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ABSTRACT Recent studies have shown the potential of Reinforcement Learning (RL) algorithms in tuning
the parameters of Model Predictive Controllers (MPC), including the weights of the cost function and
unknown parameters of theMPCmodel. However, a framework for easy and straightforward implementation
that allows training in just a few episodes and overcoming the need for imposing extra constraints as required
by state-of-the-art methods, is still missing. In this study, we present two implementations to achieve these
goals. In the first approach, a nonlinear MPC plays the role of a function approximator for an Expected
Sarsa RL algorithm. In the second approach, only the MPC cost function is considered as the function
approximator, while the unknown parameters of the MPCmodel are updated based on more classical system
identification. In order to evaluate the performance of the proposed algorithms, first numerical simulations
are performed on a coupled tanks system. Then, both algorithms are applied to the real system and their
closed-loop performance and convergence speed are compared with each other. The results indicate that the
proposed algorithms allow tuning of MPCs over very few episodes. Finally, also the disturbance rejection
ability of the proposed methods is demonstrated.

INDEX TERMS Model predictive control, reinforcement learning, expected Sarsa algorithm, model-based
learning method.

I. INTRODUCTION
Model-predictive control, while being a powerful method,
requires an accurate model and proper tuning of the
parameters to be effective [1]. To facilitate obtaining both,
recently the combination of machine learning (ML) and
model predictive control (MPC) has been proposed.

The most prominent techniques in this context are super-
vised methods, where a global approximator, like an artificial
neural network (ANN), is trained offline, based on the input
and output data of the real system, to obtain a model of it [2].
This approach, however, not only comes with significant
effort and time needed for training the network, but also
with an additional computational time required to solve an
optimization problem based on models of complex neural
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network functions, in contrast to models based on a more
traditional approach involving differential equations [3].

On the other hand, RL has demonstrated considerable per-
formance when combined with MPC. While the combination
of optimal control, such as linear quadratic regulators (LQR)
with RL, has been studied before, e.g., in [4] and [5],
one of the most valuable works in expanding the theory
of combining RL and MPC is [6], where the Q-Learning
algorithm has been employed to tune the parameters of
an economic nonlinear MPC (ENMPC), so that it can
deliver the optimal policy even when the MPC model is
not exactly matching the real system. In this approach,
MPC has been used as a function approximator for RL,
parameterized with the weights of its cost function as well
as the unknown parameters of the model. The Q-Learning
tries to find the unknown parameters of theMPC by exploring
the environment and by minimizing a predefined reward
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function, resulting in training the function approximator
based on RL. Since the MPC model is considered known
in structure but unknown in some parameters, the number of
required episodes is reduced, compared to deep RL methods,
in which a neural network model with several hidden layers
needs to be trained. Furthermore, constraints and limitations
of the real system can be met in the action value function and
the policy, which are based on the MPC.

However, although it has been a significant step to combine
a model-based controller with a model-free RL, there is
still room for at least two possible improvements. Firstly,
finding an MPC-RL framework that can achieve proper
training in just a few episodes, is still an open research
question. Secondly, in the MPC-Q-Learning framework
[6]–[8], an extra constraint with respect to the first input
must be imposed on the MPC, leading to degradation of the
performance and convergence speed of the whole algorithm.

In order to improve the control performance, robust
versions of the MPC with Q-Learning are presented in [9],
where the safety of the proposed RL algorithm is studied
by satisfying a set of prescribed constraints. In [8], the
scenario-tree MPC is tuned by Q-Learning for the control
of an autonomous surface vehicle (ASV), where an obstacle
penalty, time, and energy are considered in the reward
function (baseline stage cost). In [10], the uncertainties
are considered as ellipsoidal tubes, in which the Gaussian
noise is used to model the disturbances and state deviations.
Although the controllers have shown more robust behaviour
with respect to bounded disturbances, the computational time
increased dramatically due to the robust MPC characteristics.
Additionally, the issue related to the hard constraint on the
policy is not solved, since the Q-Learning formulation has
not been changed.

Another attempt to improve the MPC’s performance has
been made in [11], where parameters of an MPC are learned
by Q-Learning when the MPC model is fitted to the real
system using system identification. An implementation study
has been carried out for the tracking control of two ASVs
in [12] using the aforementioned combination. However,
computational burden is added to their algorithm by the
different methods suggested to avoid conflicts between the
two different updating rules.

With respect to policy-based methods [13], one way to
eliminate the aforementioned extra constraint on the first
input of the MPC-based Q-Learning method (as in [14]) is
to use deterministic policy gradients (DPG) [15], which can
lead to an optimal policy, when it has few parameters. Two
applications of this MPC-DPG method, a multi-agent battery
storage system [16], and a smart grid [17], can be found in
literature. As an alternative, we present a value-based method
that overcomes the need for imposing an extra constraint on
the MPC.

A. PAPER CONTRIBUTION
In this study, a value-based learning method is presented for
tuning an MPC. In addition to its fast online training process,

it provides an easier and more straightforward framework for
the implementation on real systems due to the elimination of
the extra constraint on the first input of the MPC. To this end,
an RL algorithm called Expected Sarsa is adopted. As shown
in [18], given the same amount of experience, Expected Sarsa
performs better than Sarsa, and in many cases better than
Q-Learning, since the variance is eliminated by the random
selection of the action in the subsequent action value function.

In this paper, without adding extra computational over-
head, we propose two RL algorithms to tune the weights of
the MPC cost function and the unknown parameters of the
MPC model and compare their performance with the MPC-
based Q-Learning method.

In the first solution (PMPCFA), it is assumed that thewhole
MPC, together with its equality and inequality constraints,
is the value function estimator, while the parameters are found
using the continuous version of the Expected Sarsa algorithm.

In the second proposed algorithm (PCFFA), the unknown
parameters of the model are found by an auxiliary cost
function based on system identification, while the remaining
parts are updated using the Bellman equation.

In an numerical example, the advantages and disadvan-
tages of both methods are compared with each others. While
the control performance of the PCFFA is found to be more
desirable, the convergence process of the PMPCFA resulted
to be faster. Additionally, it is shown that both approaches
outperform the MPC-based Q-Learning method presented
in [6] in terms of convergence speed and control performance.
Finally, the proposed algorithms are implemented on a real
benchmark coupled tanks system and their disturbance
rejection ability is demonstrated in experiments.

The remainder of this paper is organized as follows:
Section II provides a brief review of Markov decision
processes (MDP), Sarsa and Expected Sarsa algorithms.
In Section III, we present the problem definition, which
is related to overcoming limitations of the MPC-based
Q-learning method presented in literature. In Section IV,
the two proposed algorithms are discussed. In IV-A an
RL algorithm, based on the Expected Sarsa, is introduced,
while a parameterized MPC is used as its function estimator
(PMPCFA). In IV-B, a second algorithm in which only the
MPC cost function is defined as the function approximator,
is presented. Here, an extra cost function is employed to esti-
mate the unknown parameters of the MPC model. Section V
discusses the results obtained both in simulation (V-A) and
for an implementation on a real coupled tanks system (V-B),
also in presence of disturbances. Finally, Section VI draws
conclusions and offers new research perspectives.

II. BACKGROUND
A broad variety of engineering problems are solved through
an instance of an optimization problem, that, in its most
abstract formulation, can be formulated as an optimal control
problem (OCP). Since real-life problems can reach signif-
icant complexity, only few of these problems are typically
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solved analytically. Recent techniques consider discretizing
the problem producing an MDP based on Bellman’s theory.
In the following paragraph, we briefly review the components
of an MDP and introduce the mathematical model and its
notation, which are useful to describe the state of the art and
the contribution of the present study.

A. ELEMENTS OF AN MDP
AnMDP is defined through five components [19], formalized
as the tuple {T ,S,A,R(s, a), pij(a)}, namely: the decision
epochs T , the states S, the actions A, the reward function
R(s, a), and the transition probabilities pij(a) to pass from
state si ∈ S to sj ∈ S taking the action a ∈ A. The
process is assumed to be stationary, so that the transition
probabilities are time-independent, whereas the admissible
actions change with time. The term Markov means that the
transition probabilities and the cost function depend on the
past history only through the current state of the system and
by the selected action.

Decisions are made by a decision maker at points in time
called decision epochs, which belong to a discrete and finite
set T = {1, 2, 3, . . . ,T } with T < ∞. Elements in T are
denoted with t and are referred to as times or time steps,
whereby a finite T defines a finite horizon problem.
At each time t , the system is in a state s ∈ S and the

decision maker chooses an action a from the set of allowed
actions A. After the selection of a particular action a in state
s at time t , the decision maker benefits from a reward R(s, a),
which expected value at decision epoch t is given by:

R =
∑
si∈S

γ tR(s, a) p(si|s, a), (1)

where γ is the discount factor between 0 and 1, giving less
importance to future data for values strictly smaller than 1.
The new state of the system is determined by the transition
probabilities p(·|s, a), with:∑

si∈S
p(si|s, a) = 1. (2)

From the control theory point of view, the transition
probabilities define the dynamical system of the model, that
is, p(s+|s, a) is equivalent to:

s+ = f system(s, a). (3)

A decision rule is a procedure for selecting an action in
each state at the specified time and ranges from deterministic
to randomized and history-dependant, according to how the
past states and actions are considered. A decision rule is
a function dt : S 7→ A that may depend on the time
epoch t . After a decision rule is specified, the rewards and
the transition probabilities are functions of the state only:
p(sj|si, dt (si)) and R(si, dt (si)).
A policy is a function that gives the specific decision rule to

be used at each epoch, thus it is a sequence of decision rules
π = (d1, d2, . . . , dT−1).

A trajectory or history or sample path of the process is an
element ω = (s1, a1, s2, a2, . . . , sT−1, aT−1, sT ) of the space
� = (S ×A)T−1 × S.
The computation of the optimal policy is based on

backwards induction or dynamic programming, derived
from Bellman’s dynamic programming principle (DPP). Let
Qt (si, ai) be the expected total reward during the next T − t
epochs, then the objective of anMDP is to computeQ0(si, ai),
which represents the expected rewards for the next T−0 = T
epochs, if the system starts in state si. Since the planning
horizon ends at T , terminal values must be specified for all
states, e.g., QT (si, ai) for all i = 1, 2, . . . ,N . The set of all
total costs for all states at epoch t is denoted with:

Qt = [Qt (s1, a1), . . . ,Qt (sN )]T . (4)

For a planning horizon of length T , Qt can be computed in
terms of Qt+1 to produce the recursive compact relation

Qt (si,ai)=R(si, dt (si))+ γ
N∑
j=1

p(sj|si, dt (si))Qt+1(sj,aj).

(5)

The previous equation is called the value iteration equation
and is composed of the sum of two terms, the current reward at
epoch t and the expected total reward for the remaining times,
weighted by the probability pij that state sj can be reached in
one step from state si if decision dt (si) is taken. To find the
maximum reward, an optimal policy must be computed: this
is possible applying for all states si and all times t

Qt (si,ai)=max
a∈A

R(si, a)+ γ
N∑
j=1

p(sj|si, a)Qt+1(sj,aj)

 (6)

which is called the Bellman’s Value Function. The sequence
of actions that maximizes the previous equation and forms the
optimal policy for each state.

In practise, there are many causes that prevent the
decision maker to solve exaclty an MDP, the size of the
states that can be very large or infinite, the consequent
computational complexity, uncertainty in the values of some
variables and parameters. Therefore, the classic algorithms
for solving exactly an MDP are often put aside in favor of
more performing approximating methods. The next section
describes briefly two algorithms named Sarsa and Expected
Sarsa that benefit from the aforementioned framework. The
description is also beneficial to collocate properly the two
methods presented in this study.

B. EXPECTED SARSA ALGORITHM
In the Sarsa algorithm, the elements of the transitions,
(s, a,R, s+, a+), are employed to form the Bellman equa-
tion [18], [20]:

Qθ (s, a) = R+ γQθ (s+, a+), (7)

where a+ is the action computed at the subsequent state s+
by the policy πθ (called control law in control literature) and
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FIGURE 1. Block diagram of the model predictive control-based Q-learning method.

applied to the system in the next state s+. Qθ (s, a) expresses
the estimation of the value of the state-action pair called
the action value function. In continuous systems, regardless
of the performance of the RL algorithm, every function
parameterized with unknown parameters θ can be used as the
action value function. Using this algorithm, an agent has to
estimate howmuch reward it might receive in a state by doing
an action, or, more precisely, what is the expected return (the
sum of the future rewards) of a state-action pair [18].

At each sampling time, the unknown parameters, θ , are
updated based on the temporal difference error, δk , stating the
difference between the expected return and theQ value of the
current state-action as follows [20]:

δk = R+ γQθ (s+, a+)− Qθ (s, a), (8)

θnew = θold + αδk∇θQθ (s, a), (9)

where α is the learning rate. By updating the unknown
parameters, the policy and action value function can both
converge to an optimal policy and action value function,
respectively, provided that every state-action pair can be
visited finitely often [21].

In one of the variations of the Sarsa algorithm, named
Expected Sarsa, instead of just using a+ in s+ in the target
policy in (7), its expected value is computed over all actions
available in s+, because it is found that by doing this, the
variance in the updates is reduced [21]. Therefore, the error
δk can be rewritten as follows:

δk = R+ γ
∑
a′
π (a′|s+)Qθ (s+, a′)− Qθ (s, a), (10)

with π (a′|s+) the probability of taking action a′ in state s+.

III. PROBLEM DEFINITION
For a better understanding of the problem we tackled, we first
briefly describe the MPC-Q-Learning method introduced
in [6] and explain its limitations. The update rule of
Q-Learning can be considered a special case of the one
adopted for Expected Sarsa, where, instead of the expected
value of the subsequent action value function over all
available actions in the next state, only the action that makes
the target policy greedy is selected:

Qθ (s, a) = R+ γ min
a′

Qθ (s+, a′). (11)

In the MPC-Q-Learning formulation as indicated in Fig. 1
and adopted in [6]–[8], the target policy is defined as a
typical MPC, where the first element of the control output
vector is applied to the system with one sampling time delay.
Because of this, the behavior policy in the next sampling
time, which is another MPC, must be constrained with the
action obtained by the target policy in the previous time step
(u0 = a). Since the behavior policy in Q-Learning usually
acts exploratory [21], the whole exploration capability of the
algorithm is compromised by the aforementioned constraint.

In this paper, we overcome this limitation by employing the
Expected Sarsa algorithm with two different definitions for
the action value function. We show that by eliminating the
aforementioned constraint, not only the convergence speed
increases, but also the implementation process becomes
easier and more straightforward.

IV. METHODS
In this section, two different definitions are adopted for
the MPC-based value function that result in two algorithms
to be presented. Our proposed solutions both overcome
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the aforementioned issue of the presence of the extra input
constraint on the MPC. Indeed, with reference to Fig. 1 (the
state-of-the-art Q-Learning method), the block Second MPC
imposes an extra input constraint on the block Parametrized
MPC (u0 = a). This forces the block Parametrized MPC
to apply the same action as generated by the block Second
MPC at the previous time step. However, with respect to
our proposed solutions, the actions generated by the blocks
Parametrized MPC and Second MPC do not need to be the
same, thus avoiding this constraint.

A. PARAMETRIZED MODEL PREDICTIVE CONTROL (MPC)
AS FUNCTION APPROXIMATOR (PMPCFA)
In this section, the whole MPC is considered as the action
value function, which is parameterized in the unknown
parameters of its model as well as in the weights of the cost
function:

Qθ (s, a)=min
N−1∑
i=0

γ i[(xi − xrefi )
2
θx
+ (ui − urefi )

2
θu

+ θTwσ i]+ γ N [(xN − xrefN )
2
θxf
+ θTwf σN ], (12)

subject to xi+1= f model
θm

(xi,ui), x0=s, and (13)

g(ui) ≤ 0, (14)

h(xi,ui) ≤ σ i, (15)

hf (xN ) ≤ σN , (16)

σ 0,··· ,N ≥ 0, (17)

where Qθ (s, a) acts as the action value function estimator at
the current state s and action a; xi, ui and σ i are the predicted
state, control input, and slack variables at the sampling time
i, respectively; xref and uref are the reference inputs of the
state and action, N is the prediction horizon, g(ui) is the
input constraint, h(xi,ui) is the mixed constraint, hf (xi) is
the final constraint, the discount factor is 0 < γ ≤ 1; f model

θm
is the model of the system with unknown parameters θm. The
variables in θ = [θx, θu, θw, θxf , θwf , θm] are the unknown
parameters which are found during the interaction with the
environment. Parameters θx, θu, θw, θxf , and θwf are the
weights of cost function terms including the tracking error,
control input, slack variables, final tracking error, and final
slack variable, respectively.

The solution of the above optimization problem leads
to a sequence of control outputs, [u1,u2, . . . ,uN ], at each
sampling time, while the policy is to choose the first element
with probability 1 and apply it to the system. Since the same
policy is used for the target policy, the temporal difference
error δk in (8) must be rewritten as follows [20]:

δk = R+ γQθ (s+, a′+)− Qθ (s, a), (18)

where a′+ is the action computed in s+ by another MPC after
applying a to the system by the first MPC. In fact, since the
action space is continuous, computing

∑
a′ π (a

′
|s+) is not

possible [20]. Then, one possibility is to simply consider the
action computed by the second MPC as s+.

Since the goal of this algorithm is to minimize the expected
reward, the reward function must be defined such that the
MPC performance increases when the reward decreases. One
simple choice can be the difference between the current state
and the reference input as follows:

R = (s− xref)T diag(ν)(s− xref), (19)

where ν is a weighting vector with which the importance of
the error of each state can be changed.

As explained earlier, (9) is used to update the parameters of
the MPC, where ∇θQθ (s, a) needs to be solved in each time
step, k . It has been proven in [6] and [22] that:

∇θQθ (s, a) = ∇θLθ (s, a, z), (20)

Lθ (s, a, z) = 8θ + λTGθ , (21)

where L is the Lagrange function associated to the MPC
in (12)-(17), 8θ is the cost function of the MPC in (12),
Gθ is the equality constraint of the MPC related to the
dynamic model of the system in (13), λ are the associated
dual variables ofGθ . Vector z = [x,u, σ ,λ] is the solution of
the MPC obtained from solving (12)-(17).

According to the Expected Sarsa algorithm presented
in [21], after initializing θ and s, we need to solve
the parametrized MPC in (12)-(17) in order to obtain
z in each episode. Doing this, the MPC cost function,
8(x,u, σ , xref,uref, θ ), can be computed and defined as
the value of Qθ (s, a). Afterwards, according to the defined
policy, the first element of u is applied to the real
system so that the next state, s+, and the reward value,
R, can be observed. In order to approximate the target
action value function, another MPC needs to be solved by
considering x0 = s+, so that Q(s+, a′+) can be obtained.
Now, we are able to compute the error δk in (18) with
which parameters of the MPC can be updated by (9).
The pseudocode of the PMPCFA algorithm is given in
Alg. 1. The block diagram of the algorithm is shown
in Fig. 2.

The advantage of the proposed algorithm based on
Expected Sarsa rather than MPC-based Q-Learning as
presented in [6]–[8], is that there is no need to add an extra
constraint related to the first input of the parametrized MPC.
In other words, in the Q-Learning formulation, to obtain
Q(s, a), an MPC needs to be solved in which u0 = a is an
additional constraint. Moreover, since two MPCs have to be
solved in each sampling time, the horizon needs to be chosen
short to reduce the computational cost. In this way, forcing the
controller to start from a specific input, has a negative effect
on the performance, as illustrated later in Section V-A. On
the other hand, even if more computational resources were
available to allow for a longer horizon, the result would be
a poor control performance since the model outputs are not
necessarily the same as the ones of the real system.

Our proposed method PMPCFA has a faster convergence,
as explained in Section III, thanks to the removal of the extra
input constraint.
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FIGURE 2. Block diagram of the proposed model predictive control-based reinforcement learning using the PMPCFA algorithm.

Algorithm 1 The MPC-Based RL Using the PMPCFA
Algorithm
Data: α ≥ 0, 0 ≤ γ ≤ 1
θ ← θ0
while episode < FinalEpisode do

s← s0
while k < FinalTime/SamplingTime do

Obtain x, u, σ , λ, and Qθ (s, a) from (12) to (17)
by x0 = s.
Apply the first element of u to the real system
Observe s+ and R
Obtain Qθ (s+, a′+) from (12) to (17) by x0 = s+
Compute δk according to (18)
Obtain ∇θQθ (s, a) from (20) to (21)
Update θ according to (9)
k ← k + 1
s← s+

end
episode← episode+ 1

end

B. PARAMETRIZED COST FUNCTION AS FUNCTION
APPROXIMATOR (PCFFA)
In the second proposed method, instead of considering the
whole MPC as function estimator, the MPC cost function is
parameterized just in its weights and defined as the action
value function. The cost function is then given by:

Qθcost (s, a) =
N−1∑
i=0

γ i[(xi − xrefi )
2
θx
+ (ui − urefi )

2
θu

+wTσ i]+ γ N [(xN − xrefN )
2
θxf
+ θTwf σN ].

(22)

where θcost = [θx, θu, θw, θxf , θwf ] does not include the
unknown parameters of the model θm.
Unlike the previous algorithm, a greedy policy is now

defined, such that the minimization of the action value
function is computed to generate the action. Therefore, the
policy is written as follows:

π (θ ) = minQθcost (s, a)

subject to (13)− (17). (23)

While the output of this policy is a sequence of predictions
of future inputs, just its first element is chosen with
probability 1 and applied to the real system. Since the action
value function does not include θm, whereas the policy π(θ )
is a function of all parameters θ (including the unknown
parameters of the MPC model), an auxiliary cost function is
required, and can be defined as:

8θm =
1
2
[(s+)− f model

θm
(s, a)]2. (24)

After applying the action a, derived from the policy π (θ ),
to the real system, s+ can be observed. The square error
between this next state and the output of the MPC model
in state s and action a is used to define the aforementioned
auxiliary cost function. Employing a system identification
method based on gradient descent, to minimize the auxiliary
cost function in (24), similar to [11] and [12], the model
parameters can be included in the update rule [23], [24]
(a similar combination of the Bellman equation and the
gradient decent is presented in [25] and [26]):

θnew = θold + α[δk∇θcostQθcost (s, a),−∇θm8θm ]. (25)

In fact, ∇θm8θm is a gradient descent-based updating rule
which defines the last element of the parameter vector in (25).
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FIGURE 3. Block diagram of the proposed model predictive control-based reinforcement learning using the PCFFA algorithm.

Summarizing, first an MPC is solved according to the
policy in (23), so that the sequence of x, u, and σ can be
obtained. In this way, Qθcost (s, a) is computed using (22).
Similar to the PMPCFA algorithm, the first element of u is
then applied to the real system. After receiving the next state
s+ and the reward value R, the policy needs to minimize
the cost function with respect to the defined constraints for
x0 = s+ according to (23). Having the new x, u, and σ ,
Qθcost (s+, a

′
+) can be computed using (22). The temporal

difference error δk in (18) can now be formed using just
θcost. However, the issue is that updating the parameters of
the model θm is not possible with the help of the Bellman
equation because the MPC cost function does not include
them. To address this issue, the difference between the next
state and the output of the MPC model is used to form an
additional cost function as in (24). Therefore, an extra term,
which is a simple gradient descend, is added to the update rule
as stated in (25). The overall PCFFA algorithm is presented
in Alg. 2. The corresponding block diagram is illustrated in
Fig. 3.

The advantage of this proposed algorithm compared to
the previous one is that since the system identification is
used to estimate the unknown parameters of the model, the
open-loop behavior of the model becomes similar to the real
system. This eliminates the estimation bias that can occur in
the PMPCFA algorithm, leading to a more desired control
performance. However, as typical for system identification,
the input signal must be sufficiently rich in order to excite all
frequencies of the real system. In the first proposed algorithm
(PMPCFA), there is no such requirement.

Algorithm 2 The MPC-Based RL Using the PCFFA
Algorithm
Data: α ≥ 0, 0 ≤ γ ≤ 1
θ ← θ0
while episode < FinalEpisode do

s← s0
while k < FinalTime/SamplingTime do

Obtain x, u, σ , and Qθcost (s, a) according to (23)
by x0 = s
Apply the first element of u to the real system
Observe s+ and R
Obtain Qθcost (s+, a

′
+) according to (23) by

x0 = s+
Compute δk according to (18)
Compute 8θm according to (24)
Obtain ∇θcostQθcost (s, a)
Obtain ∇θ8θm
Update θ according to (25)
k ← k + 1
s← s+

end
episode← episode+ 1

end

V. RESULTS
In this section, the proposed algorithms are evaluated and
compared on a case study of a coupled tanks system in
simulations as well as in experiments.

A. SIMULATION RESULTS
First, both proposed algorithms are applied to a nonlinear
simulation model of a coupled tanks system as shown in
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FIGURE 4. Schematic of the coupled tanks system.

Fig. 4. The nonlinear dynamics governing the system can be
described as follows:

ẋ1(t) =
1
At1

(
−Ao1

√
2gx1(t)+ Ku(t)

)
, (26)

ẋ2(t) =
Ao1
At2

√
2gx1(t)−

Ao2
At2

√
2gx2(t), (27)

where x1(t) and x2(t) are the levels of the water in the upper
and lower tanks, the control input u(t) is the voltage of the
pump that fills the upper tank, At1 and At2 are upper and
lower tank sectional areas, the sections of the outlets are Ao1
and Ao2, and g is the gravitational constant. The pump flow
constant K is considered as the unknown parameter of the
model, θm.

Linearizing the model around the operating points Lo1 and
Lo2, the following linear equations are obtained:

ẋ1(t) = −
gAo1

At1
√
2gLo1

x1(t)+
K
At1

u(t), (28)

ẋ2(t) =
gAo1

At2
√
2gLo1

x1(t)−
gAo2

At2
√
2gLo2

x2(t). (29)

While the nonlinear model in (26) and (27) is employed as
the plant in the simulation, the linear model of (28) and (29)
is considered as the MPC model in (13). Consequently,
in addition to the unknown parameter, K , the linearization of
the model may result in a mismatch between model and plant,
when not operated in the vicinity of the operation points;
especially in the transient phase before converging to the
operating points.

TABLE 1. MPC and RL parameters specification.

FIGURE 5. Block diagram of typical model predictive control used for
comparison.

The MPC is formulated as follows:

Qθ (s, a)

= min
N∑
i=0

γ i

xi1 − xrefi1xi2 − xrefi2
ui − urefi

T θ2x1 0 0
0 θ2x2 0
0 0 θ2u

xi1 − xrefi1xi2 − xrefi2
ui − urefi


+ γ N

[
xN1 − xrefN1
xN2 − xrefN2

]T [θ2xf1 0

0 θ2xf2

][
xN1 − xrefN1
xN2 − xrefN2

]
subject to (28) and (29), x0 = s,

min x1 ≤ xi1 ≤ max x1,

min x2 ≤ xi2 ≤ max x2,

min u ≤ ui ≤ max u. (30)

The proposedMPC-based RL algorithms are applied to the
coupled tanks system for 100 episodes and compared with
the MPC-based Q-Learning method presented in [6]. The
numerical computation is performed using the Ipopt solver
provided by the CasADi software framework [27] on a PC
equipped with an AMD Threadripper Pro CPU and 64 GB
of RAM. The initial and constant parameters of the model,
MPC, and RL are given in Table 1.

The water levels for both tanks in the first, sixth, and last
episodes are shown in Fig. 6a and compared to the MPC-
based Q-learning method [6] and a typical MPC. The typical
MPC [28] refers to an MPC, which cost function weights
and model parameters remain constant throughout and are
considered the same as the initial conditions of the proposed
algorithms. The block diagram of the typical MPC used for
comparison is shown in Fig. 5.
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FIGURE 6. Trajectories of the water levels for upper and lower tanks.

As can be observed in Fig. 6a, the performance of the
PMPCFA algorithm outperforms the PCFFA algorithm in the
first episode. However, in the last episode, it is the PCFFA
algorithm that has the best control performance in terms of
tracking the reference input. There exist steady state errors
in both upper and lower levels for the PMPCFA algorithm,
even after 100 episodes. This can be explained by the way the
parameters of theMPCmodel are tuned. Since the update law
in (18) and (9) does not necessarily cause the same open-loop
behavior of the MPC model and the plant, and due to the lack
of a strategy for more exploration, it is more likely to have
a steady-state error in case of deterministic environments.
On the other hand, as the outputs of the MPC model

and the system are more similar in the PCFFA algorithm,
if the controller output is persistently exciting, tracking
can be achieved without steady-state error even in case of
a deterministic environment without sufficient exploration.
In fact, since the coupled tanks system is an underactuated
system, the PCFFA algorithm learns to make an overshoot for
the trajectory of the upper tank, so that the lower tank can be
filled sooner. In this way, the value of the baseline stage cost
can be minimized. The tracking performance of the PMPCFA
for both the 6th and 100th episodes remains the same, showing
that the training is completed after few episodes. However,
although the performance of the PCFFA in the 6th episode
is slightly better than the one of PMPCFA, the performance
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FIGURE 7. Sum of the baseline stage cost (reward) for MPC-based RL methods.

FIGURE 8. Simulation results: Learned parameters of both algorithms for the 6th episode.

FIGURE 9. Simulation results: Learned parameters of both algorithms for the 100th episode.

of PCFFA in the 100th episode further improved as the
system learns to apply the aforementioned overshoot in the
height of the upper tank. Therefore, while PMPCFA can be
considered trained after few episodes, the PCFFA needs more
episodes. Compared with MPC-based Q-Learning, even after
100 episodes, its performance is still worse than the one
observed in the first episodes of the proposed PMPCFA and
PCFFA algorithms.

In order to evaluate the closed-loop performance, the sum
of the baseline stage cost (rewards) in each episode for
both proposed algorithms and the MPC-based Q-Learning
method is shown in Fig. 7a. As discussed, in the first episode,
the PMPCFA has a lower baseline stage cost due to the
faster convergence of its parameters. Although this situation
remains the same in the second and third episodes, the PCFFA
shows a convergence to a lower value after the fourth episode.

After this episode, until the 100th one, a small reduction
can be seen in the sum of the baseline stage cost for the
PCFFA, while this value remains more or less the same for
the PMPCFA. Generally, while the PMPCFA is faster in
learning, the PCFFA has a better final performance. For the
Q-Learning method, the sum of its baseline stage cost in the
first episode, is three times larger than the one of the proposed
algorithms. Even with a sudden drop in the second episode,
the convergence speed of the Q-Learning method is much
lower than the one of the other two algorithms.

The parameters that are learned during the 6th and 100th

episodes, for the MPC cost function, θx1 , θx2 , θu, θxf 1 , θxf 2 ,
and its model, θm, are shown in Fig. 8a and Fig. 9a for the
PMPCFA algorithm and in Fig. 8b and Fig. 9b for the PCFFA
algorithm, respectively. In the PMPCFA, the parameter of the
MPC model is not changed from the 6th to the 100th episode.
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FIGURE 10. Value functions of the current and next state-action, the temporal difference error, and the output of the controller for the PMPCFA and
PCFFA algorithms.

On the other hand, this parameter significantly reduces over
episodes for the PCFFA algorithm, which explains also the
longer training process of the PCFFA algorithm. In addition
to the slow convergence of the model parameter, other
cost function parameters, which are tuned by the Bellman
equation, need to be adapted based on the new value of the
model parameter at each episode.

When comparing the PCFFA algorithm with the PMPCFA
in the 100th episode shown in Figs. 9a and 9b: the ratio of
the weights of both states over the weights of their final
states is less for the PMPCFA, indicating that the PCFFA
performs better than the PMPCFA. The weight of the input
for the PCFFA is also much less, leading to a more desired
tracking performance. The model parameter θm, estimated by
the PCFFA is closer to its real value because it is obtained by
system identification, while in the PMPCFA, the algorithm
tries to find a combination of parameters in order to increase
the expected return without taking care about the real value
of the model parameter.

The value functions of the current and next state-action,
the temporal difference error, and the controller output are
compared for both proposed algorithms in Fig. 10a. The
main difference appears when the setpoint changes; the
convergence of the PCFFA is faster for the deterministic
environment.

B. IMPLEMENTATION RESULTS
In this section, the PMPCFA and PCFFA algorithms are
implemented on a coupled tanks system made by Quanser
INC., as shown in Fig. 11. A software framework named
GRAMPC, is used for implementation of the MPC [29].
As discussed in Section IV-A, the proposed algorithms lead
to a straightforward implementation, because with Expected
Sarsa, only one MPC needs to be designed (in contrast to the
two different MPCs in the MPC-based Q-Learning method).
In our algorithms, the same MPC is called twice at every
sampling time, but with different initial states.

In Fig. 6b, the trajectories of both states of the real system
are compared for episode 6. Similar to the simulation, the
PCFFA algorithm causes the water level of the upper tank
to have an overshoot in order to speed up the convergence

FIGURE 11. Coupled tanks system.

of the water level of the lower tank to its setpoints, but
requiring fewer episodes (the same tracking performance
took 100 episodes in the deterministic environment). The
reason behind the steady-state error in x2 is that in the
real coupled tanks system, a delay is formed by the time
required to pour the water from the upper to the lower
tank, which is not considered in the simulation. Additionally,
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FIGURE 12. Experimental results: Learned parameters of both algorithms for the 6th episode.

FIGURE 13. Trajectories of the water levels for upper and lower tanks for PMPCFA algorithm with the existence of disturbances.

during the transfer of water from the upper to the lower
tank, some water sticks to the inner surface of the lower

tank without being added to the water. Regarding the
PMPCFA algorithm, in the experiments (the noise perturbed
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FIGURE 14. Trajectories of the water levels for upper and lower tanks for PCFFA algorithm with the existence of disturbances.

environment), the steady-state error stays the same as in the
simulations.

The sum of the baseline stage cost for each episode is
illustrated in Fig. 7b. The PCFFA algorithm shows the same
trend but with a faster speed of convergence compared to
the simulations. The rewards gradually decrease over the first
5 episodes before converging. In the PMPCFA algorithm, the
learning process is completed after the first episode, while
after that, only a very small reduction can be seen in the sum
of the stage costs. Comparing the deterministic environment
in the simulations to the perturbed environment in the real
experiments, one can observe that the speed of the learning

process in both PMPCFA and PCFFA algorithms increases
in the experiments.

The learning process of unknown parameters is shown in
Fig. 12a and Fig. 12b for the PMPCFA and PCFFA algorithms
for episode 6. Since the PCFFA is able to track the setpoints
for the upper tank in the 6th episode, it decreases its weight
θx1 , while the weight of the term related to the lower tank θx2
gets larger to achieve a better tracking performance. For the
PMPCFA algorithm, due to the steady-state error of the upper
tank, its weight θx1 remains much larger than θx2 because the
PMPCFA first attempts to eliminate this error. Due to the
noisy behaviour of the environment, the model parameter θm
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results to be closer to its real value in the PCFFA algorithm
compared to the deterministic environment in the simulation.

The value functions of the current and next state-action,
the temporal difference error, and the control output for the
PMPCFA and PCFFA algorithms are compared in Fig. 10b.
As can be observed, the convergence of the value functions
in the PMPCFA is faster when the setpoints change which
is due to the lower value of θx2 in the PMPCFA than the
PCFFA.However, the temporal difference error of the PCFFA
is less than that of the PMPCFA during the whole 6th episode,
showing that the PCFFA algorithm has a better performance
in reducing the error between the current Q function and its
target.

In order to show the disturbance rejection property of the
proposed controllers, we added water to the upper and lower
tanks during the learning phase, beginning from the first
episode to the sixth one. The water levels for both tanks
are shown in Fig. 13a for the first 3 episodes and for the
fourth to sixth episodes in Fig. 13b, both for the PMPCFA
algorithm. Not only does the algorithm show a desirable and
fast disturbance rejection in all episodes, but also the steady
state error still remains the same.

A similar experiment is also repeated for the PCFFA
algorithm. The water level for upper and lower tanks are
shown in Fig. 14a and Fig. 14b for the first and second
3 episodes, respectively. As can be seen, the algorithm reacts
quickly to the disturbance and sets the water levels to their
reference inputs with the desired performance. Compared to
Fig. 6b, the learning speed is not affected by the disturbance
and remained the same during the learning phase.

VI. CONCLUSION
In this paper, a reinforcement learning (RL) algorithm named
Expected Sarsa was employed to tune a Model Predictive
Controller (MPC) which was parameterized in the weights
of its cost function as well as in the unknown parameters of
its model. Two different implementations were compared: an
algorithm called PMPCFA, where it was assumed that the
whole MPC was the action value function, while the policy
was to select the first element of the control output sequence
as the action. In the second algorithm called PCFFA, where
only the MPC cost function was defined as the action value
function, the policy was to first minimize it with respect
to the constraints and then to choose the first element of
the control output sequence. The difference between the two
algorithms was in the updating process of the parameters,
whereby in the PMPCFA, all MPC parameters were updated
by the Bellman equation. In the PCFFA, the MPC model was
updated by an auxiliary cost function, which was defined
based on the difference between the output of theMPCmodel
and the real system, while the other parameters were found by
the Bellman equation.

In deterministic simulations of a coupled tanks system,
it was shown that the control performance obtained by the
PCFFA algorithm was more desirable than the one of the
PMPCFA algorithm. However, the training process took

several more episodes compared to the PMPCFA algorithm.
Both proposed algorithmswere also comparedwith theMPC-
based Q-Learning method in terms of convergence speed
and final control performance. Not only was the convergence
speed of both presented algorithms faster, but also their
tracking performance was found to be more desirable.

In order to evaluate the performance of both proposed algo-
rithms for a noisy environment, they were also implemented
on a real coupled tanks system. While for the deterministic
environment, the training of the PMPCFA resulted to be faster
than for the PCFFA, in the noise perturbed environment, this
effect became more pronounced and the PMPCFA resulted
to be trained already properly after the first episode. On the
other hand, unlike the simulations, 5 episodes were needed
to complete the training process for the PCFFA algorithm in
the experiments compared to 100 episodes in the simulations.
Regarding the tracking performance, the noise in the real
system did not have any effect on both algorithms.

In order to show the disturbance rejection capability of
the proposed methods, some water was added to the upper
and lower tanks during the learning phase. It was found
that both algorithms can quickly reject bounded disturbance.
Compared to the previous experiments, the existence of
the disturbance neither affected the steady state error nor
decreased the speed of the learning process for both proposed
algorithms (PMPCFA and PCFFA).

All in all, the PMPCFA algorithm resulted suitable
for continuous tasks already with a minimum number of
episodes, while several episodes were needed for the PCFFA
algorithm. In terms of the final control performance, PCFFA
outperformed PMPCFA.

As a future research direction, we will investigate how
to increase the exploration of the proposed algorithms to
improve the performance of the closed-loop control system.
This way, we hope to reduce the steady-state error that
appeared in the PMPCFA algorithm without affecting the
convergence speed.
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