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ABSTRACT During the active alignment focusing process of car camera assembly, lenses and holders
need to be gummed by creamy white and translucent UV glue. The quality of glue dispensing can directly
influence the performance of car cameras. Because of the translucency of UV glue, the glue dispensing
image may present a low contrast situation, which increases the difficulty of vision detection. This paper
proposes a method based on CycleGAN to enhance the glue dispensing image and effectively overcome
the problems of blurred and low contrast edges. First, the glue part of the image is segmented into twenty
regions. Second, the VGG16 model is used to divide the abovementioned twenty regions into high-contrast
images and low-contrast images. Next, the CycleGAN model is trained to enhance the low-contrast images,
and then convert them to high-contrast images. Finally, glue contours are extracted by using thresholding
segmentation and edge detection to ensure that the quality of glue dispensing can be detected. The success
rates of the VGG16 model and the CycleGAN model are 96% and 58%, respectively. The results show
that the proposed method can effectively enhance the low contrast part of the glue region and improve
the detection accuracy. Specifically, it can increase the gray value difference between the glue and the
background from 20 to 55, while the background is substantially retained. The detailed information of the
edges of the images is enriched. The accuracy of glue edge extraction can be increased to 99%, which is an
approximately 75% improvement compared to the methods without enhancement.

INDEX TERMS CycleGAN, detection, glue dispensing, image enhancement.

I. INTRODUCTION
AA (active alignment) focusing is one of the key technologies

focusing, a circle of UV (Ultraviolet Rays) glue is applied
between the front cover and the lens to bond and seal the

that affects the imaging quality of a camera in the assem-
bly process of an on-board camera [1]. In the AA focusing
process, the relative position between the lens and the front
cover with the image sensor is in a completely free state.
By adjusting the horizontal position, the vertical position and
the tilted angle of the lens relative to the image sensor, the
image of the camera can reach the clearest state. Before AA
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image sensor. When the amount of glue is large, the glue may
drip and contaminate the image sensor. When the amount of
glue is small, the adhesion and airtightness are poor, which
affects the service life of the camera. Therefore, to ensure
the quality of the camera, it is necessary to test the glue
quality before AA focusing. However, the key to the testing
process is to extract the glue profile completely. Because UV
glue is a milky translucent liquid, when the coating layer is
thick, the information received by industrial camera imaging
is mainly reflected light from the glue. Thus, the contrast
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of the sample image is high, and it is easy to extract the
glue contour. When the glue is thin, the lens receives the
information mostly from the reflected light from the parts at
the bottom of the glue. Therefore, the contrast of the sample
image is reduced, and it is difficult to extract the glue contour,
which seriously affects the accuracy of the detection results
and the production efficiency. To solve this problem, it is
necessary to systematically study the method of enhancing
low-contrast glue images.

Image enhancement is an important factor in the field
of image processing. Traditional image enhancement algo-
rithms can be roughly divided into two kinds of process-
ing methods based on the spatial domain and the frequency
domain [2], [3]. In the spatial domain, histogram equalization
may lose some details due to grayscale merging [4]. Linear
enhancement can only be enhanced within a certain gray
range of the image, which has great limitations [5], [6].
Nonlinear enhancement, such as Gaussian function transfor-
mation, does not significantly enhance the edge information
of the image [7]. In the frequency domain, the enhancement
algorithm based on directional filter banks has problems, such
as reduced image sharpness and it is missing partial features
after enhancement [8]. However, the enhancement algorithm
based on wavelet transform easily amplifies the noise in the
image, which requires further noise reduction [9]. Image
enhancement based on neural networks solves the above
problems to a certain extent [10]. Lore et al. [11] designed
an autoencoder based on a deep neural network to enhance
the grayscale image, improving the brightness and clarity of
the image and proving the feasibility of using deep learning to
enhance the image. Xu et al. [12] used a conditional genera-
tive adversarial network to enhance the super-discrimination-
rate reconstructed image. They not only improve the quality
of the image reconstruction and enhance the detailed fea-
tures of edges and textures but also further improve the
visual effect. However, the fusion and generation of image
features need to be improved continuously. Lal ef al. [13]
proposed a dark light image enhancement algorithm based
on a convolutional neural network. Although this method
could enhance the overall brightness of the image, it could
not only enhance local features without changing other fea-
tures. Perez et al. [14] proposed a kind of underwater image
enhancement method that learned from much training by
focusing between the degradation of underwater images and
the recovery of underwater image models, and then achieved
the goal of underwater image enhancement. Wang et al. [15]
designed an end-to-end image enhancement framework to
enhance underwater images, which improved model conver-
gence performance and accuracy, while enhancing the color
richness of underwater images. Li and Ma [16] proposed a
practical multimodal medical image fusion algorithm based
on PCNN and GIF-WSEML in the nonsubsampled contourlet
transform domain. Their fusion algorithm had a better perfor-
mance with improved brightness and contrast of multimodal
medical images, and the objective metrics, such as VIFF,
QW, API, SD and EN computed by the proposed method
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also have obvious advantages. However, the fused images of
NSCT have lost some details of MRI images, and the results
have some noise, which affects the doctor’s observation.
Guo et al. [17] proposed an efficient and effective method to
enhance low-light images based on the Retinex-based cate-
gory. Their low-light image enhancement technique demon-
strated that it could feed many vision-based applications,
such as edge detection, feature matching, object recognition
and tracking, with high visibility inputs, which improved
their performance. Igbal et al. [18] used a slide stretching
algorithm both on RGB and HIS color models to enhance
underwater images. The advantage of applying two stretching
models is that they help to equalize the color contrast in the
images and solve the lighting problem.

However, the effect of the above image enhancement
method often changed the gray value of the whole image,
and it was impossible to enhance only the area of interest
while the gray value of other areas remained unchanged.
Based on the shortcomings of the above image enhancement
methods, an improved image enhancement algorithm based
on CycleGAN (Cycle Generative Adversarial Networks) for
glue-coated images is proposed in this paper. The high- and
low-contrast images are first divided by the VGG16 model.
Then, the proposed image enhancement algorithm enables
low-contrast images to learn the features of high-contrast
images to enhance the image region of interest. Finally, the
threshold segmentation method is used to extract the glue
contour, and then complete glue quality detection.

Il. BASIC PRINCIPLES AND METHODS

A. THE CHARACTERISTIC ANALYSIS OF IMAGES AND
SAMPLE PRODUCTION OF THE IMAGE OF GLUE

Due to the different thicknesses of glue, the contrast of the
edge area of glue in the images are in two different states:
high and low, as shown in Figs. 1 and 2. From the perspective
of image processing, the higher the contrast between the glue
and the background, the easier it is to segment. When the
glue is thick, there is a large difference between the gray
value of the glue edge area and the background, and the
edge contour is clear. It is easy to use image segmentation to
directly extract the glue contour, as shown by the red arrow
in Fig. 1(b). When the glue thickness is thin, there is a small
difference between the gray value of the glue edge area and
the background, and the edge contour is fuzzy, as shown by
the red arrow in Fig. 2(b). It is difficult to directly segment the
image to extract the glue contour. Therefore, it is necessary
to enhance the glue-coated image with low contrast. As seen
from Fig. 2(a), in a complete image of glue, not all edge
areas have low contrast. Some of them may be high, and
some of them are low, so the areas with low contrast need
to be extracted for enhancement, while the areas with high
contrast are reserved. To separate the high- and low-contrast
areas in the same glue image, image processing software,
Halcon, is used in this paper to divide an image of glue
into 20 areas. The processing schematic diagram is shown
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in Fig. 3. An image is generated for each area separately.
A complete image of the glue can generate 20 sample images,
as shown in Fig. 4. Meanwhile, to distinguish the contrast of
the sample image, an edge extraction of images is performed
using the Otsu threshold segmentation algorithm [19], [20].
The extraction results are shown in Fig. 5. The preliminary
determination on the category of the sample image is made by
analyzing the roundness and the smoothness of the extracted
edges. After that, it is confirmed again by the inspector. The
images with glued edges can be accurately extracted by the
Otsu threshold segmentation algorithm, which are regarded
as the high-contrast sample, while those with the glued edges
that cannot be accurately extracted are regarded as low-
contrast sample images.

Pa12333p 3q 03 36p3 sei3uod YBIH

(a) (b)

FIGURE 1. High-contrast glue dispensing image; (a) holistic high-contrast
coated image; (b) partial high-contrast coated image.

pa1d213p 3q 03 96pa 15eUOD MOT

(a) (b)

FIGURE 2. Low-contrast glue dispensing image; (a) holistic low-contrast
coated image; (b) partial low-contrast coated image.

FIGURE 3. Partitioned diagram of the holistic glue dispensing image.

B. VGG16 MODEL
The very deep convolutional network (VGG16) model [21]
is a convolutional neural network model proposed by Oxford
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FIGURE 4. Sample graph.

(a) (b)

FIGURE 5. Glue edge extraction from glued images; (a) extracted glue
edges from low-contrast glue application images; (b) extracted glue
edges from high-contrast glue application images.

University in 2014 and won the ILSVRC (ImageNet Large
Scale Visual Recognition Challenge) championship in the
same year, showing strong classification performance. Due
to its practicability and simplicity, it has become one of
the most popular convolutional neural network models [22].
Su et al. [23] tested the robustness of transfer training for
18 mainstream classification models at present, and the exper-
iment showed that compared with other advanced classifi-
cation models, the deep stacked VGG16 model could still
maintain a higher classification accuracy in transfer training.
In industrial applications, it is difficult to obtain enough data
samples to finish the training of a complete classification
model. Therefore, from the perspective of transferable train-
ing, in this paper, we choose the VGG16 model as a classifier
to distinguish between high-contrast and low-contrast images
of glue.

The structure of the VGG16 model is shown in Fig. 6.
The VGG16 model is composed of 13 convolutional layers,
5 pooling layers and 3 fully connected layers. The convolu-
tion layer of VGG16 is all stacked up by 3 x 3 convolution
cores, and the convolution layer is raised to the concept of
convolution blocks. Each convolution block contains 2-3 con-
volution layers to ensure that VGG16 has a larger receptive
field. Each convolution block is connected by a maximum
pooling layer of 2 x 2, thus reducing the parameters in the neu-
ral network and greatly reducing the training difficulty of the
network. At the same time, each convolution layer is followed
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by a ReLU activation function, whose definition is shown
in (1). A large number of activation functions enable VGG16
to have a strong nonlinear transformability, which improves
the model’s classification performance. The last layer of the
VGG16 model uses the softmax function as a classifier to
output classification results, whose definition is shown in (2),
which reduces the difficulty of training and makes it easier for
the network to converge. Moreover, the VGG16 model uses
the cross-entropy as the loss function. The definition is shown
in the following Formula (3). This cross-entropy function is a
convex function, and it facilitates backpropagation to find the
global optimal solution. In addition, the calculation process
of the numerical instability of the abnormal problem can be
solved by using the cross-entropy function together with the
softmax function.

0, <0
F) = { r= (1)
x, x>0
;
Si = Zjej (2)
Loss = —[ylogy + (1 — y)log(l — )] (3)

where y is a true value and y’ is the estimate.

224x224x3 224 x 224 x 64

112x112x 128

56]x 56 x 256 7x7x512
28 x 28 x 512

dapiaxsia 1x1x4096 1x1x1000

(= convolution+ReLU
) max pooling
fully nected +ReLU
softmax

FIGURE 6. Structure diagram of the VGG16 model.

C. SIMPLIFICATION OF THE CYCLEGAN MODEL

CycleGAN is a derivative model of GAN proposed by
Zhu et al. [24] in 2017. The main contribution of this paper
is to propose cyclic consistent loss, which makes the sam-
ple image have a one-to-one correspondence with the gen-
erated image and solves the problem that many different
sample images may produce the same generated image.
Engin et al. [25] presented an end-to-end network called
Cycle-Dehaze for the single image dehazing problem. Their
method enhances CycleGAN formulation by combining
cycle consistency and perceptual losses to improve the quality
of images. However, images may be distorted when scaled.
Tmenova et al. [26] used CycleGAN to generate vascular
images, which solved the problem of insufficient training
data in medical images to a certain extent. Chang et al. [27]
improved the residual structure in the CycleGAN generator to
generate calligraphic Chinese characters and achieved good
results. At present, CycleGAN is mainly used in style transfer
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and image generation, but CycleGAN has a wide range of
prospects in engineering applications. It is a new attempt to
apply CycleGAN in image enhancement and industrial fields
in this paper.

In general, the complete CycleGAN model can realize the
conversion between the two source domains. In this paper,
we only need to convert low-contrast sample images to high-
contrast sample images, and we do not need to convert
high-contrast sample images to low-contrast images in the
reverse process. Therefore, this paper simplifies the model
to reduce the redundancy of the model and improve the
training speed. The simplified CycleGAN model is shown
in Fig. 7. As shown in Fig. 7, the simplified CycleGAN
model is composed of two generators and one discriminant,
which reduces one discriminant compared with the complete
CycleGAN model. Its working principle is as follows:

(1) First, the low-contrast images in the sample set of the
source domain are generated by generator G to generate high-
contrast images.

(2) Another generator, F, is used to regenerate the
low-contrast image, and the source domain information is
recovered by comparing the similarity between the original
low-contrast image and the generated low-contrast image,
i.e., calculating the cyclic consensus loss, as shown in the
dotted circle in Fig. 6.

(3) Finally, discriminant D is used to distinguish the gen-
erated high-contrast images from the high-contrast images in
the sample set.

/| Low contrast |
image [« Generator (F) [«
(Generated) \

Low contrast High contrast
image »| Generator (G) image
(Original) / (Generated) ‘

High contrast
image > Discriminator (D)
(original)

Generated / Original

FIGURE 7. Structure diagram of the CycleGAN model.

The loss functions of generator G and discriminator D
are defined in (4) and (5). A discriminant loss increases
with a decreasing generator loss. Similarly, the generator loss
increases with a decreasing discriminator loss. The generator
and discriminator in the simplified CycleGAN model are
also against each other in the training process to improve the
performance of their respective networks.

Lgen (G, D, X) = Expdataw)| (D (G (x)) — 1)1 (4)
Lais (G, D, X, Y) = Eypdatay)|(D () — 1)’]
+ Ex~pdatao[D (G ()1 (5)
The loss function definition of the entire simplified Cycle-
GAN model is shown in (6), where the third item on the right
side of the equal sign is the cyclic consistent loss.
L(G,F,Dy) = Lgen (G,D,X) + Lais (G, D, X, Y)
+ )\Lcyc (Ga F) (6)
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Leye(G, F) = Ex~pyuto) [IIF(G(x)) — x|l ]
+ Eypaaty) [IF(GOY)) = 1] @)

1) IMPROVEMENT OF CYCLIC CONSISTENT LOSS

As seen in (7), the original CycleGAN model uses the MEA
loss function for the cyclic consistent loss. Although the
MEA [28] loss function is more robust to outliers, the gradient
of the MEA loss function is always the same when the neural
network parameters are updated, resulting in a large gradient
even for a small loss value. This makes it difficult for the
neural network to converge. Although the gradient of the
MSE [28] loss function changes with the change in the loss,
it has a large gradient when the loss is large. Additionally,
the gradient decreases correspondingly when the loss tends
to be 0, but the MSE loss function is more sensitive to out-
liers. Therefore, the logarithmic hyperbolic cosine function is
selected as the cyclic consistent loss function of the simplified
CycleGAN model in this paper, and its function expression is
shown in (8).

y = log(cosh(x)) ®)

Log-Cosh [29], MAE and MSE loss functions are shown
in Fig. 8. As seen in Fig. 8, when the loss value is large,
Log-Cosh is close to abs (x) — log (2), which indicates that
Log-Cosh has the advantage of the MAE loss function being
relatively robust to outliers. When the loss is small, Log-Cosh
is close tox?2 / 2, which indicates that Log-Cosh also has the
advantage that the MSE loss function can change the gradient
according to the loss to ensure that the neural network can
converge faster. The improved cyclic uniform loss is defined
in (9), where A is the hyperparameter, which is used to control
the proportion of cycle uniform loss in the total loss. It could
be seen from Figs. 9, 10 and 11 that Log-Cosh loss function
makes the loss of generator and discriminator more stable
during the training of neural network.

Lcyc (G, F)=A XEXdiata(x) [10g(COSh(F(G(X))—X))] ©)

ost S T—uE
—ME=E
Log-Cosh

X

FIGURE 8. Different loss function graphs.

2) CYCLEGAN’'S GENERATOR
Generators F and G are important components of the Cycle-
GAN network model, and their structure is shown in Fig. 12.

92040

Loss of generator Loss of discriminator

(a) (b)

FIGURE 9. Different losses from MAE; (a) generator loss function image;
(b) discriminator loss function image.

Loss of generator Loss of discriminator

3 4 s 6 0 1 2 3
Step <10t Step x10

(a) (b)

FIGURE 10. Different losses from MSE; (a) generator loss function image;
(b) discriminator loss function image.

Loss of generator Loss of discriminator

0.5 /\/""/‘AA‘J\_‘ 03

3 4 5 6 0 1 2 3 4 5 6
Step <10 Step x10*

(a) (b)

FIGURE 11. Different losses from Log-Cosh; (a) generator loss function
image; (b) discriminator loss function image.

F and G are used to generate low-contrast and high-
contrast images, respectively. The generator is mainly com-
posed of three convolution layers, nine residual layers, two
deconvolution layers and a final convolution layer. The struc-
ture of the residual layer is shown in Fig. 13. Following each
convolution layer and deconvolution layer, instance normal-
ization is used to speed up the convergence of the model and
prevent gradient explosions. The generator uses the ReLU
activation function to improve the nonlinear transformability.
Two convolutional layers are used in each residual layer to
extract features and combine them with the original image
features to prevent the loss of image information due to the
increase in the number of convolutional layers and better
retain the basic features of the original image, such as the edge
and background in the low contrast image. The generator
uses two deconvolution layers to restore the low-level features
of the image and adds the features of the target image to
the original image, such as the gray value of the glue in
the high contrast image to achieve the enhanced contrast
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effect. Finally, one convolution layer is used to complete the
generation of high-contrast images.

Tow
Contrast
image

Figh
Contrast
Image

FIGURE 12. Structural diagram of the generator.

Tnput Output

dd

FIGURE 13. Structural diagram of the ResNet block.

3) CYCLEGAN'S DISCRIMINATOR

In the CycleGAN model, the discriminator plays an impor-
tant role in confrontation training. It can be seen from (4)
and (5) that in addition to the loss of the discriminator itself,
the loss of the generator is also directly related to the dis-
criminator. Therefore, the performance of the discriminator
directly determines the training results of the whole Cycle-
GAN model. The structure of CycleGAN’s discriminator is
shown in Fig. 14. The function of the discriminator is to
identify whether the image is the original high-contrast image
or the high-contrast image generated by the generator. The
discriminator mainly consists of five convolutional layers,
and the second to fourth layers also adopt instance normal-
ization. The activation function of the discriminator uses
the LeakyReLU function, as defined in (10). LeakyReL.U
resolves the gradient disappearance problem that might exist
in the ReLU function and improves the stability of the dis-
criminator during training. The last convolution layer uses the
sigmoid function to classify the output results, and its defini-
tion is shown in (11). When the identification is the original
high-contrast image, the output of the last convolution layer
is 1. When the determination is an image generated by the
generator, the output of the last convolution layer is O.

F = o v=0 (10)
X, x>0
1
S0 =1 (11

D. SAMPLE DATA EXPANSION METHOD

Because the amount of sample data obtained in industrial
applications is limited and less sample data leads to under-
fitting of the neural network, it is necessary to enlarge the
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FIGURE 14. Structural diagram of the discriminator.

sample image. Halcon is used to divide one complete image
of glue into twenty sample images. Then, for each sample
image, the method of rotation and mirroring is adopted to
expand the sample data. The specific methods are as follows:

(1) Rotate the image by 90°, 180° and 270°, and the sample
data can be expanded 3 times after this step.

(2) Mirror the images according to the first quadrant, sec-
ond quadrant and third quadrant. After this step, the sample
data can be expanded by 3 times.

(3) Mirror the 90° image according to the second quadrant.
After this step, the sample data can be expanded by 1 time.
Through the above method, the sample data can be expanded
by 7 times.

Ill. THE RESULTS AND DISCUSSION

Computers with hardware configurations, such as CPU-Intel
Xeon W3175-X and GPU-NVIDIA Quadro RTX6000 24G
are used in this study. Both the VGG 16 model and the Cycle-
GAN model are implemented programmatically on Tensor-
Flow, which is an open-source deep learning framework.

A. VGG16 MODEL CLASSIFICATION
When training the VGG16 model, the gradient descent
method is used to solve the optimization method, the batch
size is 64, and the learning rate is 0.0001. The pretraining
model is used to freeze the weight of neural network nodes
in the first 13 convolutional layers of VGG16, and its own
sample set is used to train the last 3 fully connected layers.

A total of 2000 sample data were used to train the VGG16
model, including 1000 high-contrast images and 1000 low-
contrast images. Fifty high-contrast images and 50 low-
contrast images without sample expansion are used as the
test set to test the classification and generalizability of the
model. Since the VGG16 model has more than 100 million
parameters that need to be trained, if all sample data are
used for training, network training will take a long time.
Therefore, the pretraining model is used in this paper for
transfer learning, and the number of layers with pretraining
weights and the detection accuracy in the training set are
shown in Table 1. It can be seen that, for the current sample
size, the classification accuracy of the first 13 layers using
pretrained weights is the highest. Therefore, the parameters
of the first 13 convolutional layers are used in this paper with
pretrained weights.

In the training process, the loss of the model and the
accuracy of detection are shown in Figs. 15 and 16. It can be
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TABLE 1. Detection accuracy of different pretraining weight layers.

Pretrainin, ight
clraming weig Test set accuracy

layers
11 51%
12 63%
13 96%
14 87%
15 71%

seen that with the increase in the number of training steps, the
loss of the model decreases and the accuracy rate increases.
Finally, during the training process, the loss of the model is
close to 0, while the accuracy rate is close to 100%. Through
experiments, the accuracy rate of the model after training on
the test set also reaches 96%, indicating that the model does
not fit during training, and the generalization performance of
the model is good. The classification results of the VGG16
model after the training are shown in Fig. 17. It can be seen
that the classification results have high accuracy. In conclu-
sion, the model has good classification performance after
training and can effectively distinguish high-contrast images
from low-contrast images.

loss

0.5

0 2000 4000 6000 8000 10000
step

FIGURE 15. Curve of loss.

accuracy

0 . . .
0 2000 4000 6000 8000 10000
step

FIGURE 16. Curve of accuracy.

B. CYCLEGAN MODEL IMAGE ENHANCEMENT

When the CycleGAN model is trained, the Adam [30] solver
is used with a batch size of 1. All networks are trained from
scratch with a learning rate of 0.0002. On the activation
function of the discriminator, « in (10) is 0.2. In this paper,
3600 sample data are used to train the CycleGAN model,
including 1800 high-contrast images and 1800 low-contrast

92042

(b)

FIGURE 17. Classification result of the VGG16 model; (a) high-contrast
image; and (b) low-contrast image.

images. Fifty low-contrast images without sample expansion
are used as the test set to test the enhancement effect and the
generalizability of the model. As shown in (6), the hyperpa-
rameter A determines the proportion of the cyclic uniform
loss in the whole model loss. The enhanced image results
for different A values are shown in Fig. 18. When A =2,
the enhanced image is rough, and the edge is fuzzy. When
A =6, the contrast improved obviously, and the edge appears
blurry. When A =18 and 22, the enhanced image changes
the edge contour of the original image, which affects the next
detection. When A =10 and 14, the enhancement effect is
good, but when A =10, the background gray value is closer
to the original image. Therefore, we set A =10 in (6).

In the training process, discriminant loss, generator loss
and cycle consistent loss are shown in Fig. 19. Fig. 19(a)
shows that the discriminator and the generator are trained
separately at the beginning and maintain the initial equilib-
rium state. Since the structure of the discriminant is simpler
than that of the generator so that fewer parameters need to
be trained, the discriminant trains faster and has a better
discriminant function in the first place. As a result, the loss
of the discriminant decreases while the loss of the gener-
ator increases, and then the whole model enters the phase
of adversarial training. After a long training, the generator
training is completed, and the whole model forms a relatively
balanced state again. At this time, both the generator and
the discriminator have good performance. Fig. 19(b) shows
that the cyclic consensus loss decreases continuously as the
number of training steps increases, which means that the
generated image has a high similarity to the original image
and that the generator also has good performance.

In the test set, the CycleGAN model has a success rate
of 58% for substantial enhancement of low-contrast images.
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(d) ()

(9)

FIGURE 18. Image generation of different A values: (a) original low
contrast glue dispensing image; (b) enhanced image when A =2;
(c) enhanced image when A =6; (d) enhanced image when 1 =10<;
(e) enhanced image when A =14; (f) enhanced image when 1 =18;
(g) enhanced image when 1 =22.

—— Discriminator
—— Genarator

Loss
CycLoss

20 40 60 o 20 40 60
Step(x10%) Step(x10%)

(a) (b)

FIGURE 19. Loss of CycleGAN model; (a) loss of generator and
discriminator; (b) loss of cycle consistency.

Some of the enhancements to the test set are shown in Fig. 20.
After the enhancement by the CycleGAN model, it can be
clearly seen that the gray value of the whole glue becomes
higher, especially the gray value of the edge area of the
glue, which increases considerably, while the gray value of
the background part remains unchanged. Thus, the contrast
between the glue and the background is overall improved. The
gray value difference between the edge area of the original
low-contrast image glue and the background area is only
approximately 20, but after enhancement, the gray value
difference reaches approximately 55, which greatly reduces
the difficulty of the following threshold segmentation. The
enhancement effect of a complete glue-coating image is
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shown in Fig. 21(a). In Fig. 21(a), the area inside the blue
circle indicates that the VGG16 model discriminates it as a
high-contrast image, so it does not need to be enhanced. The
area inside the red circle is identified as a low-contrast image
by the VGG16 model. After enhancement, the contrast of
the edge area can be considerably improved. As shown in
Fig. 21(b), the 20 local sample images still maintain good
integrity and continuity after being enhanced and stitched
back together, and the gray values of the glue and the back-
ground between each locally enhanced image maintain good
consistency, which is convenient for the following threshold
segmentation and edge extraction operations.

(b)

FIGURE 20. Samples of enhancement results in the test data; (a) test
images; (b) images of enhancement results.

(@) (b)

FIGURE 21. Comparison of the original image and the overall
enhancement image; (a) original glue dispensing image; (b) holistic
enhanced image.

To further evaluate the enhancement performance of the
proposed method in this paper, two other image enhancement
algorithms proposed by Igbal Guo et al. [17] and et al. [18]
are also tested on this glue dispensing image dataset. It is
shown that the computational processing speeds of the three
algorithms are not much different. The image enhance-
ment results are shown in Fig. 22. The image displayed
in Fig. 22(d) is the result of dataset processing using the
underwater dark light enhancement algorithm proposed by
Guo et al. [17]. Fig. 22(e) is the result of processing the
dataset using the dark light background enhancement algo-
rithm proposed by Igbal et al. [18]. It can be directly noted
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that the proposed method provides a better enhancement
effect of the interest region of the glue dispensing image.
Although the underwater enhancement algorithm and the
dark light enhancement algorithm play a certain role in
enhancing the glued image, these two algorithms cannot
enhance the area of interest while keeping the gray value of
other areas unchanged. For a more quantitative representation
of the effect of the different algorithms, histograms of the
grayscale intensity of the images of Fig. 22 are shown in
Fig. 23. The results show that the grayscale histogram of the
proposed method in this paper is the most similar to the his-
togram distribution of the high-contrast glue images between
the three enhancement algorithms. Furthermore, an increase
in the number of high brightness pixels in the image suggests
that the glue image is enhanced. There is an obvious increase
in the high brightness pixels in the interest area when the low-
contrast image is enhanced by our cycleGAN algorithm. The
other two algorithms do not provide the same enhancement
effect in the interest area of the low-contrast image.

C. GLUE CONTOUR EXTRACTION AND DETECTION

Before the low-contrast image of glue is enhanced, the
method of combining fixed threshold segmentation and Otsu
threshold segmentation commonly used in the industry is
used to extract the glue contour. As shown in Fig. 24(a),
the extracted glue has a rough edge and a larger contour
error. Systematic experimental results show that the success
rate of accurately extracting the low-contrast glue profile is
only 24% in this condition, which is far from meeting the
requirements of product qualification rate control. However,
the image of glue with a low contrast region is enhanced by
our proposed algorithm. Because of the high contrast, the
glue contour can be extracted directly with fixed threshold
segmentation after the enhancement. As shown in Fig. 24(b),
it can be seen that the glue contour is accurately extracted,
and the edge is smoother than that without enhancement.
The stability and the accuracy of glue quality detection is
improved.

The overall coated edge extraction of the glue coating is
also performed in the Gluing process test platform, as shown
in Fig. 25. We test three enhancement methods. The results
of edge extraction are listed in Fig. 26. In Fig. 26(b), it can be
seen that the part of the glue contour edge required for detec-
tion is considerably enhanced. The success rate of accurately
extracting low-contrast glue contours is increased to approxi-
mately 99% by our method, which can meet the basic require-
ments of engineering tests. In addition, the results of the
dark light enhancement algorithm and the underwater image
enhancement algorithm for glued edge extraction can also
enhance the overall details of the glue-coated image, as shown
in Fig. 26(c) and (d). After extracting the gluing edge of the
enhanced images with fixed threshold segmentation, it was
found that the success rate of extracting low-contrast glue
contour parts is also increased. However, after manual inspec-
tion of the inspector, we found that the shape accuracy of
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(d) (e)

FIGURE 22. Results of other enhancement algorithms; (a) low contrast
glue image; (b) high contrast glue image; (c) the image after
enhancement by the cycleGAN algorithm; (d) the image enhanced by
using the underwater enhancement algorithm proposed by Guo et al. [17]
(e) the image enhanced by using the dark light background enhancement
algorithm proposed by Igbal et al. [18].

Low contrast glue image Hight contrast glue image
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CycleGAN enhancement algorithm
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Undenwater dark light algorithm
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(c) (d)

Dark light background algorthm

(e)

FIGURE 23. Grayscale histogram of Fig. 21; (a) is the grayscale histogram
of Fig. 21(a); (b) is the grayscale histogram of Fig. 21(b); (c) is the
grayscale histogram of Fig. 21(c); (d) is the grayscale histogram of

Fig. 21(d); (e) is the grayscale histogram of Fig. 21(e).

the extracted contour after sample enhancement is still quite
different from the actual gluing contour edge (e.g., as marked
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(@ (b)

FIGURE 24. Glue edge extraction before and after enhancement; (a) edge
extraction results before enhancement; (b) edge extraction results after
enhancement.

in Fig. 26(c) and (d)), which means that the success rate
of the sizing inspection cannot be improved and may have
a substantial impact on the accuracy of the subsequent AA
focusing process.

cCb
Camera Gliie
Application
Light Device

Source y
Camera

Lens

FIGURE 25. Comparison of the original image and the overall image.

After performing threshold segmentation and expansion
and corrosion morphological operations on the samples
shown in Fig. 21(b), the glue area of the images of glue
can be obtained, as shown in Fig. 27. It can also be seen
in Fig. 26(b) that a complete glue contour can be obtained
by edge extraction of the obtained glue area. After obtaining
the glue contour, the quality of the glue can be determined
according to the characteristics of the contour. There are three
main criteria for determining the quality of the glue: (1) the
uniformity criterion: according to the obtained glue contour,
the maximum glue width and the minimum glue width can
be calculated to determine the uniformity of the glue; (2) the
adhesive width criterion: determination of whether the adhe-
sive width of the glue meets the requirements by calculating
the radius difference between the inner and outer contour
fitting circles of glue, as shown in Fig. 28; (3) the offset
criterion: the distance between the average value of the fitting
center of the inner and outer contour of the glue and the center
of the reference circle of the parts is calculated to determine
whether the glue is biased, as shown in Fig. 29. The green
circle is the reference circle of the part, and the green point is
the center of the reference circle. The red circle is the fitting
circle of the inner and outer contours, and the red dot is the
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(d)
FIGURE 26. Glue edge extraction result image; (a) Original low-contrast
glue dispensing image; (b) Glue edge extraction of glued images after
enhancement by the CycleGAN enhancement algorithm; (c) Glue edge
extraction of glued images after enhancement by using the underwater
enhancement algorithm; (d) Glue edge extraction of glued images after
enhancement by using the dark light background enhancement algorithm.

FIGURE 27. Region of glue.

average value of the center of the fitting circle. The final test
result is shown in Fig. 30.
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FIGURE 28. Diagram of the glue width criterion.

FIGURE 29. Diagram of the eccentricity criterion.

FIGURE 30. Image of the detection result.

IV. CONCLUSION

To solve the problems of low glue contrast and the difficulty
to detect the images of glue in the process before AA focusing
of the vehicle-mounted camera assembly, this paper proposes
a method based on CycleGAN to enhance the images of glue
of the camera samples to improve the detection accuracy
of the glue quality. The VGG16 model is used to identify
areas with low contrast. The CycleGAN model is used to
enhance the low-contrast image, and finally, the quality of
the glue is tested. The results show that the classification
success rate of the VGG16 model in the test set reaches
96%, and it can effectively distinguish the low-contrast and
the high-contrast images of glue. The CycleGAN model can
substantially improve the gray value of the low-contrast glue
area in the images of glue. In the condition of maintaining
the original gray value of the background area, the difference
in the gray value between the glue and the background is
increased from approximately 20 to 55, which improves the
contrast of the images of the glue and reduces the difficulty
of detection. In the test set, the enhancement success rate
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is 58%. For the enhanced low-contrast image of glue, the
accuracy of extracting the glue contour reaches 99%, which is
a 75% improvement over the unenhanced image. At present,
the research of this paper mainly relies on the data expansion
method to increase the sample data. With the increase in the
original sample size, the success rate of the enhanced image
is also improved. Therefore, it is considered that this method
has wide application prospects in automatic industrial man-
ufacturing. However, the success rate of the enhanced image
of the CycleGAN model in the current method cannot fully
meet the absolute accuracy requirements of product detection
on the actual industrial automated assembly production line.
At the same time, in the actual industrial application environ-
ment, usually, considerable manpower and material resources
are needed to obtain enough data samples. Therefore, in our
future studies, further research will be conducted on improv-
ing the performance of the CycleGAN model in the case of a
low sample data size.
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