration process.
ZooKeeper solves the problem of collaboration by ensuring
the consistency of information in distributed systems.

The ZooKeeper application mentioned in this paper is
only used in Hadoop high availability(HA). Other areas
of ZooKeeper such as main flow selection, synchroniza-
tion flow, workflow-leader, workflow-follower, etc. are not
described here.

D. HA

The most critical strategy of HA, or high availability,
is to eliminate single points of failure. The single point of
failure (SPOF) means that a failure in a system makes the
entire system unable to function. In other words, a single point
of failure causes an overall failure. In cluster environment,
pressure is common, especially when there is only one
NameNode. Once a failure occurs, it takes a long time to
restart the system immediately, and the system cannot work
during this period. Also, a single Namenode has limited
memory, making DateNodes unscalable. The above problems
are solved by configuring Active and Standby NameNodes
to implement hot backup in HA. This is illustrated in the
following HA architecture diagram:

Inside the blue box at the top, there is a new component
called FailoverController. Its full name is ZKFailover-
Controller(ZKFC), and it is a single ZooKeeper client.
In Hadoop HA, it monitors and manages states of NameNode,
with which it has a one-to-one relationship. Fig. 5 is a
workflow diagram of Hadoop high availability, and NN
represents NameNode, DN represents DataNode, ZK repre-
sents ZooKeeper. In this diagram, there are two NameNodes,
one is Active and other is Standby. And they are not
controlled directly by ZooKeeper, but by their respective
ZKFailoverController(ZKFC)-specific processes. On the one
hand, ZKFC keeps the heartbeat with ZooKeeper and
sends its connection information, status information and

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

Heartbeat Heartbeat

Shared NN state
through Quorum

Monitor Health of JournalNodes

of NN \ /
Block Reports to Active

& Standby DN
fencing:only obey
commands from active

FIGURE 5. The HA architecture diagram.

Standby

Monitor Health
of NN

task information back to ZooKeeper. On the other hand,
the health information of NameNode is also monitored.
When a NameNode goes down, it reports to its ZooKeeper,
and the ZooKeeper of the other NameNode also gets
information about its outage, because the information within
the ZooKeeper cluster is synchronized. Once it gets this infor-
mation, it sends an instruction to the NameNode it controls
to switch from Standby to Active. Real-time information
synchronization of NameNodes is achieved through Jour-
nalNodes(JN). The NameNode initially in Active periodically
writes edits to JournalNode, and another Standby NameNode
periodically takes edits out of JournalNode to itself.The
above operation ensures not only the high availability of the
NameNode, but also that the DataNode can communicate
with the NameNode of Active, Standby. Once the Active one
goes down, DataNode also automatically communicates with
the new Active.

As you can see from the above description and Fig. 5,
HA in this figure is not so much for Hadoop clearly, but
for NameNode. Its most important function is active/standby
switchover. So far, the background of experimental platform
of this paper has been introduced, and the final cluster
architecture built in this paper is Hadoop HA. A more
detailed introduction of the hardware configuration involved
in this paper will be introduced in the subsequent experiment
section.

E. MapReduce
MapReduce is a programming model for parallel operations
on large-scale datasets. Concepts ‘“Map (mapping)” and
“Reduce (contracting)” are their main ideas. The current
software implementation is to specify a Map function to map
a set of key-value pairs into a new set of key-value pairs, and
to specify a concurrent Reduce function to ensure that each
of all mapped pairs shares the same key group. Mapper is
responsible for Map, and Reducer is responsible for Reduce.
MapReduce’s biggest characteristic is divide and conquer:
(1) Mapper is responsible for ‘“divide”, which divides
complex tasks into several simple tasks: 1) the tasks whose
sizes of data or calculations are greatly reduced compared to

VOLUME 10, 2022

the original task, 2) the tasks are assigned to the node where
the required data is stored for the calculation, 3) the tasks can
be computed in parallel with little dependencies on others.

(2) Reducer is responsible for summarizing the results
from the map stage. The user can set the parameter values
in the relevant configuration file to determine the number of
Reducers needed for a specific problem.

This is the concept of MapReduce, which works as follows:

FIGURE 6. Workflow of MapReduce.

1. First, clients need to upload some source files to HDFS
for processing and classification. These files will be split
into split blocks after being uploaded. The number of split
blocks and the size of each block can be set in Hadoop’s
configuration file.

2. On the Map end, each split block has a corresponding
Map responsible for the partitioning of the data. A buffer
pool, kvbuffer, then reads the input split blocks as key-value
pairs. When the current read data reaches a certain threshold,
kvbuffer outputs it and sort each key-value pair, exporting
them in turn as < k, v >. The buffer pool size and threshold
can be set in Hadoop configuration file.

3. Then on the shuffle end, key-value pairs output by
the Map end is spilled to the disk first. Of course, if tasks

81413

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

uploaded by client are computational and involve more
computation, we can reduce the number of spilling using
the corresponding settings in the Hadoop configuration file,
thus reducing disk I/O. MapReduce then merges the spill
blocks, combining values of the same key. However, it is
important to note that the calculation of values of the
same key is not performed at this stage. For example, for
one key aaa, one map contains value 5 and another map
contains value 6. The data stored on disk after the merge is
“aaa’,[5,6,...]].

4. Finally, on the Reduce end, merged files on the disk
from the shuffle phase is first exported to Buffers. The
purpose is also to prevent reading merged files with large
size and thus causing excessive disk I/O times. Of course,
the Buffer works in the same way as the kvbuffer on the
Map side. When a certain threshold is reached, the data
in the Buffer is spilled and merged into a file, and each
Reduce corresponds to an output file to be processed. Then
Reduce computes these files, that is, merges values of the
same key and outputs them as < k,v >. Eventually, the
Reduce will merge all key-value pairs in the file into parts
and upload them to HDFS to complete the entire MapReduce
process. And the number of Reduce and the size of Buffer
can also be specified in the Hadoop configuration file.
At this point, the MapReduce workflow ends. Of course,
there are some unmentioned workflow details and princi-
ples that are related to the platform parameters outlined
below. They will be covered and analyzed in subsequent
experiments.

Apache Hadoop MapReduce is a distributed computational
framework developed by Doug Cutting based on Google’s
MapReduce paper in e.g. [34]. It has many characteristics:
1) Easy to program. It simply implements some interfaces,
and you can complete a distributed program, which can
be distributed to a large number of cheap PC machines.
2) Good scalability. When your computing resources are not
satisfied, you can expand its computing power by simply
adding more machines. 3) High fault tolerance. When a
machine in the cluster is down, it can transfer the above
computational task to another node without making the task
fail. And this process does not require human intervention
and is completely done internally by Hadoop. 4) Suitable for
offline processing. The MapReduce is difficult to do if the
processed task is asked to return a millisecond-level result.
5) Wide application range. Many technical frameworks in the
Hadoop ecosystem, such as Hive, Flume, Sqoop, Azkaban,
and other underlying computing engines, are all using Apache
Hadoop MapReduce.

IV. ALGORITHM MODEL

Because the algorithm PEWM_G KNN in this paper is
optimized on the basis of KNN, algorithm models of its
optimization will be introduced one by one in this section.
Including k-nearest neighbor(KNN), Pearson correlation
coefficient, entropy weight method(EWM) and Gaussian
function.

81414

A. KNN

K-nearest neighbor (KNN) algorithm is a famous pattern
recognition statistical method, used broadly in machine learn-
ing classification. It is a relatively mature method in theory.
It is both one of the simplest machine learning algorithms, the
most basic of instance-based learning methods, and one of
the best text classification algorithms. The k means k nearest
neighbors. If most of the k most similar samples in a feature
space (the closest neighbor in it) belong to a certain category,
the sample also belongs to this category. KNN’s concept
diagram is as follows:

A class 1
l:l class 2
O class 3

stxa““c

FIGURE 7. The concept diagram of KNN.

As shown in Fig. 7, for a point of unknown categories, the
value of k directly affects the determination of its category.
For example, when k = 1, there’s only 1 neighbor, and its
class is 3. So the category of the unknown point is also class
3. When k = 3, the number of class 2 is 2, and the number of
class 3 is 1, so the category of the point is 2. By definition,
we can know that different values of k will have an impact on
the determination of unknown point’s categories. Of course,
excessive k values can affect the results. If a smaller k value is
chosen, it means training instances in smaller neighborhoods.
Only those instances close to the unknown point will affect
the prediction results. The disadvantage of a smaller k value
is that learning estimation errors will increase, and results
will be sensitive to the instances of close neighbors. If the
adjacent instance points happen to be noisy, the prediction
will be wrong. In other words, the reduced k means that
overall model becomes complex, which is prone to over-
fitting. If a large k is chosen, it means training instances in
larger neighborhoods. The advantage is that estimation errors
of training can be reduced. But the disadvantage of a larger
K value is that approximate errors will increase, because
the training instances far from the input one will now affect
the prediction results. Increasing the k means that overall
model become simple. And if it is deployed on Hadoop for
prediction, the larger k increases the computational pressure
on a single node. For a dataset with multiple number of
records, both the computation speed and load pressure on
the service node will increase more. Therefore, choosing
a suitable k can yield a more reliable prediction result.

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

However, its value involved in this paper is fixed after many
experiments, so it is not within the optimization range of this
paper.

As we can see from Fig. 7, when determining whether
the unknown point and known points are of the same
class, the distance between the two is also determined. The
distance calculation is one of optimizations we made in
this experiment. Let’s first introduce the default distance
calculation formula of native KNN compared with PEWM_G
KNN in this experiment, the Euclidean Metric:

p = =52 + (2 — 1 M

In mathematics, Euclidean Metric is a distance or an ordi-
nary distance (straight line) between two points in Euclidean
space. It is a commonly adopted distance definition, meaning
the true distance between two points in an m-dimensional
space, or the natural length of vectors. In two and three
dimensions, it also means the actual distance between two
points. Suppose there are two points (x1, y1) and (x2, y2) in
a 2-dimensional space, p is the Euclidean Metric between
them. So the formulas for three and n-dimensional Spaces can
be derived as follows:

p = \/(X2 —x1)?+ 2 —y1)? + (2 —21)?

@

As can be seen from above formulas that the Euclidean
Metric is actually the simplest direct calculation formula
of the distance between two points. Although it is better
understood, this does not mean it’s applicable to all statistical
problems. The real issue is that in most statistical cases,
its distance is unsatisfactory. Because it doesn’t take into
account differences between different variables. For example,
the value range of the variable A is 0 to 1, and the
value range of variable B is 0 to 10,000, so that a small
difference in B will outweigh the differences in A, making
a higher impact on the calculated Euclidean distance. That
is, when the coordinates represent measurements, they tend
to have random fluctuations of varying magnitude. When
each variable is a quantity of different properties, the
“distance” is sensitive to units of variables. Euclidean Metric
doesn’t consider the difference between different attributes
(indicators or variables) of a point, thus fails to meet
the practical requirements of some use cases. Therefore,
based on this finding, this paper will use Pearson metric
instead of Euclidean Metric distance to better calculate the
classification distance in terms of similarity.

B. PEARSON CORRELATION COEFFICIENT

In statistics, Pearson correlation coefficient, also known
as Pearson’s product moment correlation coefficient
(PPMCC or PCCs), is used to measure the correlation
(linear correlation) between two variables X and Y. It is

VOLUME 10, 2022

defined as follows:
Cov(X,Y) E(X— EX)Y — EY)))

= /D0 /D)D)
E is the mathematical expectation or mean, D is the variance,
/D is the standard deviation, E(X-E(X)(Y-E(Y)) is called
the covariance of random variables X and Y, as Cov(X,Y).
And the quotient of the covariance and standard deviation
between two variables is called the correlation coefficient of
the random variables X and Y, as pyy. Therefore, Pearson
correlation coefficient can also be expressed by the following
formula:

3

é (X — X)(Y; — 7))

r

“)

> VO X7 V=T

And r can also be estimated by the standard score mean of the
sample point to obtain an expression equivalent to the above
equation:

1 KX,—-X Y—7Y
r= D (=X))

i=1

%, X and oy are the standard score, sample mean and
sample standard deviation, respectively.

We can try to understand Pearson correlation coefficients
in term of the matrix of covariance. We assume that two
groups of vectors X and Y, both contain n elements, then
calculating the covariance of both can be recorded as the
following formula:

i((xi - X)(Y; = Y))

Cov(X,Y) = =! . (©6)

Let’s analyze the numerator first. The numerator is positive
when either both X and Y are greater than the average X
or Y respectively, or when both X and Y are less than their
average respectively. Otherwise, the numerator is negative.
If the data is more complex and the positive and negative
cancel out, the covariance is closer to 0. Then we can’t tell
whether X and Y are related. However, if the two variables
are correlated, then the covariance is a large negative or
positive value. There is also a dimensional problem: assuming
that X is around 0.0001, but Y is around 10000, then the
covariance is excessively affected by Y (this is the defect
of European Metric). To eliminate the dimensional problem,
in Equation 4, X and Y are normalized by subtracting
their respective means and dividing their variances. The
net result is that the difference in different dimensions is
removed from the calculation. This operation is also called
z-score normalization, which means by transforming data of
different magnitude into scores of uniform measures, the data
comparability is improved, and the results are not affected by
the different magnitude.

The range of values Pearson correlation coefficient takes
is from —1 to 1. The larger the absolute value, the higher

81415

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

the correlation between X and Y. When X and Y are linearly
correlated, the correlation coefficient is 1 (positive linear
correlation) or —1(negative linear correlation). When the
correlation coefficient is 0, X and Y variables are unrelated.
Therefore, our first step of optimization in KNN is to replace
the Euclidean Metric with the absolute value of Pearson
correlation coefficient, which solves the dimensional problem
of distance from the similarity and simplifies the measure
comparison. The corresponding relationship between the
range of absolute value and similarity degree is as follows:

C. EWM

Entropy weight method(EWM) is an objective assignment
method. Entropy is a physical concept of thermodynamics,
which is a measure of system disorder. The larger the
entropy is, the more chaotic the system is (and the less
information it carries). The smaller entropy means the
system is more orderly (and it carries more information).
Therefore, information entropy draws from the concept of
entropy to describe the size of event information on average.
Mathematically, information entropy is the expectation of the
amount of information contained by an event(or mean, is the
probability of each possible outcome in a trial multiplied by
the sum of its outcome). In the process of specific use, EWM
calculates the entropy right of each index according to the
degree of variation, and then corrects weights through the
entropy right, in order to obtain the more objective weight.
The implementation steps of EWM are as follows:

(1) First, it is necessary to check if there are negative
numbers in the input matrix, and if so, to re-standardize to
the non-negative interval (each element is non-negative when
calculating the probability later). Assuming that there are n
objects to be evaluated and m evaluation indicators (which
have been positively normalized), the positively normalized
matrix formed by them is as follows:

X1l X122 ... Xim
X1 X222 ... Xom

X = @)
Xnl Xn2 cee Xnm

Assuming the normalized matrix be Z, and the element in Z
can be represented by z;;:
X
zj = —=—= ®)
n

2
2%
i=1

where i is the position of the evaluation object, and j is the
position of the evaluation indicator. After this, EWM will also
check whether there is a negative number in the Z matrix.
If there is, it is necessary to use another standardization
method for X to obtain the Z matrix. The standardized
formula is:
_ Xij — min{xlj, X2jy e vy x,,j}
max{xlj, X2jyevns xnj} — min{xlj, X2jy vvs x,,j}

€))

Zj

81416

TABLE 1. The corresponding relationship between the range of absolute
value and similarity degree.

Value range Similarity degree

0.8-1.0 Highly

0.6-0.8 Strong

0.4-0.6 Moderate
0.2-0.4 Weak

0.0-0.2 Very weak or no

At this point, the normalization of the matrix X is over.
The purpose of this step is to compress the data within
the range of [0,1], without negative numbers, and to keep
the mathematical units between the data consistent. This is
also one of the effective methods to solve the dimensional
problem.

(2) Calculating the proportion of the ith sample of the jth
indicator and regarding it as the probability used in relative
entropy calculation. Assuming that there are n objects to
be evaluated and m evaluation indicators, the non-negative
matrix obtained after the previous step is as follows:

211 <12 e Zlm
221 222 e 22m

7 — (10)
Znl Zn2 e Znm

The probability matrix P is then calculated, and the formula
of each element pij in it is as follows:

.
pj =5 (11)

> %
i=1

The sum of each column is guaranteed to be 1, that is, the
corresponding probability sum of each index is 1.

(3) Calculating the information entropy of each indicator,
the information utility value and normalizing it to obtain the
entropy weight of each indicator. For the jth indicator, the
information entropy is calculated as follows:

- ,
ej=—m2p,’jln(pij), G=12,....m) (12
i=1

The information utility value is as follows:
dj =1- €j (]3)

Then the larger information utility value is, the more infor-
mation it corresponds to. By normalizing these information
utility values, we can get the entropy weight for each
indicator:

dj
>

=1

wj = (14)

~.
&

Generally speaking, the smaller an indicator’s information
entropy is, the more valuable the indicator is, and the more

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

information it can provide. Such an indicator can play
greater role in the comprehensive evaluation, and get assigned
more weight. Entropy was first introduced by Shannon,
and has been widely used in engineering technology, social
economy and other fields. In the specific use, according to the
dispersion degree of data of each indicator, the information
entropy calculates the entropy right, and then corrects it, so as
to get a more objective weight.

D. GAUSSIAN FUNCTION

Before introducing the Gaussian function, we need to
understand a drawback of the original KNN: if the number
of samples in the original dataset is unbalanced, it is easy to
conclude that the participation probability of each category
is always higher for the category with the larger number of
samples. For example, the dataset has 1 letter ’a’ and 99 letters
’b’, assuming a sample of "a’ and with a k value set to 5. So no
matter how similar the test array is to the ’a’, the proportion
of category ’b’ is always the largest of the final k neighbors.
If so, the algorithm failed. To avoid this, we can weight KNN.
The idea is: neighbors with smaller distances from the sample
have higher weights. So the Gaussian is introduced:

«=b)?

f(x)=ae 2* (15)

where, a, b, and c are real constants, and a > 0. A is the height
of curved spike, b is the coordinate of the center of spike, and
c is called the standard variance, characterizing the width of
bell curve. The Gaussian function is a normally distributed
density function with the following figure:

0.4

0.3 F

0.2

0.1

-4 -3 -2 -1 0 1 2 3 4

FIGURE 8. The gaussian function.

These corresponding parameters are b = u, ¢ = o, and
a=- ! = We can see from Fig. 8 that if the closer the known
categories are to the central point, namely the test point in the
real sample, the larger their corresponding Gaussian function
is. Conversely, the smaller Gaussian function indicates that
the known categories point is farther away from the test point.

If we know the k nearest neighbors, we can then
calculate their weight values, and thus determine the category

VOLUME 10, 2022

of true unknown points. For example, if k = 5, the
categories of k close neighbors around the unknown point
are {A,A,A,B,B}. There are 3 A and 2 B. Generally
speaking, the discrimination result is A. However, in the
weighted case, the weights of five nearest neighbors are
{A(0.2), A(0.3), A(0.1), B(0.4), B(0.5)}. The weight equiva-
lent to A is 0.6, B is 0.9, so B is selected as the category of
unknown point. Therefore, Gaussian function well solves the
problem caused by different classes and number imbalance
of the original KNN algorithm.

E. PEWM_G KNN
From the above four subsections in this section, the
optimization steps of the KNN algorithm are as follows:

(1) Replacing Euclidean Metric with Pearson correlation
coefficient. The purpose is to eliminate dimensional problems
brought by the units of dataset properties, so that data
of different orders of magnitude are converted into scores
of uniform measures for comparison so that results are
unaffected by the calculated magnitude.

(2) On the basis of Pearson correlation coefficient, entropy
weight method is introduced. When the two values X and
Y belong to the same attribute (same column) in the test set
and the training set for the distance calculation, multiply the
weight calculated by their entropy weight method. Based on
Equations 4 and 14, the resulting new attribute model is as
follows:

> ((wiX; — wiX)(w;Yj — w;Y))
=1

(16)

r/ = n — n —
> JOuiX; = WX 3 \JowyYy — w72
j=1 j=1

where,

ij =1 (17)

In Equation 16 and 17, j is the jth indicator or the jth attribute
(or column j) in the dataset, and the sum of weights for
all attributes (all columns) of dataset is 1. On the basis of
eliminating dimension, the entropy weight method calculates
the weight of each attribute according to its degree of
variation. Then each attribute of dataset gets a more objective
distance indicator multiplied by the weight. Finally, they will
be put into Pearson’s formula to calculate the true distance in
Fig. 7. So far, above two steps are the optimization of distance
calculation before selecting k nearest neighbors in KNN.

(3) After the above two-step calculation, k neighbors
are weighted using the Gaussian function. For example,
by Equation 16 we can obtain the Pearson_Entropy Weight
distance {ry,rs,...,rg}. On the basis of Equation 15,
combined with Equation 16, we can know that the last weight
formula of PEWM_G KNN is:

)?

f(r) =ae 22 (18)

81417

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

For k neighbors, if multiple neighbors are of the same class,
the weight of this class needs to be superimposed together.
The formula is as follows:

e,

fr) =fri) +f) + ...+) +ae 22 (19)

And i is equal to the number of appearances of a certain
class. Comparing Equation 15 and 18 we can know that x-b
is also r, the Pearson correlation coefficient of the points
of known species and the point tested. After that, we can
get all the weights of the known classes in k neighbors in
Equation 19, so as to achieve a more accurate prediction
task. This step can not only solve the problem of algorithm
failure caused by the imbalance of categories of a dataset, but
also further refine the concept of distance and predict from a
more reasonable and objective perspective. At this point, the
algorithm optimization step is completely over.

F. ALGORITHM FLOW

From the above sections of this section, we can know models
of the original KNN algorithm and the optimized PEWM_G
KNN model. Next, we need to understand the steps in their
algorithm programs. This section will explain their algorithm
flows and analyze their own algorithm complexity in detail.
First, let’s take a look at the notations and annotations
involved in the algorithm flow, as shown in the table below:

TABLE 2. Symbols and notations used in the present paper.

Notation Meaning

Init() Initialize a data set or collection

train Training set

test Test set

total Total dataset

k K-th nearest neighbor point

lab Belonging category

get() Get the data at the specified index of a dataset or collection
put() Put the data into the specified index of a dataset or collection
Sort() Sort the collection in positive order

Resort() Sort the collection in reverse order

delete() Delete an element from the collection

containsKey() Determine whether the key is contained in a key-value pair
key() Get the value at the specified index in a key-value pair
getWeight() Set of weights of a specified dataset by entropy weight method

The first is the algorithm flow of the original KNN
algorithm:

From Algorithm 1, we can know that after initializations
of training set and test set, the training set is traversed
(lines 1-10). Firstly, set of features is obtained, and cateogry
lab of the current instance is recorded(because cateogries of
the dataset covered in this paper are in the last column, the
index value is features.size - 1), then features then removes
lab(lines 2-4). The second step is to traverse the test set and
obtain curr_test, the feature set of a specified row index of test
set, and then iterate it and add the corresponding Euclidean
calculation formula of Equation 2 to tmp. Finally, key_value
is recorded as a collection of tuples(zmp,lab)(lines 5-10). The
third step is to sort key_value by tmp from small to large. After
the k is determined, the lab of k positions in key_value can be

81418

Algorithm 1 KNN
Input:
The set of training set, Init(train);
The set of test set, Init(test);
Output:
The set of K neighbors, result;
1: for i in train.size:
2: features = train.get (i)
3 lab = features.get(features.size — 1)
4: features.delete(lab)
5. forjin test.size:
6
7
8

curr_test = test.get(j)
tmp =0
: for k in curr_test.size:
9: tmp += (curr_test.get(k) - features.get (k))*
10: key_value.put(tmp, lab)
11: Sort(key_value)
12: Init(k)
13: for n in (key_value.size & n < k):
14: result.put(key_value.get(n))
15: return result;

added to result(lines 11-15). At the end of KNN, the result of
this prediction can be obtained by counting categories with
the largest number of result.

The second is the algorithm flow of the PEWM_G KNN
algorithm:

From Algorithm 2, we can know that after the initialization,
we also need to use entropy weight method to calculate
the set of weights corresponding to feature values of total
dataset weights, namely, the result of Equation 14. The first
step is the same as KNN, from lines 1 to 7. In the second
step, N is the number of features of the current number of
lines in the test set, weight is wj in Equation 16, SumX,
SumY, SumX_sq, SumY_sq, SumXY, a is the numerator, and
b is the denominator of Equation 16(lines 8-21). If b is 0,
tmp is set to 0. Then, key_value is recorded as a collection
of tuples(tmp,lab), and it is sorted by rmp from large to
small(lines 22-28). The third step is to assign weights to k
nearest neighbors by gaussian function. After initializing k
and label_dis, we can get the category of a current k-nearest
neighbor cur_I. Then, if the initialized label_dis does not
contain cur_I, we can store (cur_1,0) in it. But if label_dis
contains the current cur_I, we can change the value at it to a
sum of superimposed Gaussian function, which is the result
of Equation 19(lines 29-35). At the end of the algorithm, the
type of a maximum value in label_dis is selected.

Algorithms 1 and 2 not only help us understand flows
and details of KNN and PEWM_G KNN, but also show
the algorithm complexity. If we have N samples, and each
sample is characterized by a vector in D dimensions. For any
target sample in Algorithm 1, its prediction needs to cycle all
test samples, and the complexity is O(N)(N can be viewed
as test.size). In addition, when we calculate the distance
between two samples, another complexity depends on the

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

Algorithm 2 PEWM_G KNN
Input:
The set of training set, Init(train);
The set of test set, Init(test);
The set of total dataset, Init(total);
The set of weights by entropy weight method, weights =
getWeight(total);
Output:
A collection of key-value pairs used to store category and
distance measures, label_dis;
for i in train.size:
2: features = train.get(i)
lab = features.get(features.size — 1)
4: features.delete(lab)
for j in test .size:

6: curr_test = test.get(j)
tmp =0
8: SumX = SumY = SumX_sq =0
SumY _sq = SumXY = weight =0
10: N = curr_test.size
for k in curr_test.size:
12: weight = weights.get (k)
SumX += weight * curr_test.get(k)
14: SumY += weight * features.get(k)
SumX_sq += (weight * curr_test.get(k))?
16: SumY _sq += (weight * features.get(k))?
SumXY += weight * curr_test.get(k) *
18: weight * features.get (k)

a = SumXY - SumX * SumY /N
20: b = /(SumX_sq — SumX?) % (SumY _sq — SumY?2)

/N
22: tmp = la/bl
ifb==0:
24: tmp =0

key_value.put(tmp, lab)
26: Resort(key_value)
Init(k)
28: Init(label_dis)
for n in (key_value.size & n < k):
30: cur_l = key_value.get(n)
if(!label _dis.containsKey(cur_l))
32: label_dis.put(cur_l, 0)
label _dis.put(cur_l, label _dis.get(cur_l)
34: +e—(key_value.key(n))z)/Z)

return label_dis;

characteristic dimension, which is O(D)(D can be viewed
as curr_test.size). So the total complexity is the product of
them, which is O(N*D). For convenience, we assume that
N =D, and the complexity of the algorithm can be expressed
as O(N?).

For Algorithm 2, the outer loop doesn’t change, there’s
still N samples. For the inner loop, calculating the dis-
tance between samples only adds multiple variables to the

VOLUME 10, 2022

memory(lines 12-18 in Algorithm 2), with no additional loop
increment. The inner complexity can still be expressed as
O(D). In other words, for PEWM_G KNN, its algorithm
complexity the same as that of KNN. However, this new
algorithm adds many variables to receive weights of entropy
weight method and Pearson coefficient parameters, while the
original algorithm does not. Therefore, the space complexity
changes from O(1) to O(N), where N refers to the number
of eigenvalue weights obtained by entropy weight method
during initialization, as well as multiple variables in the
memory cycle (lines 12-18 in Algorithm 2). So In order of
magnitude, the space complexity is O(N).

From the analysis of above two paragraphs, it can
be seen that PEWM_G KNN is an algorithm to solve
dimensional problems and simplify metric comparison by
adding eigenvalue weights of instances, Gaussian functions
of k-nearest neighbors and Pearson coefficients at the cost of
spatial memory. Subsequent experiments will verify whether
it has any effect on improving prediction rates of datasets.

V. COMPARISON OF ALGORITHM OPTIMIZATION
After introducing the algorithm model and optimization
steps, the next experiment is the algorithm test on Hadoop.

A. EXPERIMENTAL ENVIRONMENT

As mentioned in the previous Sect. III, the experimental
architecture of this study is constructed with reference to
Fig. 5. And based on this, it completes the true Hadoop high
availability environment combined with the YARN proposed
in Fig. 3. Its environmental architecture is composed as
follows:

On the premise of satisfying the perfect architecture,
the hardware configuration of each node also needs to be
rationalized to make the cluster environment better. To do
this, setting up hardware for the four nodes in Table 3:

Table 4 shows the hardware configurations for NodeOl,
02, 03, 04 from top to bottom. It is important to note
that NodeO1 does not need to be allocated much memory,
because it mainly sets up configuration files and global
variables for the experimental cluster on command lines in
the subsequent experimental steps and has fewer controls
in Table 3. Node02, 03, and 04 have management resource
scheduling configuration in YARN, in order to work with
datasets with different number of records. To ensure these
different datasets can be processed successfully, they are
assigned more memory space and CPU cores in order
to achieve high performance processing capacity and I/O
disk operation. The configuration of platform parameter
optimization mentioned in next section is also related to these
three nodes.

B. EXPERIMENTAL PROCEDURE

Now that we understand the experimental environment and
hardware configuration, let’s introduce the main steps of our
experiment:

81419

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

TABLE 3. Environmental architecture.

HDFS! YARN? HA3
Node NN DN RM NM ZK ZKFC N
NodeO1 v v v
Node02 v v v v v v
Node03 v v v v v
Node04 v v v v

Note: In HDFS(Fig. 2), NN represents NameNode, and DN represents DateNode. In YARN(Fig. 3), RM represents ResourceManager, and NM represents
NodeManager. In HA(Fig. 5), ZK represents ZooKeeper, ZKFC represents ZooKeeperFailoverController, and JN represents JournalNode.

1.Hadoop core data control.
2.Hadoop resource scheduling control.
3.Hadoop highly available control.

TABLE 4. Hardware configuration of the nodes.

1P oS CPU Mem Disk

192.168.88.36 CentOS6.5 64bit 1996.253MHZ single core 1GB 196GB
192.168.88.37 CentOS6.5 64bit 1996.253MHZ double cores 6GB 196GB
192.168.88.38 CentOS6.5 64bit 1996.253MHZ double cores 6GB 196GB
192.168.88.39 CentOS6.5 64bit 1996.253MHZ double cores 6GB 196GB

TABLE 5. Basic information about datasets.

Dataset Type Class Feature Instance
iris Numerical 3 4 150
breast cancer diagnosis Numerical 2 31 569
dry soybean Numerical 7 16 4084
pulsar Numerical 2 8 11307

(1) Prepare the datasets. All datasets involved in the
algorithm are from UC Irvine [9], including iris [10], breast
cancer diagnosis [11] in Wisconsin Island, USA, dry soybean
[12] and pulsar [13] datasets. The following table provides
some basic information about their four datasets:

All datasets we used in this test are classified datasets. Our
focus is on the prediction rate the optimized algorithm has
for these different datasets. The specific classes and features
of these datasets are not the consideration of the control
variables in this paper. In order to reflect the applicability
of the optimized algorithm, four datasets with different
application backgrounds are chosen.

(2) After getting the data for each dataset, it was divided
into a 30 percent test set and a 70 percent training set
through Pycharm. Such operations are repeated 15 times, and
15 combination of test and training sets is output, ensuring
that the predicted data results are representative.

(3) Next up, we need to implement the MapReduce
algorithm. We need to write three algorithm/programs to
compare the algorithm optimization steps and their respective
results. The first one is the original KNN algorithm, whose
distance metric and the weighted optimization have not
yet been modified, and the default distance measure is
the Euclidean Metric. The second is the distance measure
optimized by the Pearson correlation coefficient and entropy
weight method added to the original KNN. On the basis of

81420

solving the dimensionality problem in theory, it is compared
with the original algorithm. The third is to add gaussian
function on the basis of the second, which is used to carry
out weighted optimization for k nearest neighbors, so as to
determine the class of unknown points more reasonably and
compare with the original algorithm. We named the first
program as KNN, the second as PEWM KNN, and the third
as PEWM_G KNN.

(4) Lastly, we packaged the three algorithms into jar
packages, and uploaded them to the Hadoop cluster, and
tested them with the 15 combinations of test and training
datasets in step 2. HDFS, YARN and HA were then turned on,
and we tested every combination with the three algorithms
respectively for each dataset, and received 45 results. Then
the data visualization is used to show the change trend of the
data and compare it with others.

C. INTERPRETATION OF RESULT

After the algorithm prediction tasks were completed, 45 pre-
diction results of each of the four datasets used in this paper
were visualized. Their figures are as follows:

First, we can see from Fig. 9 that for iris dataset, the
prediction rate curves of the PEWM KNN is higher than
the original KNN curve, and the final PEWM_G KNN
curve is the highest. It shows that for this dataset, both the
optimization of the distance measurement and the Gaussian

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

0.88

0.84 -
123 45 6 7 8 9101112131415

KNN -+ PEWM KNN 4 PEWM_G KNN

FIGURE 9. The prediction rate comparison for dataset “iris.”

0.95

0.92

0.89

0.86

0.83:
1 2 3 4 5 6 7 8 9 1011 12 13 14 15

KNN <+ PEWM KNN -« PEWM_G KNN

FIGURE 10. The prediction rate comparison for dataset “breast cancer
diagnosis.”

optimization contributed to the prediction rate improvement.
In order to check if there are any limitations in any of the
optimization steps, we further analyzed other datasets.

From Fig. 10, we can see that the original KNN algorithm
outperformed the PEWM KNN algorithm in some of the tests.
However, the PEWM_G KNN curve still outperforms the
other two in all tests, and there is a larger difference between
its performance and that of the PEWM KNN when compared
to the test result shown in Fig. 9. Then we can preliminarily
conclude that adding Gaussian Optimization to PEWM_G
KNN contributed to its better performance. By comparing
only the curves of KNN and PEWM_G KNN in the above two
figures, we can conclude that PEWM_G KNN does improve
the prediction rate.

As shown in the curve change diagram of Fig. 11,
we can see that the advantages of the optimization algorithm
are gradually emerging. The curve of PEWM KNN is
significantly higher than that of KNN, and the curve of
PEWM_G KNN remains at the highest position. This figure
not only proves that the optimization of distance metric
improves the prediction rate, but also again verifies that the
overall prediction rate of the algorithm remains at the highest
after the addition of Gaussian optimization. And it can also
be seen that the dry soybean dataset is also a great dataset to
reflect the effect of every optimization step in this study.

Finally, the curve of PEWM_G KNN remains at the
highest position, as shown by the curve change in Fig. 12.
Although there is little difference between PEWM KNN

VOLUME 10, 2022

0.88

051 ‘/‘\A/‘—A\‘\/\/ﬁ\‘/"“\h\‘
072, NN

0.63

0.54+
1 2 3 4 5 6 7 8 9 1011 12 13 14 15

KNN -+ PEWM KNN +« PEWM_G KNN

FIGURE 11. The prediction rate comparison for dataset “dry soybean.”

0.98

r/‘/‘\‘/‘\r/‘\‘”"\h\‘/‘—_‘\l/‘

0.96
0.92

0.88

084 IW

1 2 3 45 6 7 8 9 1011 12 13 14 15
KNN <+ PEWM KNN « PEWM_G KNN

FIGURE 12. The prediction rate comparison for dataset “pulsar.”

and KNN curves after distance measurement optimization,
PEWM KNN does have a relatively better prediction rate.
Moreover, by comparing amplitudes of curve changes in the
above four graphs, we can see that the prediction rate is also
gradually leveling off.

However, based on Fig. 9-12, we can see that KNN
with entropy weight method and Pearson coefficient has
low stability of prediction. In Fig. 9 and 12, the curve
of PEWM KNN fluctuates greatly and its prediction is
unstable. And in Fig. 10, its prediction rate is not high.
Except in Fig.11, PEWM KNN has an obvious prediction
effect. It shows that the optimization combination of Pearson
coefficient and entropy weight method needs further research
and further optimization in the future. However, for PEWM
KNN with Gaussian function, its algorithmic advantage is
obvious. Although the curve fluctuation of PEWM_G KNN
is still large in Fig. 9 and 10, its prediction rate remains at
the highest. It shows that PEWM_G KNN improves the
prediction rate, although the prediction stability is not high for
the dataset with small number of instances. In Fig. 11 and 12,
PEWM_G KNN also maintains high predictive stability.
It shows that when the number of instances increases
and the environment is constantly approaching the real
application one, the PEWM_G KNN prediction rate not only
remains higher, but also improves the stability. Therefore,
the optimization algorithm proposed in this paper is effective

81421

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

in increasing the prediction rate. The prediction curves of
PEWM_G KNN and KNN are drawn separately, as shown
below:

KNN —

1 0.95 PEWM_GKNN ==

0.96 0.92

0.92 0.89

0.88 0.86

0 s e g e e e e e e S e R

0.88 0.98

P e o aaa s P9 i i

0.72 091

0.63 0.87
W oo e ee® e\ 0ot

0 W e e ey

FIGURE 13. Comparison in KNN and PEWM_G KNN.

At this point, we finish the discussion of function
optimization on prediction rate. As can be seen from Fig.13,
PEWM_G KNN is indeed superior to the original KNN in
terms of prediction rate. And with the increase of instances
from dataset “Iris” to “Pulsar”, the optimization effect
is more and more obvious and the stability is higher and
higher.

Of course, the above figures shows the comparison
between the original KNN and PEWM_G KNN. But
what about the result if we compare the new algorithm
with other common classification algorithms? Therefore,
PEWM_G KNN and KNN, Decision Tree [26], Adaboost
[58] and Random Forest [40] were compared. The number of
predictions for each algorithm is still 45, that is, 15 for each
dataset. The experimental results are shown below:

0.96
0.92

0.88

0.84 -
1 2 3 4 5 6 7 8 9 1011 12 13 14 15

- KNN + Descision Tree ® Adaboost ® Random Forest
+PEWM_G KNN

FIGURE 14. The prediction rate comparison for dataset “iris.”

As shown in Fig. 14, no matter for these common classifi-
cation algorithms or PEWM_G KNN, their accuracy curves
fluctuate greatly, indicating that their predictions are not
stable for datasets with small number of instances. Moreover,
the prediction rate of PEWM_G KNN is not significantly
different from that of Random Forest. It indicates that the

81422

advantage of PEWM_G KNN is not obvious for the dataset
with small number of instances, and we can use another
classification algorithm to replace it.

1
0.97

0.92

0.87

0.82

i 2 3 4 5 6 7 8 9 1011 12 13 14 15
- KNN + Descision Tree # Adaboost -® Random Forest

+PEWM_G KNN

FIGURE 15. The prediction rate comparison for dataset “breast cancer
diagnosis.”

As can be seen from Fig. 15, when the number of instances
began to increase, the amplitude of curve fluctuation
gradually began to decrease. In addition, the prediction rate
of PEWM_G KNN always remains the highest among several
algorithms. Although the difference with Random Forest
is not obvious, the advantages of its algorithm gradually
become prominent. In Fig. 16 and 17, the advantage of
PEWM_G KNN is obvious. Compared with other algorithms,
the prediction rate of PEWM_G KNN always remains the
highest, which is significantly different from that of Random
Forest. And fluctuation of the curve is gradually stable with
the increase of the number of instances.

0.9
0.81

0.72

0.63
12 03

4 5 6 7 8 9 10 11 12 13 14 15
#KNN + Descision Tree = Adaboost ® Random Forest

+PEWM_G KNN

FIGURE 16. The prediction rate comparison for dataset “dry soybean.”

To sum up, when the number of instances is small, the
prediction rate of PEWM_G KNN is not high, and its
prediction stability is low. So we can completely replace it
with other classification algorithms. But when the number
of instances increases and the environment is constantly
approaching the real application one, the prediction rate of
PEWM_G KNN reached the highest, and the stability of
prediction gradually became higher. Therefore, the model of
PEWM_G KNN is superior to other classifiers, such as KNN,
Decision Tree, Adaboost and Random Forest. And the more
large number of instances is, the more significant prediction
effect of the model is.

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

0.98
0.94

0.9
0.86

.
P _—— o
+.¢, ———o \.4—0

0.82 -
1

2 3 4 5 6 7 8 9 10 11 12 13 14 15
#KNN + Descision Tree # Adaboost -# Random Forest

4«PEWM_G KNN

TABLE 7. Original values of optimized parameters.

Default Location Name

800m mapred-site.xml mapreduce.task.io.sort.mb

0.8 mapred-site.xml mapreduce.map.sort.spill.percent
10 mapred-site.xml mapreduce.task.io.sort.factor
Xmx2200m mapred-site.xml mapreduce.map.java.opts
2750m mapred-site.xml mapreduce.map.memory.mb
Xmx200m | mapred-site.xml mapreduce.reduce.java.opts
1024m mapred-site.xml mapreduce.reduce.memory.mb
False mapred-site.xml mapreduce.map.output.compress
8192m yarn-site.xml mapreduce.resource.memory.mb

FIGURE 17. The prediction rate comparison for dataset “plusar.’

VI. PLATFORM PARAMETER TUNING

Before performing platform parameter tuning and effect
comparison, we need a general understanding of the algo-
rithmic computational flow of the program ——MapReduce
in Fig 6. When MapReduce runs on Hadoop, the platform
parameters are closely related to its calculation process and
the underlying algorithm. During parameter tuning, many
exceptions and program errors are related to the MapReduce
calculation process and details.

A. LIST OF PLATFORM PARAMETERS

As can be seen from e.g. [35], Hadoop platform has nearly
200 parameters, and not all of them need to optimized.
In this study, whether the optimization parameters involved
are necessary depends on the execution time of MapReduce
and whether the execution process is smooth. Therefore, the
parameters to be optimized were selected during prediction
processes of four datasets in this paper. The list is as follows:

B. PARAMETERS OPTIMIZATION EXPERIMENT

The next step is to introduce and tune each parameter in
Table 6. Of course, in the process of tuning, we strictly follow
the rule of control variable and tune the parameters in table5
from top to bottom. The original tuning parameters of this
experiment are shown in the table below:

1) mapreduce.task.io.sort.mb

This property manages the memory size of ring buffers, the

kvbuffer of Map in Fig. 6. Its schematic diagram is as follows:
The map() function is an user provided function. After

map() is called and the data processing is complete, the

TABLE 6. List of optimized parameters.

Default Location Name

100m mapred-site.xml mapreduce.task.io.sort.mb

0.8 mapred-site.xml mapreduce.map.sort.spill.percent
10 mapred-site.xml mapreduce.task.io.sort.factor
Xmx200m | mapred-site.xml mapreduce.map.java.opts

1024m mapred-site.xml mapreduce.map.memory.mb
Xmx200m | mapred-site.xml mapreduce.reduce.java.opts
1024m mapred-site.xml mapreduce.reduce.memory.mb
False mapred-site.xml mapreduce.map.output.compress
8192m yarn-site.xml mapreduce.resource.memory.mb

VOLUME 10, 2022

initial data

values
-_:?keys
B ——— keystart
-‘_iva uestart
valuelength

equator clear area

@l@

metadata

FIGURE 18. The schematic diagram of kvbuffer.

program usually calls outputCollector.collect() to output
the results. Inside this function, it shards the generated <
key, value >, and writes them to a ring memory buffer in
Fig. 6, 18. In kvbuffer, data input is divided into two main
parts: 1) Metadata, which is used to record properties of the
raw data. It contains the start position of the key, the start
position of the value, and length of the value. 2) Raw data,
which is the real data output by mapTask. It contains real
values of key and value. In other words, the input of kvbuffer
contains not only the value of key-value pair but also their
address, separated by the equator. When the size of data in
kvbuffer reaches or exceeds the threshold, it is written to
disk. This leaves another clear area so that mapTask can be
continued.

Now that we understand how kvbuffer works, we started
with 200mb of memory and increased it by 200MB with each
adjustment, and tested its effect on MapReduce execution
time and algorithm prediction rate. The selected data set is
“pulsar”. On the basis of meeting the maximum number
of records, parameters are tuned and the corresponding
relationship between their values and measured data is as
follows:

As shown in Fig. 19, the memory value of kvbuffer ranges
from 800m to 1200m, and the prediction rate keeps rising
until 1200m. When kvbuffer memory takes 1200m, Map,
Shuffle and Reduce phase has the least time, which means
that the MapReduce program has the minimum sum of
execution times. So on the basis of meeting the maximum
prediction rate of data set, saving the memory of ring buffer
and successfully completing MapReduce execution, when

81423

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

200sec 96.55%
180sec
160sec
140sec

[o

. ' 96.45%

100sec 96.40%
80sec

60see 96.35%

40sec 96.30%
20sec

96.25%

Osec
800m 1000m 1200m 1400m 1600m 1800m 2000m 2047m

= Map Time = Shuffle Time

96.50%

Reduce Time Prediction Rate

FIGURE 19. Comparison in mapreduce.task.io.sort.mb.

TABLE 8. Abnormal values.

Value Exception

100m Error: java.lang. ArrayIndexOutOfBoundsException: 1

200m Error: java.lang. ArrayIndexOutOfBoundsException: 1

400m Error: java.lang.ArrayIndexOutOfBoundsException: 1

600m Error: java.lang. ArrayIndexOutOfBoundsException: 1

2200m Error: java.io.IOException: Unable to initialize any output
collector

2048m Error: java.io.JOException: Unable to initialize any output
collector

mapreduce.task.io.sort.mb’s value is 1200 m, it can reach the
best optimization effect.

However, we can also see from Table 13 that there are
some abnormal values. From 100m to 600m, we can see
that the system keeps reporting group index out-of-bounds
exceptions, but there is nothing wrong with the program
logic and code of MapReduce mentioned in this paper. And
where the exception error have been locked in the reduce()
method in the beginning, so we suspect that must be the
scope of mapreduce.task.io.sort.mb is too small. Combined
with attribute mapreduce.map.sort.spill.percent(the certain
threshold of outputting data in kvbuffer)’s default value of
0.8, we made the analysis of the diagram below:

—Pinitial data meta data ¢———

fai) o |

—Pinitial data meta data ¢———

| BE R Ml e [ShehE,

! <keyl,valuel> "

FIGURE 20. The analysis of kvbuffer exception.

In Fig. 20, when kvbuffer has sufficient memory and the
threshold is reasonable, key-value pairs are sequentially out-
put as the data reaches or exceeds the threshold. In addition,

81424

the original data and metadata will correspond one by one
to form a complete key-value pair. However, if the threshold
is too large, the buffer memory is too small, or the maptask
is too large to handle. So when maptask starts, the data
input to kvbuffer will soon reach the threshold, and the
data printing will start. If the number of records in dataset
is too large and there are too many maptasks, the output
capacity of kvbuffer will not be able to catch up with the
data processing capacity, resulting in the clear area will also
be occupied or overflow. This will corrupt data, causing the
output key-value pairs to be incomplete, either in the raw data
or in the metadata. Therefore, index out-of-bounds exceptions
occur in the reduce() method, which indirectly express data
incompleteness.

The cause of the output collector initialization problem
at 2200m in Table 13 is quite simple. After querying the
documentation [36], we found that the maximum size of
kvbuffer was 2047m. And after testing it, as shown in
Figure 18, memory also reported output Collector initializa-
tion problems at 2048m. Therefore, in Fig. 19, the optimal
value of this attribute is 1200m.

2) mapreduce.map.sort.spill.percent

This property, as mentioned in the previous one, specifies
the threshold for the data output of kvbuffer. As can be
seen from Fig. 19, the operations on the Map of datasets
involved in this paper are relatively frequent and large
in number. Therefore, in addition to choosing a relatively
reasonable memory capacity, an appropriate threshold is also
very necessary. We take the value from 0.1 to 1 at 0.1 interval
to test its impact on MapReduce execution time and algorithm
prediction rate. The comparison of detection results is shown
below:

160sec 96.55%
96.50%
96.45%

B 96.40%
96.35%
96.30%
96.25%
96.20%
96.15%
96.10%
96.05%
08 09 1

Reduce Time

140sec
120sec

= E B
AN '

100sec ' l

80sec

60sec

40sec

20sec

Osec
01 02 03 04 05 06 07

= Map Time ™ Shuffle Time Prediction Rate

FIGURE 21. Comparison in mapreduce.map.sort.spill.percent.

As can be seen from Fig. 21, first of all, the choice
of value 1 is not considered. If you wait until kvbuffer
is filled with input data before output operation, there is
a possibility of blocking. And if the number of dataset
increases, exceptions like those in Table 13 and Fig. 20
are likely to occur again. Therefore, under the condition
of ensuring highest prediction rate, a reasonable threshold
value should be selected as far as possible. From 0.2 to
0.7, the prediction rate fluctuates and takes a long time,

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

and when the threshold is 0.8, the prediction rate is the
highest and then tends to be stable. However, it can be seen
from the figure that when the threshold is 0.1, its prediction
rate is also the highest, and the running time tends to be
low. From underlying principles of Fig. 6 and 18, if this
value is too small, it will lead to too many spill times on
Shuffle, resulting in increased I/O times. Therefore, in order
to select the optimal configuration parameters from 0.1 and
0.8, we conducted a new monitoring of their data and ran
them ten times respectively. The focus is on observation and
comparison: 1) whether the prediction rate remains stable,
2) the spill time of Map and 3) the count of spill times.

=

—0.8 —0.1

97.00%

96.50%
96.00%
95.50%
95.00%
94.50%

94.00%

FIGURE 22. Comparison of prediction rate in
mapreduce.map.sort.spill.percent.

120sec 6

100sec : 5
80sec % = = 1
60sec ‘
40sec I I

(] I |
0

Osec
(.8 mm(.]

S

w

[3S)

—_

FIGURE 23. Comparison of spill time and count in
mapreduce.map.sort.spill.percent.

As can be seen from Fig. 22, when the threshold value is
0.8, the prediction rate remains stable. However, when the
threshold value is 0.1, the prediction rate is not consistent, and
its stability is not good. Fig. 23 shows that the spill time of
0.8 is indeed much smaller than that of 0.1. And the spill count
of 0.8 stays at 2, while it of 0.1 switches between 4 and 5.
Therefore, the threshold value of 0.8 is the best choice to
keep the prediction rate high, stable and the spill times, count
short.

VOLUME 10, 2022

3) mapreduce.map.java.opts AND memory.mb
Mapreduce.map.java.opts and mapreduce.map.memory.mb
are related, so we need to modify them both. The former is
the startup parameter passed to Java Virtual Machine(JVM)
when it starts, indicating the maximum amount of heap
memory that Java program can use. Once this size is
exceeded, JVM throws an out of memory exception and
terminates the process. The latter, read and controlled by
NodeManager, sets the memory upper limit for maptasks.
When the memory required by map to execute tasks exceeds
this value, NodeManager kills them. The size of the former is
best set to 0.8 times of that of the latter. That is, the JVM
heap setting values should be less than the memory upper
limit for maptasks. Because we need to reserve memory for
Java codes, it is generally recommended to reserve 20% of
the memory. After testing the combination of two default
values, we adjusted the values for every 400m increase
in mapreduce.map.java.opts. The corresponding relationship
between the two values is as follows:

TABLE 9. The corresponding relationship between
mapreduce.map.java.opts and memory.mb.

map.java.opts map.memory.mb status

Xmx200m 1024m java.lang.OutOfMemoryError
Xmx600m 1024m java.lang.OutOfMemoryError
Xmx1000m 1250m java.lang.OutOfMemoryError
Xmx1400m 1750m java.lang.OutOfMemoryError
Xmx1800m 2250m java.lang.OutOfMemoryError
Xmx2200m 2750m Success

Xmx2600m 3250m Success

Xmx3000m 2750m Success

Xmx3400m 4250m Success

Xmx3800m 4750m Success

Xmx4200m 5250m Success

Xmx4600m 5750m Success

As can be seen from Table 9, the value of mapre-
duce.map.java.opts will report out of memory exceptions
from 200m to 1800m, indicating that maptasks of the dataset
used in this experiment has a large demand, which is more in
line with the test conditions in the actual big data environ-
ment. Starting from 2200m, tasks run normally, indicating
that values meet the memory requirements of the dataset.
We stopped the test when mapreduce.map.memory.mb is
5750m, because Table 4 shows that the maximum memory
limit for a NodeManager is 6GB, or 6144m. Then we
drew the relationship diagram between different values of
mapreduce.map.java.opts and the prediction rate, map time,
spill time and spill count:

As can be seen from Fig. 24, the prediction rate remaines
unchanged from 2200m to 4600m, but map time at 2200m
and 2600m is the smallest. And in Fig. 25, the spill count
remains constant and is 2, but the spill time at 2200m and
2600m is the smallest. Therefore, the map and spill time are
tested again every 100m between 2200m and 2600m in order
to select an appropriate value and maintain the predictive
performance for the Map side (spill count and prediction rate
were monitored and remained unchanged).

81425

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

160sec 100.00%
150sec 99.00%
140sec 98.00%
130sec 97.00%
120sec 96.00%
110sec 95.00%
100sec . I 94.00%
2200m 2600m 3000m 3400m 3800m 4200m 4600m
mmMap Time ~——Prediction Rate
FIGURE 24. Comparison of map time and prediction rate in
mapreduce.map.java.opts.
60sec 3

55sec

50sec

45sec

40sec I

35sec 0

2200m 2600m 3000m 3400m 3800m 4200m 4600m
mm Spill Time —Spill Count

FIGURE 25. Comparison of spill time and count in
mapreduce.map.java.opts.

TABLE 10. The corresponding relationship between
mapreduce.map.java.opts and memory.mb.

map.java.opts map.memory.mb status

Xmx2200m 2750m Success

Xmx2300m 2875m Success

Xmx2400m 3000m Success

Xmx2600m 3250m Success
180sec

150sec

120sec

90sec
60sec
30sec I I I I I

Osec
2200m 2300m 2400m 2500m 2600m
B Map Time ® Spill Time

FIGURE 26. Comparison of map time and spill time.

Finally, we can learn from the Table 10 and fig. 26:
when the mapreduce.map.memory.mb is 3000m and

81426

TABLE 11. The corresponding relationship between
mapreduce.reduce.java.opts and memory.mb.

reduce.java.opts reduce.memory.mb | status

Xmx200m 1024m Success
Xmx600m 1024m Success
Xmx1000m 1250m Success
Xmx1400m 1750m Success
Xmx1800m 2250m Success
Xmx2200m 2750m Success
Xmx2600m 3250m Success
Xmx3000m 2750m Success
Xmx3400m 4250m Success
Xmx3800m 4750m Success
Xmx4200m 5250m Success
Xmx4600m 5750m Success

mapreduce.map.java.opts is 2400m, the current time con-
sumption on map is minimal, and the prediction rate can be
maintained at the highest level.

4) mapreduce.reduce.java.opts AND MEMORY.MB

Mapreduce.reduce.java.opts and mapreduce.reduce.memory.
mb are related, so we need to modify them both. These
two attributes are essentially the same as those of the
previous section, except that Mapreduce.reduce.java.opts is
the JVM memory settings for the reduce phase, while
mapreduce.reduce.memory.mb defines the upper limit of the
memory for reducetasks. Of course, the size of the former
is best set to 0.8 times of the size of the latter. In fact, from
the data analysis in above three subsections and Fig. 19, 21,
we can know that most of the time consumption in this
experiment is not at the reduce end. However, for the sake
of experimental rigor, we still need to test the value of these
two attributes, and the value range relationship is as follows:

Then we stop the test when mapreduce.reduce.memory.mb
is 5750m, because Table 4 shows that the maximum memory
limit for a NodeManager is 6GB, or 6144m.

We then continue to monitor the same major data changes
as in the above subsections. But here we need to note that one
point: in Fig. 6, Reduce starts multiple fetch threads to fetch
the map output when shuffle is executed to a certain propor-
tion, stores and merges it to memory disks, so the change of
fetcher time also needs to be checked. These changes are as
follows:

Fig. 27 shows that changing JVM and task memory of
reduce has no impact on the spill count and prediction
rate. As can be seen from Fig. 28, the change of reduce
time is not great. But for fetcher time, the values remain
low from 3000m to 3800m. Therefore, in order to select
a more appropriate value, the change of main monitor-
ing data was tested again every 100m from 3000m to
3800m. The value range of mapreduce.reduce.java.opts and
mapreduce.reduce.memory.mb, and the change of data is as
follows:

As can be seen from Fig. 29, from 3000m to 3800m,
the total time consumption at 3000m is the least, and the
fetcher time is also the smallest. Following the workflow
shown in Fig. 6, we can know that proper JVM heap size

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

3 1

2 0.98
1 0.96
0 0.94

FIFFFLFLFLFLFLSFSLEE
F F F F F F HFFFHFFS
S &Y S ,{;9 q’@ %@ ’5@ gb“ S S

—Spill count —Prediction Rate

FIGURE 27. Comparison of spill count and prediction rate in
mapreduce.reduce.java.opts.

190sec 350ms

160sec I 300ms

130sec ' 250ms

100sec | [/ 200ms

T0sec I | 150ms

40sec 100ms
q’@“‘ @Q@\ Q@\\V@“‘\ @i %@’9 @Q\%QQ‘: @Q& & Q@’\“ @Q‘

= Map Time ®=Reduce Time =4 Spill Time Fetcher Time

FIGURE 28. Comparison of different times in mapreduce.reduce.java.opts.

TABLE 12. The corresponding relationship between mapreduce.reduce.
java.opts and memory.mb.

reduce.java.opts reduce.memory.mb | status

Xmx3000m 3750m Success
Xmx3100m 3857m Success
Xmx3200m 4000m Success
Xmx3300m 4125m Success
Xmx3400m 4250m Success
Xmx3500m 4375m Success
Xmx3600m 4500m Success
Xmx3700m 4625m Success
Xmx3800m 4750m Success

and reducetask memory configuration in reduce side can
also greatly save the execution time of MapReduce program.
Therefore, we know from the table that the most appropriate
value combination is when mapreduce.reduce.java.opts is
3000m and mapreduce.reduce.memory.mb is 3750m.

5) mapreduce.map.output.compress

This attribute specifies whether compression is enabled
during the execution of the MapReduce program. Using
data compression is very important under Hadoop, especially
when data is large and workload intensive, because 1/O
operations and network data transfers take a lot of time.

VOLUME 10, 2022

215sec 270ms

180sec 220ms

145sec | 170ms

110sec 120ms
75sec I I 70ms
40sec 20ms

3000m 3100m 3200m 3300m 3400m 3500m 3600m 3700m 3800m

= Map Time ®®Reduce Time = Spill Time Fetcher Time

FIGURE 29. Comparison of different times in mapreduce.reduce.java.opts.

In Fig. 6, the compression takes place in the merge phase
at the Shuffle end. If the Map end spill complex and large
amount of data, enabling the compression technology can
effectively reduce the number of bytes read and written by the
underlying storage system (HDFS), improving the network
bandwidth and disk space efficiency. Therefore, in addition
to monitoring changes in the prediction rate, we also need to
monitor shuffle time and read and write bytes of HDFS. These
variation data are as follows:

100.00%

95.00%

90.00%

85.00%

80.009, == =N = = e N - == = =
1 2 3 4 5 6 7 8 9 10

BFALSE BMTRUE

FIGURE 30. Comparison of prediction rate in mapreduce.map.output.
compress.

Fig. 30 shows that the prediction rate of the dataset is
not affected by the compression status. However, Fig. 31
shows that after the compression technology is turned
off, shuffle time will increase significantly and the rate
of change is not stable. And after it is turned on, the
shuffle time was maintained at a relatively low and stable
level. And as we can see from Fig. 32, the number
of bytes read and written is significantly reduced when
compression is enabled. This helps to reduce disk I/O, which
will be helpful for network transmission. We believe the
improvement will be more significant in the real world
applications when hundreds of millions of megabytes of data
is processed. Thus, considering all the above mentioned,
the value of mapreduce.map.output.compress is selected as
true.

81427

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

10sec

8sec

6sec

4sec

2sec

Osec
1 2 3 4 5 6 7 8 9 10

—FALSE —TRUE

FIGURE 31. Comparison of shuffle time in mapreduce.map.

EFALSE mTRUE

250000bytes
200000bytes
150000bytes
100000bytes

50000bytes

Obytes

FIGURE 32. Comparison of bytes in mapreduce.map.output.compress.

6) nodemanager.resource.memory.mb

This attribute indicates the maximum amount of physical
memory that YARN can use on nodes, that is, the memory
of NodeManager, whose default value is 8 GB. YARN does
not intelligently detect the total physical memory of nodes,
so it is best to configure the NodeManager of memory before
executing the MapReduce. However, it should be noted that
JVM memory of map, reduce and the memory of maptask and
reducetask must be less than or equal to the memory of the
NodeManager. That is, their size relationship should satisfy
the following formula:

size(nodemanager .resource.memory.mb)
> size(mapreduce.reduce(map).memory.mb)

> size(mapreduce.reduce(map).java.opts) (20)

Next, we measure the prediction rate and map, shuffle, and
reduce time at 1G interval, starting from the default of 8GB.
The range of values and changes in the monitoring data are
as follows:

In fact, we can see from the bottom three data in Table 2
that if the total physical memory of a single node is too
small, the smoothness of MapReduce tasks will be affected,
and even tasks will be stuck all the time or cannot be
started. Therefore, it is necessary to choose the appropriate
amount of physical memory. Of course, the value must be

81428

TABLE 13. Abnormal values.

nodemanager.resource.memory.mb status
8G Success
7G Success
6G Success
5G Success
4G Success
3G map 100%, reduce 0%
2G map 0%, reduce stoped
1G map stoped%, reduce stoped
135sec 100.00%
130
< 99.00%
125sec . .
.00
120sec . 98.00%
115sec o . m
110 [
see 96.00%
105sec
95.00%
100sec K
95sec 94.00%
8G 7G 6G 5G 4G

muMap Time ™ Shuffle Time == Reduce Time Prediction Rate

FIGURE 33. Comparison of time consumption and prediction rate in
nodemanager.resource.memory.mb.

smaller than the available memory resources. Otherwise, the
running efficiency of other resources on the node will be
affected. In this experiment, the physical memory of a single
NodeManager is 6G, so this attribute must be less than 6G if
the operation performance is satisfied. However, task cannot
run normally if it is less than or equal to 3G, so we need to
select between 5G and 4G.

—_
(=]

—_— N W B LN 3 0 O

Osec 50sec 100sec 150sec 200sec

m4G m5G

FIGURE 34. Comparison of map time in nodemanager.resource.
memory.mb.

From Fig. 34, 35 and 36, we can see that more NodeM-
anager memory doesn’t always result in reduced map time,
shuffle time or reduce time. For 5G, the time consumption
is sometimes lower than 4G, but the difference is smaller.
However, the time consumption of 5G is higher than that
of 4G in a larger frequency and the difference is also

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

—_
(=}

—_— N W R N 0 O

Isec 2sec 3sec 4sec Ssec
4G m5G

=3
773
@
o

FIGURE 35. Comparison of shuffle time in
nodemanager.resource.memory.mb.

—_
(=}

L I U VR N I N

Isec 2sec 3sec 4sec Ssec 6sec Tsec
H4G m5G

=
@
[e}
e}

FIGURE 36. Comparison of reduce time in
nodemanager.resource.memory.mb.

larger. Therefore, from the perspective of reducing resource
consumption and running time of MapReduce tasks, the value
of nodemanager.resource.memory.mb is selected as 4G. The
hardware configuration of the three NodeManager nodes in
this experiment is the same in Table 4, so it does not matter
if they are uniformly set to 4G. In a real world application
environment, each node in the NodeManager cluster may
have a different configuration, so it is best to choose the
configuration that best fits its memory for a single node.

7) MultithreadedMapper
The previous six attributes are all modified from the
platform’s parameter profile, which is modified from the
programming code of MapReduce. This property indicates
whether to enable multi-threaded execution of the map()
method, which is ideal for computational jobs. In addition,
the number of threads that can be opened at the same time can
be specified in the code. After multiple repeated experiments,
the maximum number of threads that can ensure the smooth
execution of MapReduce program is 10 for the test data set of
this experiment. The time consumption and prediction rate of
Map, Shuffle, and Reduce are measured, and the results are
as follows:

As can be seen from Fig. 37, before the multi-threading
function of map is enabled, the consumption time is indeed

VOLUME 10, 2022

180sec
150sec
120sec
90sec
60sec
30sec
Osec

1 2 3 4 5 6 7 8 9 10

EFALSE ®TRUE
FIGURE 37. Comparison of map time in MultithreadedMapper.

4sec

3sec

2sec

- | “ “ || “ || “ “ |
1 2 3 4 5 6 7 8 9 10

Osec

u Shfulle TimeF ~ ® Shuflle TimeT ~ ®Reduce TimeF Reduce TimeT

FIGURE 38. Comparison of shuffle and reduce time in
MultithreadedMapper.

longer than that after it is enabled. However, it can be
seen from Fig. 38 and 39 that time consumption of shuffle
and reduce basically does not change, and the prediction
rate remains unchanged. Therefore, in order to adapt to
computational tasks like the one tested in this experiment
or tasks with more complex computational requirements,
we choose to turn this property on.

1 2 3 4 5 6 7 8 9

BFALSE BTRUE

100.00%

90.00%

80.00%

70.00%

60.00%

10

50.00%

FIGURE 39. Comparison of prediction rate in MultithreadedMapper.

So far, in the platform parameter tuning, all the attributes
that affect the algorithm prediction rate and the execution

81429

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

time of MapReduce program involved in this experiment
have been tuned. In the whole process of tuning, we can
know that when the whole big data prediction algorithm
is deployed in real world operating platform environments,
the algorithm’s writing logic and prediction rate effect is
important, but platform’s execution efficiency and time cost
are also essential. We can adjust the hardware that runs the
node, the memory capacity, and we can also adjust the code
parameters of MapReduce and the data packaging methods.
These optimization steps can not only improve the operation
efficiency and prediction effect of big data platforms, but
also enable us to better understand the underlying operation
process and details of programs like Fig. 6 and 18, so as
to better optimize platform parameters. After the parameter
tuning, we need to do the prediction test again to observe how
the prediction rate of the dataset and the time consumption of
the MapReduc process will change.

fyﬁ/ V\/\/

1

97.50%
97.00%
96.50%
96.00%

95.50%
23 45 67 8 9101112131415

—htru_old htru_new

FIGURE 40. Comparison of prediction rate in different platform
parameters.

As can be seen from Fig. 40, although the overall parameter
optimization has an impact on the prediction rate, it is not
significant. However, for individual prediction algorithms
or tasks requiring strict accuracy, it is necessary to adjust
platform parameters. And if in the more complex and real
world big data operation environment, the requirement of
accuracy will also be stricter. Therefore, we know that the
optimization has little influence on the prediction rate.

230sec
210sec
190sec
170sec
150sec
130sec
110sec

90sec

1 2 3 4 5

—Map Time_old

6 7 8 9 10 11

Map Time_new

12 13 14 15

FIGURE 41. Comparison of map time in different platform parameters.

81430

As can be seen from Fig. 41 and steps of attribute
optimization in the above subsections, the most effective
optimization is on map time. And in the whole running
process, the most time-consuming portion is the map phase of
MapReduce. The dataset involved in the experiment requires
more computations. As such there are lots of calculation steps
and time consumption on map side.

8sec
Tsec

6sec

Ssec
4sec
3sec
2sec
Isec

Osec

12 3 4 5 6 7

—Shuffle Time_old

8§ 9 10 I1 12 13 14 15

Shuffle Time new

FIGURE 42. Comparison of shuffle time in different platform parameters.

Tsec
6sec _— —\ —
Ssec
4sec
3sec
2sec
Isec

Osec

12 3 4 5 6 7 8 9 10 11 12 13 14 15

—Reduce Time old Reduce Time new

FIGURE 43. Comparison of reduce time in different platform parameters.

As can be seen from Fig. 42 and 43, for shuffle and reduce
time, although effects after parameter optimization are not
obvious, time consumptions are also reduced compared with
that before optimization. Most of the running time of program
tasks is spent on the map side. And after optimal optimization
on it is completed, the following shuffle and reduce processes
are automatically accelerated. Therefore, it can be seen from
the above two figures that the shuffle and Reduce time of the
optimized algorithm did decrease.

Fig. 44 shows that when parameters are optimized, spill
time changes at a relatively stable level, although it is
sometimes improved. On the contrary, the difference of spill
time before optimization is sometimes large and unstable,
which is mainly due to the optimization of Map side as shown
in Fig. 6. When kvbuffer memory and the specified threshold
reach a relatively reasonable value, the number and time of
spill is correspondingly reduced (Fig. 23). In addition, after
the map thread is added to perform tasks concurrently, the
spill operation on Shuffle can be performed more quickly and
smoothly, instead of waiting for a long time for task splitting
on Map. Therefore, the spill time of the algorithm can be
optimized after tuning.

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

80sec

70sec
60sec
. o /\ /\
sec
7V

40sec

30sec
1 2 3 4 5 6 7 8 9 1011 1213 14 15

~—Spill Time old Spill Time new

FIGURE 44. Comparison of spill time in different platform parameters.

300ms
250ms
200ms
150ms
100ms
50ms
Oms

123 45 6 7 8 910111213 14 15

—Fetcher Time_old Fetcher Time_new

FIGURE 45. Comparison of fetcher time in different platform parameters.

Fig. 45 shows that after parameter optimization, the
fetcher time consumption is also reduced compared to
that before optimization. In addition to the optimization of
kvbuffer and task memory at map, memory expansion at
reduce and compression of output at shuffle have also been
modified(Fig. 28, 29). Although datasets of this experiment
have a large computational pressure on map end and small
one on reduce end, these steps not only reduce the time
consumption of the map itself, but also indirectly optimize
the time consumption of the fetcher that finally reads data
from the disk, thus reducing the pressure on Reduce end to
receive data output from Map(Fig. 6). Therefore, the fetcher
time is optimized after tuning.

VII. CONCLUSION

In this paper, we proposed a normalized distance mea-
surement optimization based on Pearson, entropy weight
method and KNN algorithm based on Gaussian function
weighting optimization. And through experiments, we know
that the more numbers of records and complex attributes
of the dataset, the better prediction result this algorithm
produces. In general, the result is better than the original
KNN. In addition, the optimized algorithm is compared with
other common classification algorithms, which proves that
it is more suitable for the actual environment of large-scale
data processing. Then we adjusted the parameters of Hadoop
platform, combined with the process of MapReduce program,
aiming to analyze the influence of different parameter
adjustment on prediction rate and running time consumption.

VOLUME 10, 2022

We found that for the dataset involved in this paper, most
MapReduce time consumption would occur on Map, and
parameter optimization did help reduce the time consumption
of the program. Combined with the execution process
of MapReduce, we further analyzed its relationship with
parameter tuning, and concluded that platform parameter
optimization has a small impact on the prediction rate, but
can effectively reduce the running time of the program. Better
parameter adjustment can reduce the time consumption for
datasets with large number of records and should help to
complete the prediction task better in real world operating
environment.

Of course, future improvements should also be made from
more perspectives. For example, compared with the original
algorithm, the space complexity of optimized algorithm has
not changed, and its space complexity has increased. This
optimization improves the prediction accuracy by sacrificing
spatial memory. Therefore, future research should look for
some special data structures or new distance measures, which
can reduce time and space complexity, simplify the flow
and save memory space while maintaining high prediction
rate. In terms of normalization and decentralization of KNN’s
algorithmic distance measurement, we can select or innovate
anew measurement suitable for both large and small datasets.
The new measurement should not be limited at the level
of algorithm concept and design. It should reflect the logic
and practical rigor of distance calculation. For the selection
of k value, we can also use other training methods or
other classification algorithms to predict in advance, in order
to further analyze and make the final selection. For the
optimization of weighted ranking, we can also select or
innovate a more effective normal distribution function to
replace the Gaussian function, so as to improve KNN. Future
studies can apply the optimized algorithm to more types of
datasets to discuss the effect of optimization under more
complex conditions.

In the future, the execution process of big data platform and
operation sequence of MapReduce can be further subdivided,
and platform parameters can be optimized in more detail
based on the underlying operation principle. Or we can divide
the platform on which the algorithm program is running and
compare the influence of different platforms on operation
effects under the same configuration. After building hardware
devices and datasets that are more in line with the scale
of big data, we can better run and analyze the influence
of platform parameter tuning on the algorithmic prediction
process. Or different big data platforms can be applied to
the experimental environment. In addition to studying the
applicability of the algorithm to different platforms, we can
also study the influence of different computing framework of
platforms on prediction process, which can on prediction time
or results.

REFERENCES

[1] Y.Nawal, M. Oussalah, B. Fergani, and A. Fleury, “‘New incremental SVM
algorithms for human activity recognition in smart Homes,” J. Ambient
Intell. Humanized Comput., pp. 1-18, Mar. 2022.

81431

IEEE Access

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. Pramanik, R. Pradhan, P. Nandy, A. K. Bhoi, and P. Barsocchi, “The
ForEx++ based decision tree ensemble approach for robust detection of
Parkinson’s disease,” J. Ambient Intell. Humanized Comput., pp. 1-25,
Feb. 2022.

R. Buijs, T. Koch, and E. Dugundji, “Using neural nets to predict
transportation mode choice: Amsterdam network change analysis,” J.
Ambient Intell. Humanized Comput.,vol. 12, no. 1, pp. 121-135, Jan. 2021.
G. Mohmed, A. Lotfi, and A. Pourabdollah, “Enhanced fuzzy finite state
machine for human activity modelling and recognition,” J. Ambient Intell.
Humanized Comput., vol. 11, no. 12, pp. 6077-6091, Dec. 2020.

M. Das and S. K. Ghosh, “Reducing parameter value uncertainty
in discrete Bayesian network learning: A semantic fuzzy Bayesian
approach,” IEEE Trans. Emerg. Topics Comput. Intell., vol. 5, no. 3,
pp. 361-372, Jun. 2021.

X. Zhao, J. Zhang, and X. Qin, “k NN-DP: Handling data skewness in
kNN joins using MapReduce,” IEEE Trans. Parallel Distrib. Syst., vol. 29,
no. 3, pp. 600613, Mar. 2018.

M. O. Arowolo, M. O. Adebiyi, A. A. Adebiyi, and O. Olugbara,
“Optimized hybrid investigative based dimensionality reduction methods
for malaria vector using KNN classifier,” J. Big Data, vol. 8, no. 1,
pp. 1-14, Dec. 2021.

F.Min, F-L. Liu, L.-Y. Wen, and Z.-H. Zhang, ““Tri-partition cost-sensitive
active learning through kNN, Soft Comput., vol. 23, no. 5, pp. 1557-1572,
2019.

UC Irvine Machine Learning Repository. Accessed: Mar. 26, 2022.
[Online]. Available: https://archive-beta.ics.uci.edu

R. Fisher. (1988). Iris. UCI Machine Learning Repository. [Online].
Available: https://archive-beta.ics.uci.edu/ml/datasets/iris

S. Wolberg and W. William. (1995). Breast Cancer Wisconsin
(Diagnostic). UCI Machine Learning Repository. [Online]. Available:
https://archive-beta.ics.uci.edu/ml/datasets/breast+cancer+wisconsin
(2020). Dry Bean Dataset. UCI Machine Learning Repository. [Online].
Available: https://archive-beta.ics.uci.edu/ml/datasets/dry+bean+dataset
R. Lyon. (2017). HTRU2. UCI Machine Learning Repository. [Online].
Available: https://archive-beta.ics.uci.edu/ml/datasets/htru2

R. J. Lyon, B. W. Stappers, S. Cooper, J. M. Brooke, and J. D. Knowles,
“Fifty years of pulsar candidate selection: From simple filters to a
new principled real-time classification approach,” Monthly Notices Roy.
Astronomical Soc., vol. 459, no. 1, pp. 1104-1123, 2016.

M. Koklu and I. A. Ozkan, “Multiclass classification of dry beans using
computer vision and machine learning techniques,” Comput. Electron.
Agricult., vol. 174, Jul. 2020, Art. no. 105507.

S. Sharma and D. Toshniwal, ““Scalable two-phase co-occurring sensitive
pattern hiding using MapReduce,” J. Big Data, vol. 4, no. 1, pp. 1-18,
Dec. 2017.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008.
X. Liu, X. Wang, S. Matwin, and N. Japkowicz, ‘“Meta-MapReduce for
scalable data mining,” J. Big Data, vol. 2, no. 1, pp. 1-21, Dec. 2015.

V. Ricardo and D. Youssef, “A perspective view and survey of meta-
learning,” Artif. Intell. Rev., vol. 18, pp. 77-95, Sep. 2001.

J. Ye, J.-H. Chow, J. Chen, and Z. Zheng, “Stochastic gradient boosted
distributed decision trees,” in Proc. 18th ACM Conf. Inf. Knowl. Manage.
(CIKM), 2009, pp. 2061-2064.

M. Weimer, S. Rao, and M. Zinkevich, “A convenient framework for
efficient parallel multipass algorithms,” in Proc. LCCC, NIPS Workshop
Learn. Cores, Clusters Clouds, 2010, pp. 1-4.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu,
and G. Fox, “Twister: A runtime for iterative MapReduce,” in Proc.
19th ACM Int. Symp. High Perform. Distrib. Comput. (HPDC), 2010,
pp. 810-818.

A. Agarwal, O. Chapelle, M. Dudik, and J. Langford, ““A reliable effective
terascale linear learning system,” J. Mach. Learn. Res., vol. 15, no. 1,
pp. 1111-1133, 2014.

R. D. Datasets, A Fault-Tolerant Abstraction for in-Memory Cluster
Computing, vol. 12, M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, I. Stoica, Eds. Mumbai, India:
NSDI, 2012.

J. Rosen, N. Polyzotis, V. Borkar, Y. Bu, M. J. Carey, M. Weimer,
T. Condie, and R. Ramakrishnan, “Iterative MapReduce for large scale
machine learning,” 2013, arXiv:1303.3517.

M. M. Ghiasi and S. Zendehboudi, “Application of decision tree-based
ensemble learning in the classification of breast cancer,” Comput. Biol.
Med., vol. 128, Jan. 2021, Art. no. 104089.

81432

(27]
(28]
[29]
(30]
(31]
(32]

(33]
(34]

(35]

(36]

(371

(38]

(391

[40]

[41]

[42]

(43]

(44]

[45]

[46]

[47]

(48]

(49]

Amazon EC2. Accessed: Jan. 1, 2018. [Online]. Available:
https://aws.amazon.com/ec2

Amazon EC2 Spot Instances. Accessed: Jan. 1, 2018. [Online]. Available:
https://aws.amazon.com/ec2/spot

Amazon EC2 Dashboard. Accessed: Jan. 1, 2018. [Online]. Available:
https://console.aws.amazon.com/ec2

Boto3 Documentation. Accessed: Jan. 1, 2018. [Online]. Available:
https://boto3.readthedocs.io

AWS Command Line Interface Documentation. Accessed: Jan. 1, 2018.
[Online]. Available: https://aws.amazon.com/documentation/cli
Apache Spark. Accessed: Mar. 26, 2022. [Online].
http://spark.apache.org

DataMPI. Accessed: Mar. 21,2022. [Online]. Available: http://datampi.org
J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. 6th Symp. Operating Syst. Design Implement.
(OSDI). San Francisco, CA, USA: USENIX Association, Dec. 2004,
pp. 1-7.

J. Liu, S. Tang, G. Xu, C. Ma, and M. Lin, ““A novel configuration tuning
method based on feature selection for Hadoop MapReduce,” IEEE Access,
vol. 8, pp. 63862-63871, 2020.

Release Notes HDP-2.1.1. Accessed: Mar. 19, 2022. [Online].
Available: https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.1.5/
bk_releasenotes_hdp_2.1/content/ch_relnotes-hdpch_relnotes-hdp-2.1.1-
knownissues-mapreduce.html

S. Maldonado, E. Carrizosa, and R. Weber, “Kernel penalized K-means:
A feature selection method based on kernel K-means,” Inf. Sci., vol. 322,
pp. 150-160, Nov. 2015.

H. Dudeja and C. Modi, “Runtime program semantics based malware
detection in virtual machines of cloud computing,” in Proc. Int. Conf. Inf.
Process., Cham, Switzerland, 2021, pp. 3-16.

M. Ali, S. I. Ali, D. Kim, T. Hur, J. Bang, S. Lee, B. H. Kang, and
M. Hussain, “UEFS: An efficient and comprehensive ensemble-based
feature selection methodology to select informative features,” PLoS ONE,
vol. 13, no. 8, Aug. 2018, Art. no. €0202705.

J. Gémez-Ramirez, M. Avila-Villanueva, and M. A. Fernandez-Blazquez,
“Selecting the most important self-assessed features for predicting con-
version to mild cognitive impairment with random forest and permutation-
based methods,” Sci. Rep., vol. 10, no. 1, pp. 1-15, Dec. 2020.

D. M. Atallah, M. Badawy, A. El-Sayed, and M. A. Ghoneim, “Predicting
kidney transplantation outcome based on hybrid feature selection and KNN
classifier,” Multimedia Tools Appl., vol. 78, no. 14, pp. 20383-20407,
Jul. 2019.

A. O. Ojo, J. A. Hanson, H.-U. Meier-Kriesche, C. N. Okechukwu,
R. A. Wolfe, A. B. Leichtman, L. Y. Agodoa, B. Kaplan, and F. K. Port,
“Survival in recipients of marginal cadaveric donor kidneys compared
with other recipients and wait-listed transplant candidates,” J. Amer. Soc.
Nephrol., vol. 12, no. 3, pp. 589-597, Mar. 2001.

A. O. Ojo, R. A. Wolfe, L. Y. Agodoa, P. J. Held, F. K. Port, S. F. Leavey,
S. E. Callard, D. M. Dickinson, R. L. Schmouder, and A. B. Leichtman,
“Prognosis after primary renal transplant failure and the beneficial effects
of repeat transplantation: Multivariate analyses from the United States
renal data system,” Transplantation, vol. 66, no. 12, pp. 1651-1659,
Dec. 1998.

A. Akl, A. Mostafa, and M. A. Ghoneim, “Nomogram that predicts graft
survival probability following living-donor kidney transplant,” Exp. Clin.
Transplantation, vol. 6, no. 1, pp. 30-36, 2008.

T. S. Brown, E. A. Elster, K. Stevens, J. C. Graybill, S. Gillern, S. Phinney,
M. O. Salifu, and R. M. Jindal, “Bayesian modeling of pretransplant
variables accurately predicts kidney graft survival,” Amer. J. Nephrol.,
vol. 36, no. 6, pp. 561-569, 2012.

S. Krikov, A. Khan, B. C. Baird, L. L. Barenbaum, A. Leviatov,
J. K. Koford, and A. S. Goldfarb-Rumyantzev, ‘Predicting kidney trans-
plant survival using tree-based modeling,” ASAIO J., vol. 53, no. 5,
pp. 592-600, 2007.

R. S. Lin, S. D. Horn, J. F. Hurdle, and A. S. Goldfarb-Rumyantzev,
“Single and multiple time-point prediction models in kidney transplant
outcomes,” J. Biomed. Informat., vol. 41, no. 6, pp. 944-952, Dec. 2008.
K. Topuz, F. D. Zengul, A. Dag, A. Almehmi, and M. B. Yildirim,
“Predicting graft survival among kidney transplant recipients: A Bayesian
decision support model,” Decis. Support Syst., vol. 106, pp. 97-109,
Feb. 2018.

Y. Zhang, T. Cao, S. Li, X. Tian, L. Yuan, H. Jia, and A. V. Vasilakos,
“Parallel processing systems for big data: A survey,” Proc. IEEE, vol. 104,
no. 11, pp. 2114-2136, Nov. 2016.

Available:

VOLUME 10, 2022

C. Ma, Y. Chi: KNN Normalized Optimization and Platform Tuning Based on Hadoop

IEEE Access

[50] N. Maleki, A. M. Rahmani, and M. Conti, “MapReduce: An infras-
tructure review and research insights,” J. Supercomput., vol. 75, no. 10,
pp. 6934-7002, 2019.

[51] M. Soualhia, F. Khomh, and S. Tahar, “Task scheduling in big data
platforms: A systematic literature review,” J. Syst. Softw., vol. 134,
pp. 170-189, Dec. 2017.

[52] B.Zhang, X. Wang, and Z. Zheng, “The optimization for recurring queries
in big data analysis system with MapReduce,” Future Gener. Comput.
Syst., vol. 87, pp. 549-556, Oct. 2018.

[53] R. Li, H. Hu, H. Li, Y. Wu, and J. Yang, ‘“MapReduce parallel
programming model: A state-of-the-art survey,” Int. J. Parallel Program.,
vol. 44, no. 4, pp. 832-866, Aug. 2016.

[54] K. Matsuzaki, “Functional models of Hadoop MapReduce with appli-
cation to scan,” Int. J. Parallel Program., vol. 45, no. 2, pp. 362-381,
Apr. 2017.

[55] W.Tian, G.Li, W. Yang, and R. Buyya, “HScheduler: An optimal approach
to minimize the makespan of multiple MapReduce jobs,” J. Supercomput.,
vol. 72, no. 6, pp. 2376-2393, Jun. 2016.

[56] N. Ahmed, A. L. C. Barczak, T. Susnjak, and M. A. Rashid, “A
comprehensive performance analysis of apache Hadoop and apache spark
for large scale data sets using HiBench,” J. Big Data, vol. 7,no. 1, pp. 1-18,
Dec. 2020.

[57] Known Issues for MapReduce. Accessed: Mar. 27, 2022. [Online].
Available: https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.1.5/
bk_releasenotes_hdp_2.1/content/ch_relnotes-hdpch_relnotes-hdp-2.1.1-
knownissues-mapreduce.html

[58] Z.Huang and D. Chen, “A breast cancer diagnosis method based on VIM
feature selection and hierarchical clustering random forest algorithm,”
IEEE Access, vol. 10, pp. 3284-3293, 2022.

[59] M. M. Ghiasi and S. Zendehboudi, “Application of decision tree-based
ensemble learning in the classification of breast cancer,” Comput. Biol.
Med., vol. 128, Jan. 2021, Art. no. 104089.

VOLUME 10, 2022

CHEN MA received the Bachelor of Engineering
degree from Shanxi University, Taiyuan, China,
in 2021. He is currently pursuing the master’s
degree in computer technology with Xijing Uni-
versity, Xi’an, Shaanxi. His research interests
include big data analysis and software engineering.

YUHONG CHI received the master’s degree in
computer applied engineering from Northeastern
University, Liaoning, China, in 2005, and the
Ph.D. degree in computer science and technology
from Tsinghua University, Beijing, China, in 2013.
Her research interests include computational intel-
ligence and its applications and data analysis.

81433

