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ABSTRACT The purpose of this manuscript is to present the Smart Driving Service (SDS), a customized
mobile application, and a complex microservices framework intended not only for professional drivers
but also for novel people who need help during the driving time in their long-distance journeys. The
European regulation on driving times, breaks and rest periods for drivers engaged in the carriage of freight
is implemented in the system. Additionally, it is necessary to have a feedback report to detect the behavior
of drivers and what to do differently to improve driving. This issue is addressed by implementing a Route
Performance Index (RPI) to measure the driver compliance. The proposed service has been running in a
production stage for 6 months with a reduction in consumption of 2 liters/100 km. Considering that the
company runs more than 100M km per year, the savings in fuel are relevant apart from the environmental
impact reduction.

INDEX TERMS Driver assistance, route navigation, floating car data, telemetry, truck sensors, open data.

I. INTRODUCTION
The purpose of this manuscript is to present the Smart Driving
Service (SDS), a customized mobile application and a com-
plex microservices framework that is intended for not only
professional drivers but also for novel people who need help
during the driving time in their long-distance journeys.

The project is supported by one of the Europe’s largest
Logistics Solutions Providers (hereafter, the LSP) in the areas
of road transport, logistics, industrial services and supply
chainmanagement. In particular, the LSP proposed to analyze
and leverage thousands of miles of records from truck teleme-
try (best known as floating car data, FCD) that, combined
with Open Data Services (maps and weather), could improve
vehicle efficiency and a fuel consumption reduction.

The service, already running in a production environment,
consists of a real-time intelligent driving assistant that pro-
vides drivers with the following features:
• Offers navigation over a predefined network built with

homologated paths that the fleet company considers as valid
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for driving (such as avoiding tolls, big slopes, congestion
areas, and motorways imposed by specific customers).
• Suggests a recommendation of speed for all the arcs on

the route extracted from the processed historical data from
telemetry and integrated with weather forecasts and other
network features such as maximum speed and slopes.
• Informs about advisable stops with security cameras and

surveillance services.
• Remembers to drivers when and where to refuel (mainly

in gas stations with agreements)
• Calculates the Estimated Time of Arrival (ETA) and

decides whether to speed up or slow down dynamically
according to the delivery time windows.

The European regulation on driving times, breaks and
rest periods for drivers engaged in the carriage of freight
is implemented in the system. The Smart Driving Service
includes a stand-alone driving simulation tool that estimates
the ETA for a particular driver and route. The current state
of the driver’s tachograph is known periodically and the SDS
adapts the speed recommendations to the route profile. The
drivers have the SDS application on their mobile phones and
work as a voice guidance navigation system. They follow
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the continuous spoken turn-by-turn instructions (hands-free),
especially in urban and resting areas. To avoid interruptions in
low coverage areas, the information of the recommendations
is cached. The drivers do not have to use the mobile phone
when circulating. The usage is strictly limited in the loading
and unloading operations or in the resting areas, in line with
the European regulations on mobile devices in vehicles.

Fleet and customer managers can track the vehicles and the
speed recommendations using customized dashboards. The
ETA is continuously updated when vehicles are fully stopped
for some period of time in a traffic jam or the driver has ended
their break. Smart Driving harmonizes the work of drivers by
providing unified routes, speed recommendations, and shared
resting locations. A testing period of more than 6 months
achieved an average fuel saving of 2 liters per 100 km. The
LSP owns more than 1000 vehicles and 100M kilometers per
year.

This paper describes and highlights how the integration of
FCD with open datasets has resulted in a production-already
smartphone application that improves the driver’s experience
and reduces the cost of the LSP. The remaining part of this
paper is organized as follows. Section 2 gives the literature
review of relevant research that focuses on the use of FCD
for traffic and speed recommendations. Section 3 describes
the multiple datasets integrated into the Smart Driving solu-
tion: telemetry, stops, radars and an innovative homolo-
gated route network. Section 4 presents the Smart Driving
recommendation system and its primary software compo-
nents. The SDS architecture is explained in Section 5, and
Section 6 describes the smartphone applications installed on
trucks. Section 7 describes the SDS control panel, which
allows fleet managers to interact and know the status of vehi-
cles in real time. Sections 8 and 9 briefly present a discussion
and conclusions, respectively.

II. LITERATURE REVIEW
Analyzing the state of the art of this research implies a
review of the different building blocks that integrate the tech-
nological solution presented in this paper. In the literature,
there are various research papers that address the different
technologies covered in this paper: i) floating car data, ii) the
Advanced Driving Assistance System, iii) driver behavior,
and iv) sensors.

The usage of FCD is intended not only for ADAS but
also for the creation and maintenance of navigation map
databases. As explained in [1], these maps are enhanced to
offer dynamic route guidance, delay description and road
capacity balancing and routing algorithms. As technological
advances have permitted an increasing amount of data in real
time, map databases are constantly extended and updated
with images of the road and estimation of the local traffic
level, apart from other vehicle sensors [2]. [3] goes a step
forward and addresses the map-matching problem to build
the road network from scratch, owing to all representation
points that are connected by aDelaunay triangulation network
and applying a shortest path searching approach between the

connected representation point pairs. The authors in [34] eval-
uate the accuracy of map-matching algorithms by using FCD
to identify trajectories and extract traffic patterns. A map-
matching system is executed in our solution, but this is not
the core of our research.

Papers related to driving assistance are the most found
in the literature because of the tremendous impact on the
fuel savings and safety warnings. This is also motivated
with the use of newly emerging sensor technologies to pro-
vide real-time traffic information and driving patterns. Some
works put the focus on the frameworks as done in [4] which
shows road application models for a smart roadside sys-
tem and sensors with a speed advisory system for high-
ways. Most of the papers address the topic of eco-driving
and how to reduce the fuel consumption and optimize the
use of energy. The work presented in [5] exposes a driv-
ing assistance prototype called Driving coach that collects
weather, traffic and vehicle information to provide drivers
fuel-efficient driving hints and monitoring metrics of their
performance. Neural networks are also used to evaluate traffic
data. The paper in [42] studies Deep Convolutional Neural
Networks (DCNNs) for the accurate estimation of space–time
traffic speeds given sparse data on freeways. The authors
propose a methodology that allows to effectively train data
on several domains and reconstruct congestion types. And
Long Short-TermMemory Neural networks (LSTM) are also
investigated to derive traffic speed predictions from FCD
as explained in [35]. In this paper, the authors improve the
prediction accuracy with characteristics of historical average
speed. A large experiment with more than 100 drivers and
8000 km showed in [6] helped to develop a very simple
microscopic model to estimate vehicle fuel consumption with
infield instantaneous measurements. Positive remarks about
eco-driving and its relation to the road type are also found
in [7]. This paper presents a methodology for different road
sections processed using the R code to evaluate the specific
impacts on fuel savings. Adopting a new driving style for the
first time could affect the driver’s acceptance and undermine
the efficacy of new technologies. The purpose of the research
in [8] is to measure and evaluate the user’s responses to the
first-time use of eco-driving assistance technology. And the
paper in [36] presents a general analysis methodology aimed
at processing FCD to reconstruct the routes followed by the
drivers and evaluate the possibility of modeling drivers’ route
choice.

Several studies have been conducted on the impact of
driving behavior on fuel efficiency.Wijayasekara [9] presents
a low-cost framework and a hardware setup for prompt-
ing drivers on fuel efficient behavior with the help of rich
information and intuitive un-obstructive visualization. Mus-
lim [10] focuses on the road transportation to generate a
new dimension called ‘‘green driver’’ to establish the green
driver’s behaviors related to fuel saving and emission reduc-
tion. In this research, twenty-one variables classified into
four clusters were identified to conclude that driver person-
alities should be integrated for green driving accreditation.
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Estimations on energy consumption can be found in [31].
In this paper, authors present an approach to estimate traffic
energy consumption via traffic data aggregation in probability
distributions. By using a microscopic traffic simulator, they
compared the estimated energy consumption to the measured
energy consumption.

Undoubtedly, controlling vehicle speed is a promising
method for lowering fuel consumption. To do so, it is manda-
tory to involve drivers as they are the last link of the chain
and the final users of the ADAS. Driving behavior has a
significant impact on vehicle fuel consumption. This aspect is
a key factor in our research and is covered by most solutions.
The paper in [37] pays attention to the reliability of the data
gathering by comparing the speed data obtained from FCD
with those recorded by inductive-loop detectors. The conclu-
sions show that the FCD can be proposed for the monitoring
and operation of mobility along road networks.

In the prototype system presented in [11], the authors
introduced an optimal control model of acceleration that
mimics drivers’ behavior to trade-off driving preferences as
the space to the preceding vehicle or the way corners are
taking. A breakthrough innovation to derive speed recom-
mendation using oriented agents can be found in [12]. That
research combines, integrates, and evaluates multiple infor-
mation sources (weather and routes) that cohesively align
vehicle information to estimate the status of the vehicle and
provide recommendations for speed. Dynamic programming
is the methodology used in [13] to minimize the energy in
passenger vehicles over a Raspberry Pi and providing speed
recommendations to drivers. The authors report an 8% reduc-
tion in fuel consumption compared to the test data. Another
dedicated study on the relationship between driving behavior
and fuel consumption is reported in [14] with the execution of
clustering algorithms and the generation of their correspond-
ing models. The deep learning-base models were able to
predict the fuel consumption associated with different driving
behaviors. Other work that makes use of machine-learning
functionality to forecast energy consumption for eco-driving
assistance system can be found in [15] with demonstrated
experimental results. It is equally important to seek the
strategy on how to persuade drivers to change their driving
behavior. In the paper presented in [16], the authors identify
functional, design, safety, and persuasive features for systems
supporting fuel-efficiency. As a conclusion, they highlight
the needs for overall situation assessment when it comes
to eco-driving. The paper in [17] addresses similar issues.
In this occasion, they explore the use of wearable devices in a
dynamic driving environment to show statistically significant
differences between various levels of driving demand. And
the paper presented in [38] gives details on how to use real-
time data from GPS and automotive radar to perform a pre-
dictive optimization of a vehicle’s speed profile and coaches
a driver into fuel-saving and CO2-reducing behavior. The
authors demonstrate the feasibility of using data from vehicle
sensors to achieve a reduction in fuel consumption. Good
eco-driving practices can be found in [39], which presents

how fuel consumption can be optimized in a waste collection
fleet by installing in-board driving assistance devices and
providing real-time feedback.

For a deep analysis on how sensor technology can be
integrated with the transportation infrastructure to achieve
a sustainable Intelligent Transportation System (ITS) and
how safety, traffic control, and infotainment applications can
benefit from multiple sensors deployed in different elements
of an ITS, it is recommended to take the paper [18] into
consideration. A clear example of this is described in [19],
in which the authors propose an approach for designing a
vehicle collisionwarning system based on the fusion ofmulti-
ple sensors and wireless vehicular communications. Another
example is found in [41]. This paper examines the imple-
mentation of a cooperative intelligent transport system by
exploiting road traffic and weather data. As a result, the pilot
platform makes the system suitable for use in heavy vehicles
in real-time.

Electric vehicles deserve special attention. In addition to
optimizing power and battery life, researchers have con-
ducted studies on how to facilitate drivers with assistance
systems to reduce accidents and fatalities. One method to
prove this is shown in [20]. This paper describes a system
to assist drivers in vital tasks, such as braking, owing to
the implementation of a simulator and an automated control
algorithm. Similarmethodologies are proposed by the authors
in [21] where the effects of driving style are analyzed with
hybrid electric vehicles (HEVs). This manuscript describes a
statistical pattern recognition approach to classify drivers into
six groups, from moderate to aggressive, using kernel density
estimation and entropy theory.

With respect to route navigation and traffic congestion con-
trol, FCD systems have provided a vast amount of literature.
Interesting works are found in [22], which presents an archi-
tecture for real-time traffic-dependent navigation, and in [23].
In this paper, the authors describe a Dijkstra algorithm-based
system for calculating the shortest route in a parking lot
environment. The paper in [33] investigates the opportunities
offered by FCD to infer the number of delivering activities
per tour with light-good vehicles. The technological back-
ground adopts vehicle-to-everything (V2X) and driverless
technologies. A measurement indicator called the traffic state
level (TSL) formulated by [24] evaluates the speed provided
per consecutive road segments through the FCD as a data
source. The detection of traffic partners from FCD is other
challenge that stimulate concern among researchers. The
work explained in [25] shows a case study carried out in
Ankara, where a 1-min interval FCD allows the authors to
transform the average speed values into a qualitative 4-scale
state parameter based on the level of service and identify
bottlenecks. The connected vehicles gain special importance
in [26] to regular in real time the traffic signals and in [30]
demonstrates how the combined use of data from idle and
active devices improves congestion detection performance
in terms of coverage, accuracy, and timeliness. The authors
apply a new method to real mobile signaling data obtained
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from an operational network and present an extensive valida-
tion study based on the ground truth obtained from a rich set
of reference datasets.

Driving simulators are less often found in the literature but
provide valuable knowledge. One example is found in [27],
which presents a study designed with 12 potential eco-driving
interfaces to advise the driver with the most fuel-efficient
accelerator pedal angle in real time, accompanied with audio
alerts. Another interesting simulator is described in [28]. Here
the authors present an ADAS-based application to provide the
optimal value of the target vehicle speed by considering
the road gradients and speed limits of the upcoming road
segments. One step forward is done in [40]. In this paper, the
authors evaluate drivers’ behavioral responses to scenarios
when driving vehicles with an ADAS compared to vehicles
without an ADAS. The results show that the ADAS influ-
ences driving behavior by making drivers less aggressive and
harmonizing the driving environment. As in our research, the
driver experience guided the solution and was implemented
on a prototype.

To conclude the existing research, game theory can play
an important role in providing speed recommendations. The
authors in [32] solved the challenge by modeling the problem
as a game in which drivers are the players and the speed of
the vehicle is their strategy. Through evolutionary dynamics,
the drivers receive the recommended speed at specified time
intervals.

The conducted literature review shows the benefits of
using FCD for traffic forecasting and speed recommendations
systems. However, to achieve a reliable speed value, it is
necessary to integrate other datasets apart from telemetry as
updated maps and to know the accuracy value of the driver’s
tachograph in real time. The Smart Driving Service seeks to
provide a software product that is harmonized and validated
with all the actors on the road transport, from the drivers to
fleet managers and customer account supervisors.

III. DATASETS
Prior to describing the SDS architecture and the algorithms
in detail, this section presents the list of the heterogeneous
datasets used in the SDS.

A. FLOATING CAR DATA
The floating car data coming from a fleet of more than
100 telemetry device-equipped vehicles are retrieved every
1-min interval. Trucks are equipped with devices certified
by UNE-EN 12830: 2019. The equipment has 2 Can Bus,
a Bluetooth, USB, and WIFI input and output modules, and
all connectivity is certified by automotive device manufactur-
ing providers.

The devices collect information from the Electronic
Braking System (EBS) to retrieve trailer covered distance,
trailer speed, supported weight by the three axes, safety sys-
tems, breakdown lights, Anti-Block System, Yaw Control,
Roll-Over Prevention and Traction Control system, pressures,
maintenance, and general status of the vehicle. The vehicle

position, consumption (L/100 km), and speed are sent with a
timestamp. The average values calculated internally are also
stored in the cloud.

These trucks travel approximately 100 million kilometers
per year over Europe. Through a vehicle sensor placed in each
vehicle, vehicle sensor data are processed and transmitted
to a cloud storage server (Azure Cosmos DB) for further
processing and obtaining insights into the road transport driv-
ing environment. The devices provide location coordinates,
current speed, instant consumption, fuel level, accumulated
fuel, kilometers accumulated, altitude, and other values.

Apart from this, drivers must obviously meet the European
regulation [29] on driving times, breaks and rest periods in
concordance with the digital tachograph. As a general rule,
the regulation lays down that drivers must freely dispose
of their time for at least 11 hours during their daily rest
period and at least 45 hours for the regular weekly rest
period. With regard to their daily driving time, drivers cannot
exceed 9 hours although this value can be extended to at most
10 hours not more than twice during the week. The maximum
weekly driving time is 56 hours being 90 hours the total
accumulated driving time during any two consecutive weeks.
Alternatively, there are other options not explained here for
being less relevant.

These driving restrictions and normative are coded in the
Driving Simulator Service (DSS) that is consumed by SDS
to valid route proposals. The DSS receives as input the dis-
tance in kilometers and the tachograph status of the driver.
As an output, returns the estimated status of the tachograph
at the destination, the ETA, and the locations where to stop
and resting time. An external web service (TIS, Tachograph
Information Service) provided by the telemetry sensor man-
ufacturer processes driver cards and provides tachograph
information in real time with a delay of 10 minutes. This
information includes the driving time from the last stop, the
accumulated daily and weekly driving time, and the daily and
weekly accumulated resting hours. The DSS also computes
the tachograph simulation for the two-driver driving.

B. MAP MATCHING SYSTEM
The vast amount of GPS data retrieved from vehicles is
subjected previously to a preprocessing system to match the
records with a logical model of a geographic information
system, best known as map matching algorithm. It would be
impossible to use raw data because of the GPS positioning
accuracy of each device. Even when a vehicle is stopped,
there is always a certain deviation between the points, result-
ing in the GPS positioning points being scattered on both
sides of the road. Another possible scenario is a vehicle
driving on the left side, which can result in two road segments.
This is perfectly avoided with the bearing reported by the
device, which guides the system to identify the real segments
on the logical maps.

The SDS backend leverages the OpenStreetMap (OSM)
to match the GPS data with the Graphhopper Map Match-
ing Engine. Map matching algorithms are executed offline,

80836 VOLUME 10, 2022



D. Escuín et al.: Long-Distance SDS Based on Floating Car Data and Open Data

meaning that the data are first recorded in real time, but later
matched to the road network. This happens on weekends
when most drivers are taking their weekly resting time, and
the amount of telemetry data is much lower. Executing offline
map matching results in a good compromise between perfor-
mance and accuracy.

FIGURE 1. Observations (speed values) identified by the map matching
system over the matched segment road.

As a result of executing a map matching algorithm,
a Mongo DB database is updated with the list of speed values
for each segment (also known as ‘‘arc’’) in the OSM logical
model. Each segment length varies frommeters to kilometers,
depending on the granularity of the model. Prior to persisting
the segment speeds in the database, outliers are excluded, as is
found in situations with traffic jams or bad weather that pro-
duce excessively low speeds. The experience of drivers has
demonstrated that speeds lower than 50 km/h are unrepresen-
tative of road transport reality and, furthermore, could disrupt
the smart recommendation system based on the handling of
the historical speed data, as explained later.

Traffic congestion, road incidents, and adverse climate
conditions, together with the lack of knowledge on the
decisions adopted by the driver, make it extremely difficult
to draw accurate conclusions about what really happened.
One aspect that helps is to match speed with the loads.
For example, suppose a road segment that is reported with
these historical speed values (in km/h): 79 (2 times), 85,
84,82,81,80,76,75,64 and 63 km/h. The legal speed limit for
trucks is 90 km/h. According to the data, one may think that
the location has a notable slope because the highest reported
speed value is 79. In addition, there is no information related
to whether the driver turned on heating or air conditioning
to reduce fuel consumption by slowing the speed. Thus, it is
highly recommended that the trailer load be registered with
the matched speed to derive a more reliable speed.

At the end of this algorithm, the database stores a list of
historical speed values for each arc done by the vehicles.

1) RESTING AREAS
The DSS needs to know the exact position of the resting
areas. One approach to enrich the SDS with this information
would be to use external services dedicated to truck rout-
ing for fleets. However, the SDS seeks to identify resting
areas with artificial intelligence by analyzing telemetry data
and matching them with tachograph information. The main

reason for this is that the SDS should be primarily built and
led by the driver’s behavior and their routines. In this sense,
the locations supported by most drivers should be considered
as valid resting areas for the SDS.

Identifying a resting area from FCD is challenging. The
first approach is to consider that a large list of zero values
close in time on vehicle speed could indicate that the vehicle
is stopped. In such cases, vehicle positioning may become
unstable because of changes in the operation or stopped in a
traffic jam. This issue can be fixed by matching the position
with map matching and estimating the vehicle heading. Some
testing data have revealed that 15 min of zero speed is a
good criterion for assuming that the vehicle is stopped. Thus,
if many vehicles are at the same point, this location is a
provisional point that is confirmed with the Overpass API,
an inverse geocoding API, based on OSM, which returns the
data associated for a given GPS point, if any. The Overpass
API is a powerful application for extracting and filtering data,
even for an area or a list of GPS coordinates.

2) RADARS
Another key point for the success of the SDS is the fact that
drivers are interested in knowing when they are approaching
a radar. This additional feature, not even contemplated at
the beginning of the project because it does not affect the
route planning, has led to a significant positive effect on the
acceptance of the SDS by drivers. In this sense, as done before
with the resting areas, the SDS periodically updates the list of
radars by requesting the Overpass API with the appropriate
tag filters.

C. HOMOLOGATED ROUTES NETWORK
The Homologated Routes Network (HRN) is one of the key
pillars of successful SDS. Owing to this module, drivers
drive along the routes defined by the LSP and not those
retrieved from map providers, such as Google Maps or Bing.
The reason is obvious: the experience of the drivers and
fleet managers provides better routes for trucks than those
provided by third-party services. This approach also helps to
unify the driving criteria. For example, to cross Paris (one
of the hottest areas in Europe in terms of traffic), there are
several alternatives, and none of them obtained by external
map providers satisfies the company.

With the HRN, the trucks drive where the company wants
them to drive, and this is achieved by building their own rout-
ing and mapping system. The HRN ensures that all drivers
drive across the same roads and highways. This is very useful
for novel or new drivers that find it easy to join the company.

Of course, creating a specific GIS (Geographical Infor-
mation System) for SDS would be almost unmanageable.
Fortunately, this is not necessary because the number of
roads, motorways, and highways in the LSP network is not
very large. The HRN only stores the critical routes, those
that are not returned by third-party APIs, and those that
overlap with the general routes. For example, to avoid a
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FIGURE 2. Overpass API results. (a) The figure shows the locations where
vehicles have been stopped for more than 15 min. The higher the circle,
the more vehicles were found in the dataset. (b) Radar locations found in
the OSM.

toll road or crossing through Switzerland, the HRN should
have an entry (origin and destination coordinates only)
for that homologated path. Other reasons for building a
customized path are imposed by the final customers (the
freight destinations).

Figures 3 and 4 show representations of the HRN that
explain the HRN data model. Each colored line represents
the beginning and end of the desired homologated path. Only
the coordinates of the start and end points are stored in the
HRN and not the full list of arcs of the route. In addition,
because the sections are on roads or freeways on the map, the
number of paths is double the number shown in the drawing,
as both directions must be considered. For example, as the
usual route from Bordeaux to Poitiers would be via A10 and
this alternative does not convince the company, two sections
are created in the Angoulome area. Then, how does SDS build
the HRN?

SDS periodically builds and refreshes the HRN inmemory.
Prior to calculating the SDS routes, all homologated paths
must be connected between them. If the destination of any
homologated path is less than 100 km from the start of another
homologated path, both paths are automatically merged, and
distances are recalculated. At the end of this process, the
homologated network is built on memory and is ready to be
used as an input for a new route request.

Each new request for routing comes with an origin (usually
the vehicle location) and a destination.Whether the origin and
the destination are both less than 25 km to some homologated
path, SDS makes use of the HRN by executing the Dijkstra
algorithm. Otherwise, a conventional call to the Graphhopper
Directions API is invoked. For example, for travelling from
Lisbon to Duisburg, the HRNwould retrieve a solution as can

be derived from the Figure 4. The solution is significantly
different from that retrieved by the Graphhopper Routing
Service.1

However, from Seville to any other location in Europe,
SDS would make a request to the third-party API as no
homologated paths in the Seville area are found in the HRN.

Fleet managers and experienced drivers manage and admit
updates in the HRN. The volume of customers, their needs,
tolls, and other parameters decisively influence the path
choice. The HRN does not suffer from scalability issues, and
the response to SDS is much faster than when invoking a
third-party API call.

FIGURE 3. A detailed view of the homologated routes in the Angouleme
area forces drivers to travel from Bordeaux to Poitiers via colored routes.

IV. SMART DRIVING SERVICE
The previous section has described all the types of datasets
required for the speed-recommendation system and how they
are obtained. The SDS calculates the route over the HRN as
explained before. This section describes the intelligent sys-
tem that recommends the speed to the driver at each moment
according to the point (or arc) where the driver is situated.

Each route request, in addition to the origin and destination
coordinates, receives the delivery time window as an input.
The SDS must recommend speed values that ensure that the
arrival of the vehicle occurs within the time window with
minimum fuel consumption. Note that one might think that
driving at the legal minimum speed would result in the lowest
possible fuel consumption, provided the arrival to the destina-
tion is on time. However, the trucks would not be profitable in

1https://graphhopper.com/maps/?point=Lisbon%2C%20Portugal&
point =51.433464%2C6.778564&locale=es-ES&elevation=true&
profile =car&use_miles=false&selected_detail=Elevation&layer=
Omniscale
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FIGURE 4. This picture shows the homologated route network in colored
lines. The routes were built near LSP customers to make SDS use them at
the time of constructing a driver journey.

monthly kilometers, and the driving experience for the drivers
would be discouraging. In this respect, the minimum speed
for trucks under normal conditions is set at 70 km/h, a value
agreed upon by drivers.

As stated before, the eligible speed values are obtained
from the processing of the floating car data to ensure that
the estimated values are real and can be reproduced. A major
technical challenge is dealing with slopes in loaded trucks
when there are no speed records in the historical data.
To address this problem, the OSM elevation API is used to
obtain the gradient of each arc of the route and its legal max-
imum speed, if any. With this information and considering
that the maximum legal speed for trucks is 90km/h, the initial
minimum and maximum speed values are calculated. Next,
to apply gradient effects, a factor is applied to the maximum
speed. Only if the maximum speed falls below the minimum
speed, the last one is updated. The speed reduction factors,
reflected in Table 1, are applied depending on the loadweight.
As agreed by the drivers, a gradient of less than 1.5% is
considered irrelevant.

TABLE 1. Speed reduction factors for the slopes.

We performed a test period of one month to adjust this
value with simulations of the trailer load with the matched

speed to derive a more reliable speed. A value higher than
1.5 leads to unrealistic speeds being calculated, especially
for high loads. In any case, the influence of Table 1 is very
low compared to that of the complete system because road
transport avoids driving on slopes and is only used when
strictly necessary. In fact, the homologated route network s
built with hardly any slopes on the roads.

A. DRIVING MODES
Having said all this, the SDS implements two driving modes:
normal driving mode and maximum speed driving mode.
Note that for each arc, a list of speed histories obtained with
map matching is available. Sometimes, the list is empty;
therefore, the system can only make decisions based on the
maximum permitted speed.

To arrive at a value that is accurate and precise, we con-
ducted an experiment measurement in concordance with the
logistics perspective and driver satisfaction. The scientific
pillar of the application is important, as is the operational and
software design point of view.

The logistics point of view refers to the assumption that
transport operators place customer satisfaction slightly above
cost and, in order to mitigate incidents, anticipate problems
as soon as the shipment departs. This is a conservative and
incident-prevention mode. Therefore, higher values are pre-
ferred over low speed values.

However, it is also important to consider driver satisfaction.
‘‘A tendency to lower speed values leads to more boring
driving and less attention on the road’’ is a common saying
among drivers.

1) NORMAL DRIVING MODE
The Normal Driving mode is the default criterion when the
SDS receives a new request for routing. This mode supposes
that the driver disposes enough time to perform the service,
and thus, the fuel saving could be the highest. These steps
are described in Algorithm 1. The following operational deci-
sions are worth noting.

1) The 60th percentile (P60) is considered a good trade-off
between the travel time and consumption.

2) The speed up strategy is intended to increase the speed
at the beginning of the route, and not in the complete
route. This is achieved by obtaining a higher percentile
from the speed history or by using 100% of the maxi-
mum permitted speed.

3) In contrast, in the case of arrival before the time win-
dows, the recommendation system gradually reduces
the speed in the last arcs of the route.

2) MAXIMUM SPEED DRIVING MODE
This mode assigns the maximum permitted speed for each
route arc and is executed when 1) the Normal Driving mode
produces vehicles to arrive late, and 2) additionally, fleetman-
agers wish to evaluate the ETA to evaluate future expeditions
for other customers or schedule other non-foreseen orders.
The steps are as follows:
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Algorithm 1 Normal Driving Mode
Require: Inputs
Ha = list of historical speed values for each arc a
MRSa = maximum real speed for each arc a (obtained by

telemetry)
MPSa = maximum permitted speed for each arc a (obtained

by OSM API)
for each arc a of the route do

sa = P60(Ha) // Let sa be the selected speed for each arc a
if sa does not exist then

sa =MPSa
end if
sa = min(sa, MRSa)

end for
Find all stops for the journey();
ETA = ComputeETA();
if ETA is within time windows then

return solution
else if ETA is later than time windows then

Apply P100(Ha) or MPSa only for the first arcs of the route
until

meet time windows (speed up strategy)
else if ETA is before than the time window then

Iterate over the last arcs of the route by applying gradually the
P50(Ha) until meet time windows
end if

Output: Journey with the list of all sa

1) Start by assigning the maximum speed from the speed
history. If it does not exist, use the maximum permitted
speed.

2) Compute all speed recommendations for the journey by
including stops and estimate the ETA.

B. SPEED SMOOTHING APPROACH
The above procedure returns a recommendation of speed
for each arc, which results in a large variability of values
along the entire route. These recommendations cannot be
communicated to the driver for practical reasons but must
be smoothed by calculating the average speed for subsets
of them. In addition, it should be noted that the system
searches for locations to makemandatory stops, always under
the criterion that drivers should drive whenever possible to
maximize efficiency.

The criterion used for the smoothing strategy is to partition
the arcs into blocks with a size of 10 arcs and calculate the
average velocity. On the other hand, the speed changes must
be given in increments or decrements of 1 km/h, which makes
it necessary to implement another process to adjust the rec-
ommendations to the real operation. This prevents the driver
from receiving, for example, a recommendation of 74 km/h
after a recommendation of 70 km/h. The system gradually
increases or decreases the recommendations by 1 km/h.

V. SMART DRIVING ARCHITECTURE
The SDS backend components have been developed, tested
through several simulations, and implemented on rapid

prototyping for in-vehicle testing. It is assessed in terms of
driver experience and performance.

The SDS runs on 2 Ubuntu virtual machines with Mon-
goDB and Java 8. Telemetry data is recorded in the Azure
Cosmos DB and a third-party provider supplies tachograph
status data for each driver. As described before, Overpass
API, OSM elevation API, Graphhopper Directions API and
Graphhopper Map Matching are the other components con-
sumed by SDS on the runtime.

The main challenge from a technical point of view was to
cope with the difficulty of scalability and the feasibility of
the system. When designing the system architecture for an
SDS workflow request, it is essential to conduct a manual
feasibility analysis. When developing a workload that pro-
cesses thousands of route requests per day, manual feasibility
analysis is clearly untenable. To address this critical issue,
the architecture team designed various approaches based on
simulations of the inputs and outputs to evaluate the fea-
sibility of the system. The question then is, how does one
consider the feasibility of route requests? This can be verified
by identifying all the required simultaneous operations for a
given request.

The most critical feasibility and performance question lies
in the response time because the route request is made from
the trucks. The response time is determined by the following
microservices:

1) the time of retrieving the status of tachograph.
2) the processing time to calculate the path through the

homologated routes network
3) the search of the historical telemetry of the arcs of the

route path 3) the processing time of schedule the stops and
ETA estimation.

4) the search of the radars.
5) the request to weather (Open Weather API) and traffic

incidents.
An event-driving architecture that decouples the ser-

vices and ensures interoperability was chosen as the design
approach. A set of microservices is triggered for every route
request (event) that enters the system. This ensures that all
microservices operate in response to the event and can pro-
cess them in parallel with a different purpose. The dura-
tion of the route request is approximately 30 seconds. The
SDS handles asynchronous requests and is not blocked-in
case of their failure. The search for historical telemetry is
more than 90% of the time cached (fetched from Azure
Cosmos DB), and radars are digitally linked to arcs in the
Mongo Database. The status of the tachograph is asyn-
chronously monitored (no need to access it under demand;
it is periodically retrieved). The calculation of the path is
executed with all homologated route networks in memory
(5 GB RAM).

Four software high-level microservices modules are part of
the SDS architecture.
• SD-MM: Smart Driving Map Matching. This microser-
vice runs on one virtual machine and periodically
retrieves data from the Azure Cosmos DB to perform
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a map matching workload and store the results on a
Mongo database.

• SD-STOP: Smart Driving Stop Location: Stops regis-
tered by fleet managers and others derived from teleme-
try are stored in theMongo Collection. Themicroservice
provides the nearest stop location for a given coordinate
based on driving hours and tachograph status.

• SD-RH: Smart Driving Route Homologated. The mod-
ule manages, registers, and computes the Dijkstra algo-
rithm to calculate the journey based on the HRN. This is
a stand-alone application that uses the JSON format to
build routes and compute distances.

• SD-CORE: Smart Driving Core. This is the centralized
component. Receive requests for routing and return the
response in JSON format. The speed values are cal-
culated, the ETA is estimated, and the vehicle speed
is updated to meet the requirements. In addition, other
useful information for drivers can be retrieved, such as
weather conditions or radar locations.

These software components run in parallel in a microser-
vice architecture based on real-time information obtained
not only from on-board sensors but also from external ser-
vices such as tachograph status and weather services. The
Android application installed on the driver’s smartphone
makes requests for routing through a REST Ful client con-
nector. The request is processed by the LSP web server that
resends the request to SD-CORE.

As shown in Figure 6, an SDS workflow request starts with
a transport order generated by a fleet manager. A transport
order (origin, destination, load weight, and time windows) is
linked to a specific vehicle and driver. First, SD-CORE make
a call to the tachograph service to obtain the status of the
driving and resting hours for the driver. In parallel, SD-RH
finds the route by using the HRN. The route is passed back to
SD-CORE that interacts with SD-STOP to find stop locations
and to compute speed values in a synchronous operation.
Finally, the route is retrieved back to the driver, and the smart-
phone application reproduces the speed recommendations in
map and with voice modes.

VI. SMARTPHONE APPLICATION
Drivers receive speed recommendations on a customized-
smartphone application, as shown in Figure 7. This GUI has
followed the guidelines of the drivers and fleet managers.
The terminal displays the results of the SD-CORE service.
In addition to the recommended speed, the application dis-
plays the total driving distance, total driving time, ETA at the
destination, radar locations, and weather forecasts.

Every 5 minutes or once the driver has started the vehicle
engine, the application makes a new request for routing based
on the actual location of the vehicle. The response can be
similar to the previous one, although it may be slightly differ-
ent because of the updated driving times and some delays in
timing. In the case of traffic jams, SD-CORE finds that vehi-
cles are slower than expected and updates the recommended
speeds to higher values.

FIGURE 5. The four building blocks of the Smart Driving Architecture.
SD-MM and SD-STOP run automatically and periodically to update
historical speeds and stops. SD-RH is a stand-alone application used by
fleet managers to manage the homologated route network. SD-CORE
receives a request for routing and returns the list of speed
recommendations.

VII. SMART DRIVING CONTROL PANEL
While drivers are on the roads, fleet managers can control
and visualize what is happening with their vehicles and inter-
act with drivers to manage exceptions and satisfy customer
requirements. Tailored dashboards have been designed and
implemented to rapidly offer managers real-time information
on all the data and processes.

For example, the most valuable dashboard plots the
homologated route returned by the SDS. In addition to visu-
alizing the recommended speeds, fleet managers can evaluate
internally the ETA, stop locations, resting time periods, and
weather forecasts. Fleet managers can anticipate unexpected
events and perform manual adjustments along the route.

Other dashboards have been built to address the
management of map matching calculations, stop location
identification by processing telemetry, control and adjust
recommendation algorithms, test speed smoothing systems,
and request management. All these graphical components are
more developer-IT oriented and work in concordance with
SDS functionalities.

A. ROUTE PERFORMANCE INDEX
Another key challenge of SDS is to assess how good the
recommendations have been and whether the drivers have
complied with them. Of course, there are many situations
in which it is impossible to comply with the rules, but it is
necessary to have a feedback report to detect the behavior of
the drivers and what to do differently to drive better.

To address this issue, a Route Performance Index (RPI) is
designed to evaluate the four indicators separately:

1) Real arrival time to destination.
2) Evaluation of the driving by comparing the recom-

mended speeds with the real speed at checkpoints
located every 200 km.

3) Evaluate whether the recommended stops have been
followed and determine why drivers did not stop at
them.
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FIGURE 6. Smart driving workflow for each request.

FIGURE 7. Screenshot of the smart driving application installed on
driver’s mobile phone.

4) Evaluate whether the resting times have been as short
as possible.

Each indicator has a relative importance (weight) of 25%.
48 hours after the vehicle has completed the route, the
SD-CORE evaluates the above-mentioned four indicators

FIGURE 8. Details of track recommended by Smart Driving Service. Blue
icons represent stops and yellow icons are the recommended speed
values. The start and end of the route and weather forecasts are plotted.

separately and builds a dashboard to graphically plot their
values and obtain conclusions. Fleet managers identify
the personal and non-personal driving factors affecting
the driving experience to adapt the system’s decision-
making with respect to a driver’s progress and responses to
recommendations.

VIII. DISCUSSION
The main objective of SDS is to reduce fuel consumption.
Consumption is not only reduced by driving the best, but
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FIGURE 9. Screenshots of fleet managers’ dashboards. From top to bottom and from left to right. Location of the new routing request. Real average speed
of the extracted vehicle. The route followed by a vehicle is derived after matching observations with OpenStreetMap. Recommendations with timestamps
for a particular truck. Telemetry details Locations of scheduled stops in a particular expedition.

FIGURE 10. Dashboard provides an at-a-glance view of the RPI indicators for a given time period. Fleet managers monitor driver behavior, identify
inefficiencies, and adjust Smart Driving Service accordingly.

also by reducing the kilometers in empty trucks. The first
criteria aremet by the recommended speeds, and the second is
related to driver experience and satisfaction. As an increasing
number of drivers use the application and more feedback

is submitted, the SDS learns more and more efficiency is
achieved in terms of kilometers.

The dashboard in Figure 11 is built weekly using a
business intelligence tool. This helps fleet managers and
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FIGURE 11. Control panel used by fleet and customer managers. It reports the total kilometers covered by SDS trucks and fuel consumption. It also
reports the number of vehicles using SDS and ETA compliance.

officers evaluate the kilometers traveled, consumption in
liters/100 km, timing or punctuality of drivers, and usage of
the SDS. After running in a production stage for 6 months,
the reduction in consumption was 2 liters/100 km. Consid-
ering that the company runs more than 100M km per year,
the savings in fuel are very relevant, apart from the impact
environment reduction. Some figures at the time of writing
this paper are as follows:
• Number of homologated routes (mainly in Spain, France
and Germany): 182

• Number of trucks with telemetry equipment: 905
• Number of trucks equipped with SDS application: 145
• Number of requests / day / trucks:
• Number of stops registered: 231
• Percentage of vehicles arriving within time
windows: 57%

• Fuel savings: 2 liters / 100km.
• Average number of speed values for each arc: 16.
Project development has been an enormous challenge that

has involvedmanymore issues for fleet managers and drivers.
Software integration of all resources used to create a unified
single system has been costly. Cloud consultants have pro-
vided valuable feedback on data management and many IT
lines have been tested to validate data integrity and driver
experience. The smartphone application follows the guide-
lines provided by the final users, andmuch of the SDS success
is due to their involvement.

The innovations of SDS compared to those found in the
literature are as follows:
• Generation and maintenance of a proprietary routing
system with the daily experience of drivers and fleet
managers. This is a completely new block not found
in any other fleet-management company. It is common
to use third-party systems for agility and flexibility, but

building and integrating a proprietary system to homog-
enize routes gives the company more control over its
services.

• Integration of the tachograph status in real time with the
search for rest areas to optimize driving times. Current
systems assume tachographs with full daily, weekly, and
monthly availability. The service areas are selected by
the LSP from its own parking pool.

• Telemetry processing as an input source to update speeds
based on fuel consumption merged with Open Data
and tachograph data. The literature reflects the usage
of FCD for 1) building maps 2) identifying trajecto-
ries 3) identify traffic patterns 4) Simulate new driving
modes. On the other hand, studies dealing with driving
assistance are based on real-time data from GPS to opti-
mize the vehicle’s speed profile according to the sensors.
However, all the components tied together are not found
in the state-of-the-art. The contribution of SDS to the
literature is that FCD is combined with GPS data in real
time in conjunction with the status of the tachograph to
achieve fuel reduction and homogenize the way drivers
perform the work.

• Design and implementation of an event-driving architec-
ture that provides a system in production. The literature
is science-oriented, with pilots testing the results. How-
ever, SDS is an essential tool for daily operations in the
LSP marketplace.

Further research and innovation activities foreseen by
the authors include vehicle-to-vehicle (V2V) communica-
tion to improve the service level and analyze the influ-
ence of driverless autonomous trucks. Here, the role of the
driver is also in question, as the driver’s responsibilities
will change and eventually, the way the long-distance is
conducted.
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Driver feedback has been considered from the beginning
of the project. In the early stages of the project, recruitment
was carried out with drivers with years of experience in
road transport and, most importantly, knowledge of Europe’s
main road transport routes. They emphasized that it had to
be an application with little interaction (low visual-manual
tasks) but, at the same time, useful for new drivers with low
experience joining the company. There is considerable driver
turnover in Europe and a shortage at certain times of the year.
To motivate the use of the SDS application, drivers requested
to know the location of the speed cameras and the ETA at any
time. This provides trust and transparency.

Cargo owners positively value the use of the application.
It allows them to know the ETA and the location of the
vehicles, which makes it easier for them to plan the next
activities in depots in the short term. Drivers’ familiarity
with the network, their previous experience in developing the
ability to attend to and process speed recommendations, and
the absence of congestion are elements that determine their
behavior. KPIs determine user satisfaction and support driver
feedback. Drivers highlight that the application does not have
a detrimental effect on driver safety.

Finally, to stimulate drivers’ behavior and usage of the
application, gamification policies based on this approach,
such as competition, learning goals, and awards, are also a
matter of study.
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