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ABSTRACT The paper presents AVQBits, a versatile, bitstream-based video quality model. It can be applied
in several contexts such as video service monitoring, evaluation of video encoding quality, of gaming video
QoE, and even of omnidirectional video quality. In the paper, it is shown that AVQBits predictions closely
match video quality ratings obained in various subjective tests with human viewers, for videos up to 4K-UHD
resolution (Ultra-High Definition, 3840 x 2180 pixels) and framerates up 120 fps. With the different variants
of AVQBits presented in the paper, video quality can be monitored either at the client side, in the network
or directly after encoding. The no-reference AVQBits model was developed for different video services and
types of input data, reflecting the increasing popularity of Video-on-Demand services and widespread use of
HTTP-based adaptive streaming. At its core, AVQBits encompasses the standardized ITU-T P.1204.3 model,
with further model instances that can either have restricted or extended input information, depending on
the application context. Four different instances of AVQBits are presented, that is, a Mode 3 model with
full access to the bitstream, a Mode 0 variant using only metadata such as codec type, framerate, resoution
and bitrate as input, a Mode 1 model using Mode 0 information and frame-type and -size information, and
a Hybrid Mode 0 model that is based on Mode 0 metadata and the decoded video pixel information. The
models are trained on the authors’ own AVT-PNATS-UHD-1 dataset described in the paper. All models show
a highly competitive performance by using AVT-VQDB-UHD-1 as validation dataset, e.g., with the Mode
0 variant yielding a value of 0.890 Pearson Correlation, the Mode 1 model of 0.901, the hybrid no-reference
mode 0 model of 0.928 and the model with full bitstream access of 0.942. In addition, all four AVQBits
variants are evaluated when applying them out-of-the-box to different media formats such as 360◦ video,
high framerate (HFR) content, or gaming videos. The analysis shows that the ITU-T P.1204.3 and Hybrid
Mode 0 instances of AVQBits for the considered use-cases either perform on par with or better than even
state-of-the-art full reference, pixel-based models. Furthermore, it is shown that the proposed Mode 0 and
Mode 1 variants outperform commonly used no-reference models for the different application scopes. Also,
a long-term integration model based on the standardized ITU-T P.1203.3 is presented to estimate ratings of
overall audiovisual streaming Quality of Experience (QoE) for sessions of 30 s up to 5 min duration. In the
paper, theAVQBits instances with their per-1-sec score output are evaluated as the video quality component of
the proposed long-term integration model. All AVQBits variants as well as the long-term integration module
are made publicly available for the community for further research.

INDEX TERMS Bitstream video quality models, quality of experience (QoE), quality assessment, HTTP-
based adaptive streaming (HAS), hybrid models, video quality, 360◦, HFR, gaming, overall integral quality.
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I. INTRODUCTION
The increase in both affordable capture technology and the
average bandwidth for internet connections has resulted in
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video becoming the most dominant of all the data that
is uploaded, shared, and streamed on the internet. For
example, Cisco’s global forecast for 2022 indicate that video
traffic accounts for 82% of all consumer traffic in 2022 up
from 75% in 2017 [1]. In addition, both production and
streaming of higher resolution videos (UHD-1/4K and above)
is increasing [2], [3] and is being supported by many leading
over-the-top (OTT) streaming providers such as Netflix,
YouTube, Amazon Prime Video etc. Moreover, the overall
volume of video traffic is not limited to traditional 2D
video content and there is a significant increase to stream
gaming [4], [5] or 360◦ videos.
The preferred streaming technology for most of this video

traffic is HTTP-based adaptive streaming (HAS). A typical
HAS session can be characterised by variations in audio
and video quality, also referred to as ‘‘quality switches’’,
initial loading delay and stalling events due to rebuffering.
Various implemetations of this technology are in use, such
as, e.g. Apple’s HLS (HTTP Live Streaming) or Microsoft
Smooth Streaming (MSS). Furthermore, advances in video
compression have taken place, with the development of video
codecs such as H.264 [6], VP9 [7], HEVC [8], EVC [9],
LCEVC [10], AV1 [11], and VVC [12] to compress videos
efficiently while still being able to maintain a good quality
for a specific target bitrate.

All these developments are targeted towards delivering
video at the best quality for the lowest possible bandwidth,
to increase the Quality of Experience (QoE) for the viewers.
In this paper, the encoding video quality is addressed as
one of the main factors for video QoE. In this context,
different strategies have been proposed to select the optimal
encoding settings, e.g. ‘‘fixed’’ bitrate ladder [13], per-
title encoding [14], and shot-based encoding [15] from
Netflix, or context-aware encoding [16]. This necessitates the
development of models that can provide accurate prediction
of video quality. Those models can be used to evaluate
encoding strategies or to monitor quality on the client side.

In general, based on the input information used for quality
assessment, video quality models can be classified into
several categories [17]–[22], for example, metadata-based,
pixel-based, bitstream-based, or hybrid models. For the first
type, namely, metadata-based models, the input information
available is limited to video resolution, video bitrate, video
framerate, and video codec. Since no information related to
the underlying video content is available to the model, these
models are content-agnostic. The second type, pixel-based
models, have access to pixel information to estimate video
quality. Based on the availability of pixel information of a
reference (undistorted source) video, pixel-based models can
be further sub-divided into three categories: Full-Reference
(FR) (e.g. VMAF [23]), Reduced-Reference (RR) (e.g. ITU-
T P.1204.4 [24]), and No-Reference (NR) (e.g. Deviq [25])
models.

The third type of models is referred to as bitstream-based,
which are usually NR models that rely only on the encoded
bitstream, typically without a full decoding, to estimate visual

quality. Based on the extent to which bitstream information is
used, bitstream models can be categorized into the following
modes of operation [22]: Mode 0 (e.g. ITU P.1203.1 Mode
0 [26]), Mode 1 (e.g. ITU P.1203.1 Mode 1 [26]), andMode 3
(e.g. ITU-T P.1203.1 Mode 3 [26], ITU-T P.1204.3 [27])
models. The fourth type of video quality models are hybrid
models. Here, usually bitstream and pixel information are
combined to estimate video quality.

In addition to measuring video quality, for a holistic
evaluation of QoE of a HAS session, the impact of the
four main factors, namely, audio and video quality, initial
loading, and stalling have to be considered [28]–[35]. Similar
to the estimation of short-term video quality, the integral
quality of a streaming session can be evaluated, e.g., using
subjective tests. Due to the longer viewing time per session,
the number of videos that can be assessed in a given test is
even more limited than for short-sequence tests, making these
tests even more resource-demanding. Therefore, dedicated
models have been developed for the case of long-term integral
quality estimation, complementing or replacing subjective
tests. In this context, ITU-T P.1203.3 [36], [37] was the
first standardized model to assess the integral QoE of HAS
sessions, integrating the effects of audio and video quality
over time, initial loading delay and stalling events occurring
during the session under consideration. The development of
P.1203 mainly focused on the long-term QoE prediction (see
also [38]) for Full-HD and H.264 encoded videos.

To cover newer videos codecs and higher resolutions,
newer video quality short-term models were poposed in
a subsequent standardization competition in ITU-T Study
Group 12 (SG12). One of the standardized models is the
high-accuracy, bitstream-based video quality model P.1204.3
(Mode 3) [22], [27], [39]. It is the candidate by the authors
of this paper winning the bitstream-model competition in
ITU-T SG12. In its standardized form, ITU-T P.1204.3 shows
highly accurate prediction results for short term video quality
prediction, even in comparison to FR models such as
VMAF, see [22], [39]. P.1204.3 is one variant of the novel
video quality model AVQBits (Audiovisual Video Quality
based on Bitstreams) presented in this paper. The model
instance ‘‘AVQBits|M3 / P.1204.3’’ has only been trained and
validated for traditional 2D video contents up to 4K/UHD-
1 resolution and requires full access to the bitstream of the
encoded video, currently with implementations for H.264,
HEVC/H.265 and VP9. In this paper, further instances of
AVQBits are introduced and evaluated for 2D video and for
other video applications.

With the different AVQBits instances, the following
research questions are addressed:

• How can AVQBits be used in cases where only a limited
amount of input data is available for precise video
quality estimation?

• Can the different AVQBits model instances be applied
for video quality assessment of other application scopes
than traditional 2D videos?
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• Is it possible to predict the overall QoE of a longer
(≥ 1min) HAS session with the introduced AVQBits
model instances?

To address the question of different input data, four
different AVQBits model versions are proposed in this paper.
This includes a type Mode 0, Mode 1 and hybrid no-
reference Mode 0 model, as well as the bitstream-based and
standardized P.1204.3 version of AVQBits. The models are
trained on four databases created by the author group during
the competition ‘‘P.NATS Phase 2’’ for developing different
types of video quality models. The ‘‘P.NATS Phase 2’’ project
was run as collaboration between ITU-T SG12 and the
VideoQuality Experts Group (VQEG).1 TheAVQBitsmodels
are validated on the publicly available AVT-VQDB-UHD-1
dataset [40].

Besides the 2D video used in training and validation of the
models with up to 4K/UHD-1 resolution, the performance of
the four AVQBits variants is characterized for the following
scenarios and databases:
• Gaming video; the models are evaluated on four
different databases, namely, GamingVideoSet [41],
KUGVD [42], CGVDS [43] and a self-developed
dataset based on Twitch streams

• 360◦ video; the public dataset from [44] is used
to evaluate the applicability for 360◦ video quality
estimation.

• High Framerate (HFR) video; the performance of the
AVQBits models on videos with framerate above 60 fps
is evaluated using the LIVE-YT-HFR database [45].

Furthermore, to evaluate AVQBits for the case of long-term
videos of a HAS session, the model instances are evaluated
on five databases of longer video sessions between 1 min and
5 min, which have been developed as part of the ‘‘P.NATS
Phase 2’’ project, and access to which was provided by the
respective parties.

The source code for all the models along with the
evaluation are made publicly available along with this
paper for further usage and development by the research
community.2

The paper is organized as follows: Section II provides
an overview of the state-of-the-art (SoA), considering the
different types of bitstream and hybrid video quality models
available for video quality assessment of traditional 2D video,
gaming, 360◦ and HFR video. Following this, the algorithmic
description of the four AVQBits instances is described in
detail in Section III. The databases used for evaluation of
AVQBits for different application scopes are presented in
Section V. In Section VI, the details of the model training
procedure of all the proposed extensions are described.
The detailed evaluation and performance characterization of
the proposed models for different application scopes and

1https://www.its.bldrdoc.gov/vqeg/projects/audiovisual-hd.aspx
2https://github.com/Telecommunication-Telemedia-Assessment/p1204_

3_extensions
https://github.com/Telecommunication-Telemedia-Assessment/bitstream_
mode3_p1204_3

the comparison with SoA video quality models are provided
in Section VII. Finally, the paper concludes with a review
of the modeling approach, results and an outlook for future
work.

Before, proceeding further with the elaboration of the
different sections, a brief overview of the notations used to
represent different model instances proposed in this paper is
provided.

A. NOMENCLATURE
To facilitate readers to follow the naming scheme of
the different model instances, the following notations are
introduced.
• AVQBits: This refers to the complete set of models.
• AVQBits|M3: This is used to denote theMode 3 instance
of AVQBits which is the same as ITU-T Rec. P.1204.3.

• AVQBits|M1: The Mode 1 instance of AVQBits.
• AVQBits|M0: This notation indicates the Mode 0 model
instance.

• AVQBits|H0: Hybrid models of AVQBits in general are
denoted by this term.

• AVQBits|H0|f : This is used to indicate that the hybrid
model instance of AVQBits uses a fixed, pre-defined
codec to generate the as input to the specificAVQBits|H0
instance of AVQBits.

• AVQBits|H0|s: The hybrid model instance of AVQBits
which uses the same video codec for feature extraction
as was initially used to encode the stream to be
evaluated.

It should be noted that the model categories such as
Mode 0, Mode 1, Mode 3 and Hybrid No-Reference Mode 0,
are inspired from ITU-T Rec. P.1203 [35] and P.1204 [46].

II. RELATED WORK
The SoA discussion presented in this chapter is organized
in different sections, reflecting the four AVQBits variants
proposed in this paper, and the application scenarios. The
sections provide an in-depth overview of the bitstream-based
and hybrid models for video quality assessment, models
for holistic QoE assessment for an HAS session, quality
assessment of gaming, 360◦ and HFR videos. Partly comple-
mentary, recent model overviews can be found, for example,
in [21] and [22].

A. BITSTREAM-BASED MODELS
Different bitstream models using a diverse set of bitstream
features to estimate video quality have been reported in the
literature. Many early Mode 3-type models that have been
proposed were mainly focused on non-reliable transport and
lower resolutions (< 1080p) [47]–[57].
One of the first Mode 3-type models that focused on

reliable transport is the extension of P.1201.2 for progressive
download for H.264 encoded videos. As with H.264 encoded
videos, Izumi et al. [58], developed a Mode 3 based model
using QP and spatial features based on coding units to
estimate the quality of H.265 [8] encoded bitstreams. Also,
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Huang et al. [59] proposed an approach to estimate the
quality of H.265 encoded videos in terms of PSNR that can
be used either as a bitstream-based or a pixel-based method.
The model includes QP and transform coefficients as features
and has been trained on the LIVE dataset [60] and validated
on the SJTU dataset [61]. Both model variants show a good
performance in terms of PCC.

ITU-T Rec. P.1203 [35] is the first standardized model
for a holistic evaluation of HAS-type video streaming.
This recommendation consists of three different modules
corresponding to video quality [26], audio quality [62]
and the overall quality integration [36]. The video quality
models in ITU-T Rec. P.1203.1 [26] are further divided
into four different modes of operation, depending on the
input information available for quality estimation, namely,
Mode 0, 1, 2 and 3 [38]. These models have been specifically
developed for the HAS scenario and are applicable for
videos encoded with H.264 for resolutions up to 1080p and
framerates up to 30 fps. The reference implementation of
this model is publicly available3 [37]. The Mode 3 model
corresponding to the ITU-T Rec. P.1203.1 has been further
extended to be applicable to H.265 encoded videos of
resolution up to UHD-1/4K by Lebreton and Yamagishi [63].

Furthermore, He et al. [64] present a model for quality
assessment of H.264 and H.265 encoded bitstreams. This
model has QP, skip ratio, motion, bitrate and framerate as
the features and shows a performance comparable to the
ITU-T Rec. P.1203.1 Mode 3 model. In addition, early
models for reliable transport and HAS have been proposed
by [65] and [66]. The different approaches andmodels related
to holistic QoE evaluation where the cumulative effects
of HAS-specific distortions such as momentary audio and
video quality and quality switches, and stalling on quality
perception will be discussed in a subsequent Section II-C.

1) MODE 0
The previous section described the SoA of bitstream models,
with a focus mainly on Mode 3 type models. This section
briefly summarizes the SoA of Mode 0 models. The most
notable Mode 0 model for quality monitoring of video
streaming is the ITU-T P.1203.1 Mode 0 model [26].
As mentioned before, this model is applicable for H.264
encoded videos for resolutions of up to 1080p and framerates
up to 30 fps. A first extension of this model for newer
codecs such as H.265 and VP9 was provided by a proprietary
implementation from TU Ilmenau which has been made
publicly available4 [37], [38]. This extension used VMAF as
groundtruth to derive the mapping coefficients for the newer
codecs.

Furthermore, Rao et al. [67] propose an extension of
this model to newer codecs such as H.265, VP9, AV1,
and also for videos up to a resolution of UHD-1/4K and

3https://github.com/itu-p1203/itu-p1203
4https://github.com/Telecommunication-Telemedia-Assessment/itu-

p1203-codecextension

framerate up to 60 fps. However, this extension was based
on only two subjective tests with limited encoding settings
unlike the original standardized Mode 0 model in ITU-T
Rec. P.1203, which was developed based on a large scale
dataset containing 17 training and 13 validation databases.
Furthermore, Lebreton and Yamagishi [63] in addition to
the extending the scope of the Mode 3 model as mentioned
above have also extended the application scope of the ITU-T
P.1203.1 Mode 0 model for H.265 encoded videos for
resolution up to UHD-1/4K.

To shorten the development time and the associated
subjective quality assessment tests needed for such newer
extensions, Yamagishi et al. [68] proposed a generic method
to derive coefficents for metadata-based models for adap-
tive bitrate streaming services. The proposed method uses
full-reference model scores as groundtruth to estimate new
coefficients.

2) MODE 1
A Mode 1 model has access to frame type and frame
size information for quality estimation, in addition to the
metadata on bitrate, resolution and framerate, as for Mode
0 models. This additional access to the frame type and frame
size information allows the quality estimation process to be
content-dependent. As with the Mode 0 model, the ITU-T
Rec. P.1203.1 Mode 1 model [26] is the first standardized
model of this type for the HAS scenario and has been
trained on the same 17 databases and validated on the same
13 databases as the Mode 0 model.

Another example of aMode 1model is the Bitstream-based
Quality Prediction of Gaming Video (BQGV) [43]. It has
been developed along the lines of P.1203.1 Mode 1. It has
been shown to have a good performance both in terms of PCC
and RMSE. As it is the case for the P.1203.1 Mode 1 model,
too, this model is applicable to videos of resolutions up to
FHD (1920 × 1080 pixels).

B. HYBRID MODELS
Similar to the pixel-based models, hybrid models can be
classified into different categories depending on the access
to the reference video for quality estimation. These include
hybrid-FR, hybrid-RR and hybrid-NR models which have
complete, partial and no access to the reference video,
respectively. Furthermore, each of the categories can be
divided into Mode 0, 1 and 3 based models, depending on
the amount of bitstream information available as input.

Yamagishi et al. [69] present a hybrid-NR model for the
IPTV scenario using information from packet headers and
pixel-based spatial and temporal information for quality
estimation [70]. The model is applicable for H.264 encoded
videos of resolutions up to 1440× 1080 and framerates up to
30 fps.

Another example of a hybrid model for non-reliable
transport is the model proposed by Farias et al. [71]. Like the
model presented in [69], this model, too, is applicable only
for H.264 encoded videos, in light of the video technology
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primarily used at the time. Similarly, the ITU-T J.343 series of
recommendations also propose standardized hybrid models
of all types, for the case of non-reliable transport.

Moreover, Osamu et al. [72] propose a mode 3 hybrid-
NR model where the QP is used as the bitstream feature,
along with the pixel-based spatial and temporal information
to calculate video quality [70]. This model is again restricted
to videos encoded with H.264 only.

More recently, hybrid models have been developed also for
the HAS scenario. One example is the recently standardized
ITU-T Rec. P.1204.5 which is a Mode 0 hybrid-NR
model. It was developed as part of the same modelling
competition as the bitstream-instance of AVQBits, ITU-T
Rec. P.1204.3 discussed in this paper. Like all P.1204 models,
the P.1204.5 model is applicable to videos encoded with
H.264. H.265 and VP9 with resolutions up to UHD-1/4K and
framerates up to 60 fps. As it has been indicated in [22], the
model shows a good performance in comparison with SoA
models.

Another Mode 0 hybrid-NRmodel called ‘‘hyfu’’ has been
developed by Göring et al. [73] as part of a larger framework
for pixel-based video quality models using machine learning.
Accordingly, at its core, ‘‘hyfu’’ is a random forest (RF) based
model. The model has been trained on four databases and
validated independently on the four tests of the AVT-VQDB-
UHD-1 database [40]. The application scope of ‘‘hyfu’’ is the
same as ITU-TRec. P.1204.5. The results show that themodel
performs well in comparison with the SoA models in terms
of both PCC and RMSE.

C. INTEGRAL QUALITY
In general, a typical HAS session is characterized by various
factors such as initial loading delay, momentary audio and
video quality and quality switches, and stalling. A holistic
QoE evaluation model has to consider all these factors,
while also taking into account the time at which these
changes occur in a video viewing session (see also [74]).
ITU-T Rec. P.1203.3 is the first standardized model that
incorporates all these factors. Here, ITU-T Rec. P.1203.1 and
P.1203.2 are used to compute the video and audio quality,
respectively, of each segment at a per-second level. In the
integration module P.1203.3, the per-second audio and video
quality values are further aggregated with regard to their
time of occurence, the longest quality change, and the total
number of quality changes, to obtain the final audiovisual
quality of the video. A second component called ‘‘stalling
quality’’ that handles the impact of initial loading delay and
stalling is computed using the number of stalls, average
stalling duration, and average interval between stalls as
features. Then, the overall audiovisual quality and the stalling
quality are integrated to obtain the initial overall quality.
Besides a parametric, curve-fitting-based model component,
a RF-based approach is used to compute the overall quality
using features such as per-second video and audio quality
scores, stalling ratio, stalling frequency, duration before the
last stalling event etc. The final overall integral quality is the

convex linear combination of the initial overall quality and
RF-based overall quality. This model is applicable to videos
of durations between 1 and 5 minutes and the implementation
is publicly available.5

As the ITU-T Rec. P.1203 model only covers H.264
encoded videos, Lebreton and Yamagishi [63] have further
extended ITU-T Rec. P.1203 for H.265 encoded videos of
resolutions up to UHD-1/4K. For this purpose, six subjective
evaluations with varying encoding conditions involving up to
192 participants in total were used.

In addition to this, other models for holistic QoE evaluation
have been proposed [66], [75], but unlike the ITU-T Rec.
P.1203.3 these models have not been trained and validated
on large-scale databases.

D. VIDEO QUALITY MODELS FOR GAMING VIDEOS
Besides traditional 2D video, there has been a significant
increase in gaming video streaming. As a result, a number
of video quality models dedicated to gaming video quality
evaluation have been proposed in the literature. The focus
has mainly been the development of no-reference video
quality models, due to the lack of high quality reference
videos in a gaming video streaming session. NR-GVQM is an
example for machine-learning-based NR-models specifically
developed for video quality estimation of gaming videos [76],
which uses a support vector regression (SVR) for prediction.
VMAF was used as the groundtruth for model training, and
hence this model can be viewed as a no-reference counterpart
to VMAF. The model was trained and validated with the
GamingVideoSet [41]. The model shows a good performance
in terms of PCC on the validation set.

Another NR-based gaming video quality model was pro-
posed by Göring et al. [77] referred to as ‘‘nofu’’. It is based
on a number of features that are integrated using a random
forest model. It is trained on the GamingVideoSet [41] dataset
and shown to perform well based on 10-fold cross-validation.

Using a similar approach, Barman et al. [42] develop two
NR model instances, namely, ‘‘NR-GVQSI’’ and ‘‘NR-
GVQSE’’, with NR-GVQSI using subjective MOS and
NR-GVQSE using VMAF as the training groundtruth. The
models were trained and tested using two different datasets:
KUGVD [42] and GVS [41]. The model was trained on GVS
using a 10-fold cross validation strategy. Additionally, it was
tested on KUGVD for its performance using MOS scores.
Both models are shown to perform well in terms of PCC and
RMSE considering subjective (MOS) ratings.

In addition to other machine-learning-based models, deep
learning approaches have been explored to develop gaming
video quality models. One example of such a model is
the NDNetGaming model proposed by Utke et al. [78],
which shows a good performance in terms of PCC on
the KUGVD [42] dataset. A further extension of the
NDNetGaming model called ‘‘DEMI’’ has been presented
by Zadtootaghaj et al. [79]. ‘‘DEMI’’ incorporates a more

5https://github.com/itu-p1203/itu-p1203
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sophisiticated pooling of the per-frame quality scores to
obtain the per-segment quality score, in addition to other
improvements. This model is developed to be applicable to
non-gaming videos, too. The performance of the model was
evaluated on the CGVDS [43] dataset, showing the model to
be on par with or better than SoA models.

Although a bigger focus has been on pixel-based NR
models for gaming video quality assessment, some studies
have investigated bitstream-based models for gaming video
quality prediction. One example of a gaming specific
bitstream-based model is the BQGV proposed by [43], which
is described in Section II-A2. A 5-fold cross validation
approach using the CGVDS [43] dataset was done for perfor-
mance evaluation, and it has been reported to outperform the
ITU-T Rec. P.1203.1 Mode 1 and Mode 3 models. However,
it should be noted that the ITU-T Rec. P.1203.1 Mode 1 and
Mode 3 models were not retrained for gaming videos in that
study.

Moreover, a gaming specific planning model called
GamingPara has been presented by Zadtootaghaj et al. [43].
Themodel is shown to outperform ITU-T P.1203.1Mode 0 on
gaming data.

In addition, the standard ITU-T Rec. G.1072 comprises a
video quality component that can be used to evaluate gaming
video quality. It is based on retraining the video quality
component of the IPTV-related planning model described in
ITU-T G.1071 [80].

E. VIDEO QUALITY MODELS FOR 360◦ VIDEOS
Like for gaming video quality assessment, pixel-based
models have been the main focus of the quality assessment
of 360◦ videos. For example, variants of PSNR to take into
account the possibility of viewing of 360◦ in all directions
have been proposed. S-PSNR [81], a sphere-based PSNR
computation and WS-PSNR [82], a position-weighted PSNR
have been proposed as quality metrics to ultimately increase
compression efficiency while maintaining a similar quality.

Tran et al. [83] conducted a performance evaluation of
360◦ video quality metrics considering different variants of
PSNR including S-PSNR and WS-PSNR, among others.
They concluded that the traditional approach of calculating
PSNR was the most appropriate for 360◦ video.
More perception-oriented, traditional 2D video quality

models such as VMAF have also been evaluated for quality
assessment of 360◦. For example, Fremerey et al. [44]
evaluated the applicability of both the original version of
VMAF and the centre-cropped version of VMAF [84] for
360◦ video quality evaluation and reported good performance
in terms of PCC. Also Orduna et al. [85] report similar
results for VMAF as reported by Fremerey et al. [44] for
360◦ video quality evaluation. Furthermore, extensions to
VMAF to make it more suitable for 360◦ video quality
evaluation have been proposed. To this aim, Croci et al. [86]
present a Voronoi-based extension of VMAF. In addition
to the Voronoi-based extension of VMAF, the study also
presents Voronoi-based extensions for PSNR, SSIM and

MS-SSIM and report that the Voronoi-based extensions
generally outperform their traditional counterparts for 360◦

video.
More sophisticated models based on neural network

approaches have also been proposed. For example,
Li et al. [87] present a viewport-based convolutional neural
networks (V-CNN) to estimate 360◦ video quality and is
shown to outperform the SoA models. The model is also
capable of predicting viewport saliency.

In addition to the mentioned pixel-based models, bitstream
and hybrid models could also estimate 360◦ video quality.
One example is Yao et al. [88], who propose a series of
bitstream-based and hybrid models using QP as the bitstream
feature and additional features such as spatial genre (simple
versus complex), temporal genre (slow- versus fast-paced)
and projection scheme. The described models are reported
to outperform S-PSNR-I and V-PSNR based on a three-fold
cross-validation approach. Moreover, Fremerey et al. [44]
presented lightweight metadata-based and hybrid models
for the quality assessment of 360◦ videos. The hybrid
model calculates spatial and temporal information (SI, TI,
cf. [70]) as input features, in addition to metadata such
as bitrate, framerate and resolution. Both presented models
show performance comparable with the SoA models such as
VMAF, ADM2, WS-SSIM, and VIF.

Besides the aforementioned models, extensions to existing
bistream models were proposed to accommodate 360◦ video-
specific transmission aspects such as tile-based streaming.
In this regard, Koike et al. [89] introduced a tile-based
extension of the recently standardized ITU-T Rec. P.1204.3
(i.e., the model addressed in the present paper as the
bitstream-based instance of the proposed AVQBits model),
and report good performance in comparison with subjective
test results. Also, Yang et al. [90] propose a full-reference
quality assessment method for panoramic videos which
outperforms traditional models and metrics such as PSNR,
SSIM and VQM.

F. QUALITY ASSESSMENT OF HFR VIDEOS
The UHD-1/4K and UHD-2/8K standards cover higher fram-
erates compared to traditional cinema or TV, which usually
has 24 fps or 30 fps. In the following section, the SoA will
be briefly analyzed considering the video quality assessment
or prediction of videos with a higher framerate of > 60 fps.
A study on the impact of framerate on perceived quality
was conducted by Mackin et al. [91] in which videos with
framerates varying from 15Hz to 120Hz were analyzed. The
subjective evaluations conducted using these videos show
a significant relationship between framerate and perceived
video quality. Further, it was observed that the effect of
framerate on perceived video quality is content dependent.
The study also reports diminishing improvements in terms of
quality as framerates increase.

Furthermore, Mackin et al. [92] develop a high-framerate
video quality database, BVI-HFR, containing videos cap-
tured at a framerate of 120 fps. Based on their tests they
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conclude that models such as FRQM [93] which explicitly
account for temporal distortions are more accurate in
predicting video quality as compared to traditional metrics
such as PSNR.

In addition to this, Madhusudana et al. [94] conduct a
large-scale study on the subjective and objective quality
of high framerate video with framerates up to 120 fps.
An evaluation of existing FR and NR models has been
performed, and it has been reported that the GSTI [95] model
outperforms all the SoA models including VMAF.

Furthermore, Lee et al. [96] conducted a subjective and
objective assessment of the video quality of space-time
subsampled videos. The evaluation shows that the VSTR
model proposed by Lee et al. [97], which is specifically
developed to take into account the joint perceptual effects of
spatio-temporal subsampling and compression, outperforms
all the considered SoA models including VMAF.

G. SUMMARY
To sum up, it can be concluded that a large number of
video quality models have been proposed in the literature for
quality evaluation of videos for particular application scopes
covering traditional 2D video, gaming video, 360◦ video
and HFR video. Except for VMAF, none of the presented
models scale well across different application scopes. VMAF
is an FR model and may not be suitable in all scenarios,
because of its rather high computational complexity and
also the lack of reference videos in some applications,
for example, as in case of gaming video streaming. This
necessitates the development of lightweight models which
can be used for different application scopes and can also
be adapted based on the available input information. With
this goal, this paper proposes different instances of AVQBits,
one of which being the standardized ITU-T Rec. P.1204.3,
and further instances addressing different types of available
model input information. In total, four different AVQBits
instances are presented, three being bitstream-based, with one
being the P.1204.3 model, and one further, hybrid model.
All four AVQBits instances are evaluated and characterized
when applying them out-of-the-box to different application
scopes. Furthermore, a QoE integration model for longer
HAS session scenarios is presented which can use any of
the AVQBits model instances as the underlying video quality
estimation module.

III. MODEL DESCRIPTION
This section is focused on demonstrating the versatility of
the AVQBits model in terms of scalability and adaptability
regarding the available input information, starting with the
standardized ITU-T P.1204.3 model. In the paper, model
instances of two different types are introduced, namely,
bitstream-based and hybrid. For the bitstream domain, the
focus is on the ITU-T P.1204.3 standard, which is a
Mode 3 model with access to full bitstream information,
referred to as AVQBits|M3 in the following. Two further
AVQBits instances are considered for application scenarios

where the full bitstream information is not available. For
these cases, Mode 0 and Mode 1 variants of AVQBits
are proposed (AVQBits|M0, AVQBits|M1). To describe all
AVQBits instances, the AVQBits|M3 algorithm with its full
Mode 3 bitstream access forms the starting point. The
Mode 0 and 1 instances are implemented by synthetically
generating missing model input information based on the
Mode 0 or 1 type information available, as will be outlined
in subsequent sections. For the case that only Mode 0 type
metadata is available, but a more accurate video quality
estimation is sought than what can be achieved with a Mode
0 model, a hybrid no-reference Mode 0 model instance of
AVQBits is proposed (AVQBits|H0). It has access to Mode
0 metadata and the decoded pixel information. The pixel
information is used as an additional input by converting the
degraded video into a ‘‘quality-equivalent’’ bitstream using
an external video encoder, and then applying the existing and
unchanged full-bitstream-based AVQBits|M3.

The general model structure of the proposed AVQBits
model is shown in Figure 1. The approach is centred
around the full-bitstream-based video quality model by
the authors [39] standardized as ITU-T P.1204.3, i.e.
AVQBits|M3. For example, in case of a Mode 0 or Mode
1 model, the required parts of the full-bitstream AVQBits|M3
model are adapted to handle the input and use the underlying
other components for the final prediction. For the hybrid
case, in a first iteration a quality-equivalent video bitstream
mimicking the original bitstream is created.

To enable reproducibility, an open-source reference imple-
mentation of all the proposed models is made publicly
available with this paper.6

A. MODE 3 MODEL – ITU-T P.1204.3
All AVQBits instances are based on the Mode 3 AVQBits|M3
model (ITU-T Rec. P.1204.3). Hence, its algorithm is
described here first, followed by the different further AVQBits
instances. An overview of ITU P.1204.3 model is shown in
Figure 2, which highlights the individual components of the
AVQBits general structure. It should be noted that themodel is
developed for two different target device categories, namely,
PC/TV and Mobile/Tablet (MO/TA). A detailed description
of the model is presented in [39]. This and all further models
presented here are applicable to videos encoded with the
H.264, H.265 and VP9 codecs. An extension to AV1 is
currently underway. For all codecs, a corresponding bitstream
parser is used to extract the relevant bitstream information as
input toAVQBits|M3. Themodel consists of two components,
a traditional curve-fitting-based component (referred to as the
‘‘Core Model’’) and a machine-learning component, which
are described in more detail in the following sections.

1) CORE MODEL
The ‘‘Core Model’’ is based on the principle of degradation-
based modeling, similar to ITU-T Rec. P.1203.1 [38].

6https://github.com/Telecommunication-Telemedia-
Assessment/p1204_3_extensions
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FIGURE 1. General model structure of AVQBits including all the four presented models.

It is initially inspired by the so-called E-model for speech
quality [98]–[100], also based on the work on modelling
television picture quality by [101]. In the core model, three
different degradations expressed on a [0, 100] scale are con-
sidered: quantization degradation Dq, upscaling degradation
Du and temporal degradation Dt . Values on the 100-scale
can be mapped to the 5-point ACR-scale used in subjective
test (i.e. the resulting mean opinion score, MOS) using the
S-shaped transformation from the E-model [100], as further
described below. This way, scale-compression effects of the
ACR-scale at the scale ends can be avoided [99], improving
predictions especially for the higher-quality range of the
scale.

2) QUANTIZATION DEGRADATION: Dq

The observable degradation that results from the chosen
quantization settings during the encoding process is termed
as ‘‘Quantization degradation’’ (Dq), see also [26], [38].
This type of degradation manifests itself as blockiness or
deblocking-filter-related blurring to the end-user. Since this
type of degradation is dependent on the specific encoding
settings, the ‘‘Core Model’’ handles Dq separately per codec.
The number of codec categories is extended from the initial
three (H.264, H.265, VP9) to five, by including the bit-depth
information and splitting H.264 and H.265 into 8- and 10-bit
variants.
Dq is a function of the quantization parameter (QP)

used to encode the video, which is extracted as model
input information using the respective bitstream parser.
To calculate Dq, firstly, quant , which is the normalized value
of the QP is defined, cf. Equation (1).

quant =
QPnon−Iframes

QPmax
(1)

Here, QPmax is codec and bit-depth dependent.

QPmax = 51, H.264-8-bit and H.265-8-bit (2)

QPmax = 63, H.264-10-bit and H.265-10-bit (3)

QPmax = 255, VP9 (4)

QPnon−Iframes is the average of the QP for all non-I frames
for an entire segment.

The resulting quant ∈ (0, 1]. This quant value is then used
to estimate mosq, see Equation (5).

mosq = a+ b · exp(c · quant + d) (5)

mosq is used to estimate Dq_raw, that uses RfromMOS as
the mapping function to map the 5-point ACR scale to a
100-point scale similar to the one recommended in ITU-T
G.107 [100].

Dq_raw = 100− RfromMOS(mosq) (6)

The final Dq value is the result of constraining Dq_raw to
[0, 100] as shown in Equation (7).

Dq = max(min(Dq_raw, 100), 0) (7)

3) UPSCALING DEGRADATION: Du

In addition to the degradations resulting from the chosen
encoding settings, there are observable degradations resulting
from upscaling the distorted video to the screen resolution
during playback, which can be perceived by an end-user
as blurriness. This kind of degradation is termed as the
upscaling degradation (Du). Hence, the ‘‘CoreModel’’ should
be able to account for this upscaling degradation and it is
assumed that this degradation is codec-independent. Due to
the fact that in real-world streaming scenarios, upscaling is
typically performed by the player software, where streaming
resolutions lower than the target screen resolution typically
are a result of the adaptive streaming of bandwidth-dependent
representations, this degradation is assumed to be codec-
independent.

Du_raw = x · log(y · scale_factor) (8)

Du = max(min(Du_raw, 100), 0) (9)

Equation (8) shows how Du is estimated, where Du is
the [0, 100] constrained value of Du_raw, with log being the
natural logarithm. The scale_factor is calculated according
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FIGURE 2. General model structure of the AVQBits|M3 / P.1204.3 model.

to Equation (10)

scale_factor =
coding_res
display_res

(10)

as the ratio of coding and display resolution, with
display_res = 3840× 2160 for PC/TV and 2560× 1440 for
mobile/tablet. coding_res is the resolution of the encoded
video and is expressed in terms of height × weight . The
scale_factor is always limited to values ∈ (0, 1].

4) TEMPORAL DEGRADATION: Dt
Finally, the ‘‘Core Model’’ handles the degradations due to
the adjustment of the lower framerate representations to the
display framerate as temporal degradation (Dt ). This type
of degradation may be perceivable as jerkiness. Similar to
upscaling Du, it is handled in a codec-independent fashion
and is estimated as follows:

Dtraw = z · log(k · framerate_scale_factor) (11)

Dt = max(min(Dt_raw, 100), 0) (12)

The temporal degradation Dt is mainly a function of
the encoded and the display frame rates (the latter
assumed to be constant with 60) that are combined in a
framerate_scale_factor , cf. Equation (13), a value scaled in
the range (0, 1]:

framerate_scale_factor =
coding_framerate

60
(13)

5) PREDICTION
The Equation (14) describes the final prediction of the
‘‘Core Model’’,Mpar . Here, the described degradation-based
approach is shown, using the 100-scale, Mp[0,100] . The final
prediction is further rescaled to a 5-point MOS-scale,
Equation (15). Here,MOSfromR is the inverse mapping from
the 100-point scale to the 5-point scale, similar to the one
recommended in ITU-T G.107 [100].

Mp[0,100] = 100− (Dq + Du + Dt ) (14)

Mp[1,4.5] = MOSfromR(Mp[0,100]) (15)

Mpar = scaleto5(Mp[1,4.5]) (16)

During training of the model, the subjective scores were
linearly mapped to a 4.5-point scale from the 5-point scale
in order to avoid information loss due to the RfromMOS
and MOSfromR computations, since both of these mapping
functions assume that the highest MOS that can be reached is
4.5. Hence, the coefficients predict the video quality scores on
a 4.5-scale, denoted asMp[1,4.5] . Consequently, as a final step,
the predictions on the 4.5-point scale are mapped back to the
full 5-point scale range using a simple linear transformation,
denoted as scaleto5, Equation (16), resulting in the final
prediction of the parametric core modelMpar .

6) MACHINE-LEARNING-BASED VIDEO QUALITY MODEL
The second part of the model is based on a machine-learning
approach. It is used to estimate the ‘‘residual’’, that is, the part
of the MOS that the parametric ‘‘core model’’ part is unable
to predict.

This machine-learning part of the model uses Random
Forest (RF) regression as the underlying machine-learning
algorithm, and is referred to as MRF in the following. Two
different RF models, one each for the PC/TV and MO/TA
cases are trained.

In addition to the features the ‘‘Core Model’’ uses,
bitstream features such as the average motion per frame,
motion in the x-direction (horizontal motion) and frame sizes
with frame types are extracted with the bitstream parser
and employed as model input. The aggregated features are
detailed in [39]. The Random Forest modelMRF uses 20 trees
with a fixed depth of 8. The final output is calculated as shown
in Equation (17):

MRF = Mpar + predicted_residual (17)

Hence, the RF-based quality prediction is the addition of
the predicted residual value predicted_residual to the Mpar
value predicted by the core model.

It should be noted that a more detailed description of the
‘‘Core Model’’ is provided as compared to the RF model
as the ‘‘Core Model’’ is specifically re-instantiated for the
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development of the AVQBits|M0 and AVQBits|M1 models
while the RF model is used only in case of AVQBits|M3 /
P.1204.3 and AVQBits|H0 models.

7) OVERALL VIDEO QUALITY PREDICTION
The overall final video quality prediction is the convex linear
combination of the predictions from the parametricMpar and
machine learning partsMRF . In this case, equal weights, thus
w = 0.5, are assigned to both of the predictions, shown in
Equation 18. Considering Equation (17), it is shown that the
RF residual part overall has a weight of 0.5, with the core
model prediction being weighted with 0.5+ 0.5 = 1.

Prediction = w ·Mpar + (1− w) ·MRF (18)

To enable reproducibility, an open-source reference imple-
mentation of the model along with the ffmpeg-based
bitstream parser for all three codecs H.264, H.265 and VP9
is made available,7 including also the trained random forest
model.

8) PER-1-SECOND SCORE PREDICTION
In addition to the overall per-segment video quality score,
themodel also outputs per-1-second scores. The per-1-second
score is calculated using Equation (19).

per − 1− sec− score =
QPnon−I ,per−seg
QPnon−I ,per−sec

× Prediction

(19)

where,
• QPnon−I ,per−seg is the average QP of all non-I frames in
a segment

• QPnon−I ,per−seg is the average QP of all non-I frames for
each second

• Prediction is per-segment video quality score described
in Equation (18)

It should be noted that the per-1-second scores are
calculated with a non-overlapping 1-sec window.

B. MODE 0 MODEL
A Mode 0 model is the least complex of bitstream models,
both in terms of available input information and computa-
tional complexity. It has access to metadata such as bitrate,
resolution, framerate and codec information as available
input for video quality estimation. The proposed Mode
0 model AVQBits|M0 instantiates the AVQBits model using
the same general model structure as outlined for AVQBits|M3
above and underlying ITU-T Rec. P.1204.3, with some
key modifications which are indicated in Figure 3. The
traditional curve-fitting-based part of AVQBits|M3, referred
to as the ‘‘Core Model’’ in Sec. III-A, is exclusively used
in AVQBits|M0, due to the limited numbers of features
available for a Mode 0 model. The RF-based model
component of AVQBits|M3 for the residual is not used

7https://github.com/Telecommunication-Telemedia-
Assessment/bitstream_mode3_videoparser

in AVQBits|M0, and with the purely metadata-based input
information, the model is not content-aware. The ‘‘Core
Model’’ is made up of three different degradations, namely,
coding/quantization degradation, upscaling degradation and
temporal degradation. For the Mode 0 instance AVQBits|M0,
the focus only is on the quantization degradation, because
this part is the only one affected by the lack of full-bitstream
information.
The quantization degradation in case of AVQBits|M3 is

a function ‘‘quantization parameter’’ (QP), which is codec
dependent. Since in a Mode 0 model, there is usually no
access to the bit-depth information as input, only three codec
categories are defined, namely, H.264, H.265, and VP9,
in contrast to five codec categories in AVQBits|M3, see
Sec. III-A. Accordingly, QPmax which is required to define
quant as proposed in Equation 1 is restricted to one of the
following two values based on the used codec.

QPmax = 63, H.264 and H.265 (20)

QPmax = 255, VP9 (21)

Because QP is not accessible as direct input information
in case of a Mode 0 model, it is approximated using the
available metadata information, namely, bitrate, resolution
and framerate, see Equation 22.

QPpred = aqp_m0 + bqp_m0 · log(bitrate)

+cqp_m0 · log(resolution)

+dqp_m0 · log(framerate) (22)

The resulting quant is defined as in Equation 23 and is
content agnostic, due to the lack of content-specific features.

quant =
QPpred
QPmax

(23)

Using quant as defined in Equation 23, quantization degra-
dation is calculated as described in Sec. III-A2 (Quantization
Degradation: Dq). As a result of using QPpred instead of the
actual QP value as in AVQBits|M3, the coefficients related
to the quantization degradation should also be re-trained by
taking into account theQPpred values. The training procedure
and the resulting coefficients are detailed in Section VI-B.

1) PER-1-SECOND SCORE PREDICTION
For the AVQBits|M0model, no separate windowing approach
is used unlike in the case of AVQBits|M3 / P.1204.3 and
hence the per-1-second scores is just equal to the per-segment
scores.

C. MODE 1 MODEL
In addition to the metadata such as bitrate, resolution,
framerate and codec information, a Mode 1 model has access
to framesize and frame type information. This information
enables the inclusion of source-, and hence, content-specific
features into the model. Like theMode 0 model AVQBits|M0,
the Mode 1 model AVQBits|M1 introduced in this paper
is based on the same general model structure as that of
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FIGURE 3. General model structure of the AVQBits|M0 model.

AVQBits|M3 (i.e. ITU-T P.1204.3) and just modifies the
information pre-processing for the ‘‘Core Model’’, as seen
in Figure 4 which is a reduced variant of the general model
structure shown in Figure 1 for clarity. Here too, the focus
is on the quantization degradation Dq, as it is the only
Mode-dependent part of the model.

As in Mode 0, the AVQBits|M1 model has been developed
for three codecs, namely, H.264, H.265 and VP9, for one
single bit-depth, as the exact profile usually cannot be
known based on the available input information. Hence, the
same QPmax values are used for the three categories as for
AVQBits|M0, cf. Eqs. (20) and (21).

For the purpose of QP estimation, two new features using
the framesize and frametype information are defined in
Equations (24) and (25).

The feature fsratio represents the ratio between the average
sizes of I-frames and non-I-frames for a given segment under
consideration:

fsratio =
1/NI

∑
i(SI ,i)

1/NnI
∑

j(SnI ,j))
(24)

Here, SI ,i is the size of I-frame i, SnI ,j is the size of a non-
I-frame, that is, P- or B-frame, which are treated alike for
this calculation, with index j. NI is the overall number of
I-frames, NnI the overall number of non-I-frames. Like for
AVQBits|M3, all I-frames i and non-I-frames j belonging to a
given segment under consideration are used.

The second feature introduced is the mean size of non-I-
frames ms_nI .

ms_nI = 1/NnI
∑
j

SnI ,j (25)

As in AVQBits|M1, QPpred is calculated according to
Equation (26).

QPpred = aqp_m1
+bqp_m1 · log(ms_nI )

+cqp_m1 · log(resolution)

+dqp_m1 · log(framerate)

+eqp_m1 · log(fsratio) (26)

Considering the QP estimation of qp_m1 following
AVQBits|M0, the quantization degradation is retrained to be
Mode 1 specific. The details of the training procedure and the
final coefficients are described in Section VI-C.

1) PER-1-SECOND SCORE PREDICTION
Like the AVQBits|M0 model, the per-1-second scores for the
AVQBits|M1 model is just equal to the per-segment scores.

D. HYBRID NO-REFERENCE MODE 0 MODEL
As mentioned earlier, a hybrid no-reference Mode 0 model
has access to both the metadata and the decoded pixel
information of the distorted video to estimate video quality.

The main idea of the proposed model is to create a
‘‘quality equivalent bitstream’’ (QEB) which is similar to
the original bitstream using the decoded pixels and the
providedmetadata. After theQEB is created, theAVQBits|M3
model (i.e. ITU-T P.1204.3) is applied with slight changes.
A somewhat related approach has been used in ITU-T Rec.
P.563 [102] to provide a more general description of the
received speech quality, which is given by comparing the
input signal with a pseudo reference signal generated by a
speech enhancer.

The process of creating the QEB is shown in Figure 1
and Figure 5, wherein the provided metadata such as
bitrate, resolution, framerate, and codec information is
used. The distorted video is re-encoded with the encoding
settings corresponding to the metadata following a 1-pass
encoding strategy. This is based on the results reported in
Stankowski et al. [103] that the quality loss across different
QP values remains constant for a second round of encoding,
which can be compensated by the model due to the use
of QP as the feature for quality estimation in the Core
Model. Furthermore, the QP that an encoder chooses for a
bitrate-resolution during the QEB generation process will be
in the same range as that of the initial encoding due to the
same bitrate and resolution settings.

In the following, two variants of the hybrid no-reference
Mode 0 model AVQBits|H0 are proposed. These variants
are based on the codec used to re-encode the video and
are referred to as the ‘‘same’’ and ‘‘fixed’’ codec variants.
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FIGURE 4. General model structure of the AVQBits|M1 model.

In case of the ‘‘same’’ codec variant, hereafter referred to as
AVQBits|H0|s, the QEB is created using the codec specified
by the metadata. After the QEB is created, the AVQBits|M3
model ITU-T P.1204.3 is directly applied to estimate the
video quality without any modifications.

The second, ‘‘fixed’’ codec variant, is referred to as
AVQBits|H0|f in the following. By using a fixed, pre-defined
codec to create the QEB, no stream-specific encoding and
then bitstream parsing is needed, reducing the complexity
of the implementation. After the creation of the QEB, the
AVQBits|M3 model ITU-T P.1204.3 estimates the video
quality. For the proof-of-concept of AVQBits|H0|f presented
in this paper, H.265 is selected as the codec to create the
QEB, irrespective of the codec used to generate the original
bitstream.

Different codecs have different impact on quality for a
given specific setting. Since H.265 is used to create the
QEB irrespective of the codec to generate the original
bitstream, the initially estimated quality of this QEB may not
optimally reflect the impact of the original codec. As a result,
to estimate the final quality score, a simple linear mapping
function is proposed that takes into account the impact of
the original codec on quality to map the initial prediction
of the ITU-T P.1204.3 model to the respective codec
characteristics.

Prediction = acmap · PredictionM3 + bcmap (27)

where, PredictionM3 is the prediction from the AVQBits|M3
P.1204.3 model and acmap and bcmap are codec-specific
mapping coefficients. The coefficient values are provided in
Section VI-D.

It is noted that besides this instance of the ‘‘fixed’’ codec
hybrid model variant presented as proof-of-concept, other
realizations can be conceived. For example, a more sophis-
ticated codec-specific mapping function can be developed
instead of the simple linear mapping as proposed in this work.
Further, in principle also another of the three encoders and
hence bitstream-parsers can be used to create and analyze
the QEB. With H.265, the newest of the three codecs was
selected, and currently developed updates of the proposed
models can use even newer codecs such as AV1 or VVC.

The impact of the ‘‘fixed’’ instead of the ‘‘same’’ codec
variant on quality prediction accuracy is extensively analyzed
in Sec. VII-A.

IV. OVERALL INTEGRAL QUALITY: MODEL DESCRIPTION
Usually there is a tendency to treat QoE as a static event,
and the QoE measured for a stimulus of delimited length is
assumed to be stable along its duration. However, this rarely
happens for stimuli extending over several minutes [74]. This
can be well observed in a typical HAS session lasting several
minutes, which may include different quality-related events,
for example, quality switching, initial loading delay, and
stalling. Hence, any model designed to estimate the overall
integral quality of a HAS session has to take into account the
impact of these events.

ITU-T Rec. P.1203.3 [36] is the first standardized model
that takes into account all these factors to predict the QoE
of a HAS session [37]. This model takes per-1-second video
and audio quality scores, stalling-related information and
the device type (either ‘‘PC/TV’’ or ‘‘Mobile/Tablet’’) as
input to calculating the QoE of an HAS viewing session.
The main model output (referred to as O.46 in [36]) is a
final media session quality score on the 5-point ‘‘MOS-
scale’’. Further, besides the parametric input information,
the model produces intermediate values that can be used
for HAS-system diagnostics, such as a perceptual stalling
indication, audiovisual segment coding quality per output
sampling interval, and a final audiovisual coding quality
score. The design of the subjective tests conducted to
gather groundtruth for model training and validation used a
restrospective rating by the participants on a 5-point ACR-
scale given at the end of an audiovisual stimulus lasting
between 1 − 5min. Due to this test design, it becomes
pertinent to address cognitive effects such as the recency
effect and primacy effect (see, e.g., [74] for more details
and references around these effects). Accordingly, ITU-T
Rec. P.1203.3 considers these cognitive effects as part of the
model.

In this paper, a long-term integration model specifically
designed for the four types of AVQBits models is presented,
which is based on ITU-T Rec. P.1203.3 [36]. It relies on
the same model structure as P.1203.3, adapting the final
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FIGURE 5. General model structure of the AVQBits|H0 model.

audiovisual coding quality estimation, using more accurate
short-term video quality models such as ITU-T P.1204.3. The
final audiovisual coding quality score O.35 in ITU-T Rec
P.1203.3 is estimated following Equation 28.

O.35 = O.35baseline−negBias−oscComp

−adaptComp

O.35baseline =

∑
t w1(t) · w2(t) · O.34[t]∑

t w1(t) · w2(t)

w1(t) = t1 + t2 · exp

(
t−1
T

t3

)
w2(t) = t4 − t5 · O.34[t] (28)

Here, O.34 is the audiovisual segment coding quality
per output sampling interval. The values wi are weighting
coefficients specified in the standard [36], [37]. The three
factors negBias, oscComp and adaptComp are used to take
into account certain temporal effects related to video-quality
fluctuations. In the proposed model, these three factors are
ignored, reflecting two assumptions:

1) The per-second and per-segment scores of the ITU
P.1204.3 model are generally more accurate than those
from the short-term video-quality module variants
of ITU-T Rec. P.1203.1 [26], [38], where these
were re-engineered from the final, retrospective and
longer-session media session quality score (O.46) (see,
e.g., [38] for more details).

2) This re-engineering may have been impacted by
specific ITU-T P.1203.1 implementations, and thus be
very specific for data created as part of the ITU-T
P.1203 development process, and not optimally suited
for the AVQBits variants proposed in this paper.

The AVQBits|M3 model at the starting point of this paper
was specifically trained on short-term videos, and hence
is capable of more accurately estimating both per-segment
and per-1-second video quality scores. As a result, the new,
simplified O.35 is given by Eq (29).

O.35 = O.35baseline (29)

It should be noted that no other changes to the model
algorithm or coefficients inherited from ITU-T P.1203.3 have
been applied.

In the following, the subjective test databases used to train
and validate the different model instances will be outlined.

V. SUBJECTIVE VIDEO QUALITY DATASETS
The datasets to train, validate and evaluate the performance of
the different AVQBits instances for HAS-type encoded video
and validate the models for other applications are described
in this section.

The following listed datasets are used for the training and
validation of the AVQBits models, and are described in detail
in the remainder of this section.
• PNATS-UHD-1 (Training and validation datasets cre-
ated as part of the ‘‘P.NATS Phase 2 / AVHD’’ modelling
competition cf. also [22])

• AVT-PNATS-UHD-1 (own data contributed to ‘‘P.NATS
Phase 2 / AVHD’’ modelling competition by the authors,
cf. also [22], proprietary, subset of PNATS-UHD-1)

• AVT-VQDB-UHD-1 (short-term video quality evalu-
ation dataset for 4K/UHD-1, published open source,
see [40])

• PNATS-UHD-1-Long (long-sequence database from
‘‘P.NATS Phase 2 / AVHD’’ modelling competition,
including all databases submitted by the proponents;
proprietary, used with permission)

• GamingVideoSet [41], Kingston University Gaming
Video Dataset (KUGVD) [42],Cloud Gaming Video
Dataset (CGVDS) [43], Twitch dataset

• 360◦ Streaming video quality dataset [44]
• LIVE-YT-HFR [45]
AVT-PNATS-UHD-1, AVT-VQDB-UHD-1, the Twitch

dataset and the 360◦ Streaming video quality dataset
are proprietary, whereas the others excluding PNATS-
UHD-1 are open datasets. To train and validate the
AVQBits|M3 / P.1204.3 model, the PNATS-UHD-1 dataset
is used. For the training and validation of the AVQBits|M0,
AVQBits|M1 and AVQBits|H0 instances, the AVT-PNATS-
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UHD-1 and AVT-VQDB-UHD-1 datasets were used, respec-
tively. The PNATS-UHD-1-long dataset is used to evaluate
the proposed long-term integration model. These four are
UHD-1 databases, and retrospective ratings on the ACR
5-point-scale were collected from participants for all these
tests. For all tests, participants were asked to undergo a simple
vision test using Snellen charts as recommended in ITU-T
Rec. P.910 [70]. The tests were conducted in controlled lab
settings as prescribed by ITU-T Rec. BT.500-13 [104] and
ITU-T Rec. P.910 [70] with appropriate lighting conditions
and a viewing distance of 1.5×H, with H being the height
of the screen. An outlier detection was applied for all tests
based on PCC, with a threshold of PCC = 0.75 for tests with
short-duration (7-9 sec) videos andPCC = 0.70 for tests with
videos of longer duration (≥1min). This method for outlier
detection was most notably used as part of developing the
ITU-T Recommendations P.1203 [34] and P.1204 [22].

The details of the test environment and the outlier detection
method for other datasets are described in the following
sections.

A. PNATS-UHD-1
The PNATS-UHD-1 dataset was developed as part of the
‘‘P.NATS Phase 2 / AVHD’’ modelling competition in ITU-T
SG12/Q14. This dataset consists of 26 different tests that
were designed and conducted by eight proponents. Of the
26 different tests, 13 were used for training the models
submitted to the competition and the remaining 13 were used
for model validation. It should be noted that the 13 validation
databases were created after model submission. Out of
the 13 training tests, nine were created with a PC/TV as
viewing device, and four with mobile devices for viewing.
For validation, nine tests used a PC/TV as viewing devices,
three mobile and one tablet. All tests included PVSs with a
duration of 7–9 s. 2464 PVSs were used for training, 2483 for
validation, resulting in a total number of 4947 PVSs. Further
details on the sources, encoding parameter ranges, number of
test subjects etc., is provided in [22].

B. AVT-PNATS-UHD-1
This dataset consists of four different subjective tests that
were designed and conducted as part of the P.NATS Phase 2
competition. The tests were targeted to cover a wide range
of source contents, with more than 50 different sources
used in each of the four tests. Due to the large number
of source contents per test, the tests followed a partial-
factorial design, with a limited number of PVS to be assessed
by participants. A source (in the paper referred to also as
‘‘SRC’’) was repeated between 3 and 5 times within a test.
Three sources were used across all tests and are referred to
as ‘‘common set sources’’. In addition to this, five encoding
conditions (the processing conditions are also referred to as
‘‘Hypothetical Reference Circuits (HRCs)’’ in the paper),
have been used across the four tests. These five HRCs in
combination with the common sources form the ‘‘anchor
conditions’’ that can further be used to unify the different tests

for the purpose of model training, if desired by a proponent
of the aforementioned ITU-T SG12 ‘‘P.NATS Phase 2’’
competition.

The SRCs used in all the four tests had a resolution of
3840 × 2160 pixels and a framerate between 24 fps and
60 fps. To design the HRCs, fixed settings were selected for
each HRC, without any adaptation within the short video
sequences. The bitrate range was chosen to be 100 kbps to
50000 kbps, the resolution range between 360p and 2160p
and the framerate values were chosen between 15 fps and
60 fps. It was ensured that the framerate of the SRCwas never
lower than the framerate of the corresponding PVS. In all
the four tests, the different videos were encoded using one of
three codecs, namely, H.264, H.265, and VP9. The encoding
has been done with libx264 (ffmpeg), libx265(ffmpeg) and
libvpx-vp9 (ffmpeg), respectively. In addition to choosing
from different bitrates, resolutions and framerates for each
HRC, the design also involved different presets (ultrafast,
veryfast, fast, medium, slow, slower, veryslow) for H.264
and H.265 and settings for speed for VP9, different chroma
subsampling (YUV420, YUV422), bit-depth (8 and 10 bits),
encoding types (1-pass, 2-pass both with and without min
max bitrate constraints, HRCs with specific constant rate
factor (crf) encoding) and different GOP sizes (auto, 2 s, 5 s).
Furthermore, video segments encoded via services such as
YouTube, Bitmovin and Vimeo were included to reflect real-
world encodings. A 55’’ LG OLED55C7D screen was used
to present the videos in all the four tests.

In the first test, 52 different SRCs were included and
encoded with different HRCs that resulted in a total
of 187 PVSs. These 187 PVSs were rated by 27 participants.
Following the outlier detection criterion based on PCC
described earlier, two outliers were detected and removed
from further analysis. The second test covered a total of
53 different SRCs with 187 PVSs created from these, which
were rated by a total of 36 participants. Further analysis based
on the aforementioned outlier criterion detected two outliers
in this test. 52 different sources were used in the third test, and
the 185 PVSs resulting from the HRC processing were rated
by 30 participants, with five outliers detected. The fourth
test had 53 SRCs processed according to different HRCs,
resulting in 191 PVSs that were rated by 28 participants.
Here, 3 outliers were detected following the PCC based
criterion.

The distribution of the mean opinion scores (MOS) is
illustrated in Figure 6. It can be observed that there is
a tendency towards higher quality. This test design was
motivated to yield better distinction for higher quality levels
by test participants and also models.

C. AVT-VQDB-UHD-1
AVT-VQBD-UHD-1 [40] is a publicly available dataset8

created by the authors’ group. Like the AVT-PNATS-UHD-1

8https://github.com/Telecommunication-Telemedia-Assessment/AVT-
VQDB-UHD-1
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FIGURE 6. MOS distribution of AVT-PNATS-UHD-1 dataset.

dataset, this dataset also consists of four different subjective
tests. All the four tests had a full-factorial design. In total,
17 different SRCs with a duration of 7-10 s were used
across all the four tests. All the sources had a resolution
of 3840 × 2160 pixels and a framerate of 60 fps. For
HRC design, bitrate was selected in fixed (i.e. non-adaptive)
values per PVS between 200 kbps and 40000 kbps, resolution
between 360p and 2160p and framerate between 15 fps and
60 fps. In all the tests, a 2-pass encoding approach was
used to encode the videos, with medium preset for H.264
and H.265, and the speed parameter for VP9 set to the
default value ‘‘0’’. As with the tests in AVT-PNATS-UHD-1,
the same PCC-based criterion is used for outlier detection.
In the following, all the four tests of this dataset are
briefly described. The distribution of MOS is illustrated
in Figure 7.

1) TEST_1
The HRC design of this test was based on choosing from
different bitrates for each of the different resolutions. For
this purpose, four different resolutions were considered,
namely 360p, 720p, 1080p and 2160p. Two bitrates each were
selected for 360p and 720p and three bitrates each for 1080p
and 2160p. Three different codecs, namely, H.264, H.265,
and VP9 were used to encode the videos. These HRCs were
applied to six different SRCs of 9-10 s duration. This resulted
in a total of 180 PVSs. The framerate of all the PVSs was kept
at the source framerate of 60 fps. A 65’’ Panasonic VIERA
TX-65CXW804 display was used to present the videos in the
test. The 180 PVSs were rated by 29 participants. Following
the PCC-based outlier criterion, no outliers were detected.

2) TEST_2
For this test, the HRC design was based on using different
bits-per-pixel (bpp) settings for different resolutions. Four
different bpp values were considered, per each of the same
four resolutions used also in test_1. As the number of bpp
– resolution combinations considered was higher than the
bitrate – resolution combinations for test_1, only H.264 and

FIGURE 7. MOS distribution of AVT-VQDB-UHD-1 dataset.

H.265 were used to encode the videos. Six SRCs including
the three common set SRCs from test_1 were used. The SRCs
had a duration of 7-9 s. As in test_1, the framerate of the PVSs
was kept at the source framerate of 60 fps. Overall, 192 PVSs
were created using the six SRCs and the defined HRCs. The
test videos were presented to the participants on a 55’’ LG
OLED55C7D screen. A total of 24 participants rated these
PVSs, and no outliers were detected.

3) TEST_3
This test followed the same philosophy for HRC design as
test_2, and hence the same bpp values and resolutions were
used. Also, the same SRCs were employed. Mainly H.265
and VP9 were selected to encode the videos. In test_2, it was
observed that some of the PVSs associated with one of the
sources (Dancers_8s) had uncharacteristically low scores due
to encoding errors. The HRCs associated with these PVSs
were encoded with H.264, and these PVSs, now correctly
encoded, were repeated in this test. The corresponding HRCs
associated with H.265 were dropped, to keep the total number
of PVSs at 192 as in test_2. 26 participants rated the 192 PVSs
presented on a 55’’ LG OLED55C7D screen. No outliers
were detected in this test. As test_2 and test_3 are based on
the same design philosophy, these two tests can be combined
for further analysis.

4) TEST_4
The objective of this test was to assess the effect of different
framerates on perceived video quality. Hence, the HRC
design was based on selecting from different framerates
for each of the chosen different resolutions. Six different
framerates, namely, 15 fps, 24 fps, 30 fps, and 60 fps were
used across six different resolutions between 360p and 2160p.
Only H.264 was selected to encode videos for this test. Eight
SRCs with a duration of 7-9 s each were used, with no overlap
between sources from the other tests. The selected HRCs
in combination with these eight SRCs resulted in a total
of 192 PVSs. These PVSs were presented on a 55’’ LG
OLED55C7D screen. 25 participants took part in the test,
with two outliers being detected.
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D. PNATS-UHD-1-LONG
Similar to the AVT-PNATS-UHD-1 dataset, see Sec. V-B, this
dataset was also developed as part of the P.NATS Phase 2
competition. The dataset consists of five different tests with
videos of 1 to 5min duration. The tests were designed
based on the ‘‘immersive’’ paradigm [105] in which the
participants never view the same source stimulus more than
once. Especially for tests with long sequences, participants
are likely to get bored with multiple viewings of the same
sequence. All tests used a retrospective rating of integral
quality of the simulated HAS viewing session on the 5-point
ACR scale. All stimuli included audio so as to make the
HAS-session more realistic, with audio kept at the highest
available quality.

Long-sequence tests test_1 and test_2 involved retrospec-
tive rating of videos of 1min duration. For this purpose,
60 different SRCs in each test were encoded with different
HRCs, with each HRC consisting of a combination of
different HAS-specific quality-related effects, such as quality
switches, initial loading delay, and stalling. This resulted in
a total of 60 PVSs in both tests. In test_1, 24 subjects took
part, and in test_2, 37 participants. Following the somewhat
less constrained criterion of PCC = 0.7 for the long-
sequence tests, for test_1, no outliers were detected, and
6 outliers for test_2. In test_1, the PVSs were displayed on
a mobile screen, with a viewing distance of 6-8H, giving
the test subjects some freedom in how they were placing the
screen relative to their eyes. In test_2, a TV was used, with a
viewing distance of 1.5H. The highest resolution of the PVS
in test_1 was restricted to 2560 × 1440 pixels, as this was
the display resolution of the mobile. For test_2, the highest
resolution of the PVS was equal to the SRC resolution of
3840× 2160 pixels.

In test_3 and test_4, videos of 2min duration were
rated. 30 different SRCs were used in each test, resulting
in 30 PVSs, as each HRC was associated with a different
SRC. The number of PVSs were adapted compared to
test_1 and test_2, to keep the test duration within 60min.
The PVSs in test_3 were presented on a mobile, and
like in test_1, the highest resolution was restricted to
2560 × 1440 pixels. Test_4 again used a TV for viewing,
and hence the highest resolution was kept at the source
resolution of 3840×2160 pixels. 24 participants rated 30 the
PVSs in test_3. In test_4, the 30 PVSs were rated by a
total of 31 participants. No outliers were detected in the two
tests.

Test_5 involved quality assessment of videos of 5min
duration, with 14 different SRCs being used. In total, 14 PVSs
were rated by 31 participants, with 5 outliers being detected.
As the videos were presented on a mobile screen, the highest
resolution of the PVSs was again restricted to 2560× 1440.

The following laboratories and companies were involved
in conducting the subjective tests: Test_1 and test_2 were
conducted by Netscout in England, test_3 by SwissQual in
Switzerland, test_4 by TU Ilmenau in Germany and test_5
by Ericsson in Sweden.

FIGURE 8. MOS distribution of PNATS-UHD-1-Long dataset.

The MOS distribution of all the five tests is shown in
Figure 8 and reflects a similar tendency of having more PVSs
in the higher quality range as in AVT-PNATS-UHD-1, due to
a similar test design philosophy.

E. GAMING DATASETS
This sections briefly describes the four gaming datasets,
namely, the GamingVideoSet, KUGVD, CGVDS and Twitch
dataset that are used in this paper. It is noted that an evaluation
of theAVQBits|M3model instance (aka ITU-TRec. P.1204.3)
on this combined dataset has been presented by the authors
in [106]. The present paper substantially extends the analysis
to the three further instances of the AVQBits model.

1) GamingVideoSet (GVS)
This dataset [41] consists of 24 SRCs that have been extracted
from 12 different games. The SRCs are of 1920× 1080 pixel
resolution, 30 fps framerate and have a duration of 30 s. The
HRC design included three different resolutions, namely,
480p, 720p and 1080p. 90 PVSs resulting from 15 bitrate-
resolution pairs were used for subjective evaluation. A total
of 25 participants rated all the 90 PVSs.

2) KINGSTON UNIVERSITY GAMING VIDEO
DATASET (KUGVD)
Six SRCs out of the 24 SRCs from the GamingVideoSet were
used to develop KUGVD [42]. The same bitrate-resolution
pairs from GamingVideoSet were included to define the
HRCs. In total, 90 PVSs were used in the subjective
evaluation and 17 participants took part in the test.

3) CLOUD GAMING VIDEO DATASET (CGVDS)
This dataset [43] consists of SRCs captured at 60 fps
from 15 different games. For designing the HRCs, three
resolutions, namely, 480p, 720p and 1080p at three different
framerates of 20, 30 and 60 fps were considered. To ensure
that the SRCs from all the games could be assessed by test
subjects, the overall test was split into 5 different subjective
tests, with a minimum of 72 PVSs being rated in each of the
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TABLE 1. HRCs for Tests 1 and 2.

tests. A total of over 100 participants took part over the five
different tests, with a minimum of 20 participants per test.

4) TWITCH DATASET
The Twitch Dataset [106] consists of 36 different games, with
6 games each representing one out of 6 pre-defined genres.
The dataset consists of streams directly downloaded from
Twitch. A total of 351 video sequences of approximately
50 s duration across all representations were downloaded.
90 video sequences out of these 351 video sequences were
selected for subjective evaluation. Only the first 30 s of the
chosen 90 PVSs were considered for subjective testing. Six
different resolutions between 160p and 1080p at framerates of
30 and 60 fpswere used. 29 participants rated all the 90 PVSs
with no outliers being detected following the criterion of
PCC = 0.75.

F. 360 STREAMING VIDEO QUALITY DATASET
This 360 Streaming Video Quality Dataset [44] consists of a
total of three different subjective tests. The playback, subjec-
tive score and head-rotation data collection was automated
using the publicly available AVTrack [107] software.9 The
participants were instructed that they could freely explore the
360◦ videos. A criterion based on PCC with a threshold of
0.7 was selected to detect outliers in all the three tests.

test_1 and test_2 had a joint objective of comparing
the effect of different Head Mounted Displays (HMDs)
on the perceived video quality. Hence, both the tests include
the same SRCs and HRCs. Eight SRCs with a resolution of
3840×1920 pixels, framerate of 30 fps and a duration of 20 s
were used in these tests. The bitrate and resolutions chosen in
the two tests are detailed in Table 1. H.265was used to encode
the videos. A 2-pass encoding approach with the preset of
slow was choosen. The eight SRCs were encoded with the
defined HRCs and resulted in a total of 64 PVSs including
high quality audio. In test_1, the videos were presented using
an HTC Vive HMD and in test_2, using an HTC Vive Pro.
The total test duration of each test was 90 minutes.

In test_1, all the 64 PVSs were rated by a total of
27 participants. 6 outliers were detected following the
criterion of PCC < 0.7. 27 participants took part in test_2.
There were 3 outliers detected in this test.

test_3 focused on the quality assessment of high resolution
(> 3840 × 1920) content. For this test, seven SRCs of
7680 × 3840 pixels were selected. The framerate of the
selected SRCs was 30 fps, and sequence duration was 20 s.
There was no overlap with the SRCs from test_1 and test_2.
The videos were encoded at three different resolutions,

9https://github.com/Telecommunication-Telemedia-
Assessment/AVTrack360

TABLE 2. HRCs for Test 3.

FIGURE 9. MOS distribution of 360_streaming_video_quality_dataset.

namely, 3840, 5760 × 2880 and 7680 × 3840 pixels. Three
bitrates each were used for each resolution, the details of
which are described in Table 2. As in test_1 and test_2, H.265
was used to encode the videos following a 2-pass encoding
approach with slow preset. In total, 63 PVSs were rated by
27 participants, with 4 outliers detected according to the
criterion of PCC < 0.7. The PVSs were presented with an
HTC Vive Pro HMD.

The MOS distribution of the three tests is as illustrated in
Figure 9.

G. LIVE-YT-HFR
The LIVE-YT-HFR [45] dataset was designed with the
objective of analyzing the impact of framerate on perceived
video quality, like test_4 of the AVT-VQDB-UHD-1 dataset.
For this purpose, 16 SRCs captured at a framerate of 120 fps
were used. Eleven out of the 16 SRCs are from the BVI-HFR
dataset [91]. The SRCs had a duration of 6−10 s. Theymainly
consist of sports content with high motion. Six different
framerates were included in the study, namely 24, 30, 60, 82,
98, and 120 fps. All the SRCs were encoded with VP9 at
five different CRF values for each framerate, thus resulting
in 30 PVSs for each source and in total 480 PVSs. A total of
80 participants took part in the test with each PVS being rated
by a minimum of 12 participants.

VI. MODEL TRAINING
This section details the training procedure that was performed
to obtain the coefficients for the different AVQBits models.

A. AVQBits|M3 /WWWWW/P.1204.3 MODEL TRAINING
Initially, the submitted version of the AVQBits|M3 /
P.1204.3 model was trained on the 13 training databases
of the PNATS-UHD-1 dataset. After the validation of the
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TABLE 3. Quantization-degradation coefficients for AVQBits|M3 /
P.1204.3, PC/TV case.

TABLE 4. Quantization-degradation coefficients for AVQBits|M3 /
P.1204.3, MO/TA case.

model using the validation databases of the PNATS-UHD-1
dataset, a dedicated model re-optimization was done using
a 5-fold cross validation approach. In this step, firstly, five
splits of all the 26 databases were created with each split
containing 13 training and 13 validation databases. While
creating these splits, it was ensured that each of the splits
had least similarity with each other and that the overall
prediction difficulty of the training databases was similar
to the validation databases. In addition to this, for each
split, it was also ensured that the databases corresponding
to different display types (PC/TV and Mobile/Tablet) have
a balanced representation in the training and validation sets.
Following this procedure, the coefficients of the Dq, Du and
Dt and the correspond RF components were determined.
Tables 3 and 4 present the quantization-degradation–related
coefficients of the PC/TV and MO/TA cases respectively.
The temporal- and upscaling-related coefficients of the
PC/TV and MO/TA cases are presented in Tables 5 and 6
respectively.

A more detailed description of the training procedure can
be found in [39] and [22].

B. AVQBits|M0 MODEL TRAINING
For the AVQBits|M0 model instance, a two-step training
procedure was implemented to estimate the coefficients
related to QPpred and quantization degradation. In the
first step, the QPpred prediction module as described in
Equation (22) was trained using the true QP values extracted
from the 764 PVSs of AVT-PNATS-UHD-1 as ground-truth.
The resulting coefficients for determiningQPpred are detailed
in Table 7.
Following this, the coefficients in Table 7 were used to

estimate QP values, and the resulting estimates QPpred were
used as input to the quantization degradation. The new
coefficients were obtained by training the model using the
subjective MOS from AVT-PNATS-UHD-1 as ground-truth.
The resulting new coefficients of the core model are as shown
in Table 8.

To estimate the upscaling degradation and temporal degra-
dation component of the ‘‘Core Model’’, the coefficients for

TABLE 5. Upscaling- and temporal-degradation coefficients, PC/TV case
(valid across all four AVQBits instances).

TABLE 6. Upscaling- and temporal-degradation coefficients, MO/TA case
(valid across all four AVQBits instances).

TABLE 7. QP-Prediction coefficients for AVQBits|M0, PC/TV case.

TABLE 8. Quantization-degradation coefficients for AVQBits|M0, PC/TV
case.

TABLE 9. QP-Prediction coefficients for AVQBits|M1, PC/TV case.

TABLE 10. Quantization-degradation coefficients for AVQBits|M1, PC/TV
case.

the AVQBits|M3 / P.1204.3 model reported in Table 5 are
used.

As there were no Mobile/Tablet (MO/TA) databases that
were part of the training dataset, AVT-PNATS-UHD-1,
a synthetic dataset consisting of AVQBits|M3 / P.1204.3 was
developed to determine the coefficients for the MO/TA
case. These coefficients can be found in the reference
implementation that is publicly available.

C. AVQBits|M1 MODEL TRAINING
For the AVQBits|M1 model instance, the same two-step
training approach as for Mode 0 was used to determine the
coefficients related to QPpred and subsequently the quan-
tization degradation component Dq of the ‘‘Core Model’’,
cf. Equation (5) to Equation (7). The coefficients related
to QPpred and the quantization degradation Dq (i.e. MOSq
at first, cf. Equation (5)) are presented in Tables 9 and 10,
respectively. Similar to the Mode 0 model AVQBits|M0, the
coefficients for the AVQBits|M3 / P.1204.3 model detailed in
Table 5 are used to estimate the upscaling degradation and
temporal degradation.
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FIGURE 10. Scatter plot of P.1204.3 and its bitstream extensions for AVT-VQDB-UHD-1 dataset.

TABLE 11. Codec mapping coefficients for AVQBits|H0|f , PC/TV case.

A similar approach to determine the MO/TA coeffiencts
for the AVQBits|M0 model was used for the AVQBits|M1
model and the corresponding coefficients can be found in the
publicly available reference implementation.

D. AVQBits|H0 MODEL TRAINING
As discussed in Section III-D, two different variants of the
AVQBits|H0 model are proposed in this paper. The first,
AVQBits|H0|s, applies the same encoder used for initially
encoding the video to be evaluated, plus Mode 0 data for a
quality-equivalent re-encoding of the video. TheAVQBits|M3
/ P.1204.3 model is then directly applied to the resulting
bitstream, without any further modifications of the model.
Hence, no additional training of the AVQBits|H0|s model is
needed.

Instead of the original video codec, that has been used for
encoding the distorted video, the AVQBits|H0|f model has
a fixed video encoder for generating the quality-equivalent
bitstream. For the model instance presented in this paper,
H.265 is selected. As a result, the prediction from the
AVQBits|M3 / P.1204.3 model requires a codec-specific
mapping of the predicted score to represent the quality that
would be provided by the originally applied encoder. Hence,
a simple mapping function as described in Equation (27) is
proposed.MOS scores fromAVT-PNATS-UHD-1 are applied
as training target to determine the coefficients of the mapping
function. The resulting coefficients are presented in Table 11.

VII. EVALUATION
In this section, the performance evaluation of the four
different AVQBits instances on different application scopes
such as traditional 2D video, gaming video, 360◦ video and
HFR video are described. The evaluation is performed on the

different publicly available databases described in Sec. V. For
all evaluations, the performance measures are computed after
performing a linear fit per each database, as recommended
in ITU-T Rec. P.1401 [108], to map the objective scores
to the subjective scores. This way, a possible test-specific
linear bias in comparison to the model is compensated (e.g.,
range-equalization bias [109]). The scatter plots presented in
the following also use the linearly-mapped predictions. The
performance of the models are compared with SoA models
for each use-case.

A. SHORT-TERM VIDEO QUALITY
The first evaluation of the proposed models is conducted
on short videos with 8 − 10 s duration, as this was the
primary focus of model development. For this purpose,
the publicly available AVT-VQDB-UHD-1 dataset [40]
consisting of 756 PVSs is used, see also Sec. V. Note
that only 432 PVSs are publicly available due to source
copyright issues. However, in this paper the evaluation is
performed on the entire dataset consisting of 756 PVSs, as the
authors have access to the complete set. Table 12 provides a
detailed overview of the performance of the model instances
AVQBits|M3 P.1204.3, AVQBits|M0, AVQBits|M1 and the
two versions of the Hybrid Mode 0 model AVQBits|H0.
Performance is given in terms of RMSE, PCC, Spearman
Rank Correlation (SROCC), Kendall correlation and R2

Score for the four tests individually and all databases together.
As is expected, AVQBits|M3 / P.1204.3 outperforms all other
model instances for all databases combined as it has access to
the entire bitstream to estimate video quality. An interesting
observation is that the other model instances perform slightly
better than AVQBits|M3 / P.1204.3 for test_4. This specific
test considers a wide range of framerate variations. It should
be noted that such a high variation in framerate between
SRC and PVS is rather unrealistic for HAS applications.
However, it can be seen from Table 12, that AVQBits|M3 /
P.1204.3 performs significantly better across all databases.

Figures 10 and 11 show the scatter plots for all models.
It can be observed that AVQBits|M3 / P.1204.3 leads to
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FIGURE 11. Scatter plot of the Hybrid No-Reference extension of P.1204.3 for AVT-VQDB-UHD-1
dataset.

TABLE 12. Performance of the AVQBits instances on the
AVT-VQDB-UHD-1 dataset (∗The RMSE and R2 numbers for AVQBits|M3 /
P.1204.3 may differ from the ones reported in [39], as here the RMSE and
R2 values after linear mapping whereas in [39] the RMSE and R2 values
were calculated on raw predictions).

very few outliers as compared to the subjective tests,
whereas results for the other instances show a larger number
of outliers. Most notably, it can be observed that for
Mode 1 AVQBits|M1, the Surfing sequence suffers from
under-prediction in a few cases due to a large error in the
method used for QP estimation in this case. In addition, it can
also be seen thatAVQBits|M0 suffers from slightlymore over-
prediction, which is a result of the lack of source-specific
information for quality estimation, which AVQBits|M3 and
hence also AVQBits|H0 partly handle in the random forest

TABLE 13. Performance comparison of the AVQBits instances with SoA
models for tests in the AVT-VQDB-UHD-1 dataset without framerate as
dependent variable (∗The RMSE and R2 numbers for AVQBits|M3 /
P.1204.3 may differ to the ones reported in [39], as here the RMSE and
R2 values after linear mapping are shown, whereas in [39] the RMSE and
R2 values were calculated on raw predictions).

model part. Also, AVQBits|H0|f would benefit from a more
sophisticated codec mapping than the linear one defined
in Section III-D to better take into account codec-specific
differences.

The performance of the AVQBits instances is also com-
pared with that of SoA models. For this purpose, the
performance numbers for SoA models on the AVT-VQDB-
UHD-1 dataset reported in [22] are used. In Tables 13 and 14,
different FR and NR models are compared with the proposed
models for tests with and without framerate variation
separately. As can be seen from the results, AVQBits|M3
/ P.1204.3 is the best performing model across all tests,
with VMAF being the best performing FR model. In spite
of the reduced input data for these models, the other
AVQBits instances are still able to outperform a number
of the SoA models. For example, AVQBits|M0 shows a
better performance than Brisque and SSIM, or AVQBits|M1
shows a better performance than VMAF. The hybrid models
also outperform VMAF and generally are surpassed only
by AVQBits|M3 / P.1204.3 in performance. It is noted that
the good performance of the AVQBits instances other than
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TABLE 14. Performance comparison of AVQBits instances with SoA
models for tests with framerate as independent variable in the
AVT-VQDB-UHD-1 dataset (∗The RMSE and R2 numbers for P.1204.3 may
differ to the ones reported in [39], as here the RMSE and R2 values after
linear mapping are shown, whereas in [39] the RMSE and R2 values were
calculated on raw predictions).

AVQBits|M3 / P.1204.3 may be due to the selected specific
encoding settings and their range. In general, test_4 seems to
be the most difficult test in terms of estimating video quality,
due to the wide range of framerates included in this test. The
comparatively bad performance of VMAF for test_4 can be
attributed to the lack of a sophisticated motion-related feature
in the model.

B. OVERALL INTEGRAL QUALITY
As next, the proposed long-term integration model, a sim-
plified version of ITU-T Rec. P.1203.3 [36] is evaluated
on PNATS-UHD-1-Long consisting of five tests with PVSs
ranging from 1-5min in duration (cf. Sec. V). As explained
in Section IV, for estimating the overall integral quality,
the proposed model follows the same architecture as ITU-T
Rec. P.1203.3 and takes per-1-second video and audio scores
as input, along with stalling-related information. In this
evaluation, to estimate the per-1-second video quality scores,
the different AVQBits instances are considered. The per-1-
second audio quality scores are assumed to be 4.5, which is
the highest quality estimated by ITU-T Rec. P.1203.2 [62].
This assumption is based on the fact that the audio quality is
not varied and the best possible audio quality is used in any
of the five tests considered for evaluation.

Table 15 shows the performance numbers for all the tests
for the proposed models. It can be concluded that using
AVQBits|M3 P.1204.3 to estimate the per-1-second scores
results in very good performance of the proposed long-term
integration model. This is due to the high accuracy of the
ITU-T P.1204.3 model. The estimation of per-1-second and
per-segment quality scores is better as compared to the other
instances of AVQBits, which use less complex input informa-
tion without full bitstream access for video quality prediction.
Furthermore, it can be observed that the AVQBits|H0|s and
AVQBits|H0|f variants show similar performance to the
AVQBits|M3 P.1204.3 in terms of PCC but have a worse
performance in terms of RMSE for each of the five tests.
This is unlike the short-term video quality prediction where

TABLE 15. Performance of P.1204.3 and its extensions on the
PNATS-UHD-1-Long dataset.

the AVQBits|H0|s and AVQBits|H0|f variants have a similar
performance to AVQBits|M3 P.1204.3 both in terms of PCC
and RMSE. This can be attributed to the fact that in case of
short-term video quality prediction a simple linear mapping
according to ITU-T P.1401 before computing the RMSE
would accommodate for the difference in prediction due
to the usage of the QEB instead of the original bitstream.
Whereas, in the case of overall integral quality prediction, the
input consists of per-1-sec scores and these per-1-sec scores
are computed on the QEB which may not reflect the true
quality directly of the bitstream. A dedicated linear mapping
of the per-1-sec scores to take into account the effect of QEB
at the per-1-sec level could alleviate such a problem and
hence result in a lower RMSE value. Despite this, the overall
performance of theAVQBits|H0|s andAVQBits|H0|f variants
is significantly better than the AVQBits|M0 and AVQBits|M1
models.

The scatter plots illustrated in Figure 12 show that both
AVQBits|M0 and AVQBits|M1 seem to over-predict in the
lower-quality range, which can be attributed to the less
accurate per-1-second score estimation by these models. This
is assumed to reflect that the quality-impact due to more
encoder-demanding video content is less well captured by
these models.
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TABLE 16. Performance of P.1204.3 and its extensions on different
gaming datasets.

C. GAMING VIDEO QUALITY
As the first application for extending the initial scope
of ‘‘traditional’’ video quality prediction for the AVQBits
instances, gaming video quality is considered. It should be
noted that all model instances of AVQBits are used without
any retraining to estimate the video quality for the four
gaming datasets considered for performance evaluation (see
Sec. V). The only difference to the case of ‘‘normal’’ 2D
video is that here all databases were created for a full
HD (1920 · 1080 pixels) display instead of the 4K/UHD-1
target screen resolution used in case of the PC-databases for
‘‘normal’’ video and the initial development of AVQBits|M3
/ P.1204.3 in ITU-T SG12. In this paper, AVQBits|M3 /
P.1204.3 and its extensions are used directly with the target
resolution of 4K/UHD-1.

Table 16 provides a detailed view of the performance
of the proposed bitstream-based models on all the four
considered tests. AVQBits|M3 / P.1204.3 and AVQBits|M1
perform on par across all datasets, with Mode 0 being the
least well performing model. The good performance of the
Mode 1 model indicates that the features related to framesize
and frame type can be used to estimate the impact of content
improving the estimation of the QP value and bringing it
closer to the one of the AVQBits|M3 model with its full
bitstream access. Although Mode 1 performs on par with
AVQBits|M3 / ITU-T P.1204.3 on average, from the scatter
plots shown in Figure 13 it can be observed that there is a
general tendency of theMode 1model to slightly over-predict
as compared to ITU-T P.1204.3. Furthermore, it can be

TABLE 17. Comparison of performance of P.1204.3 and its extensions
with SoA models on different gaming datasets.

observed from the scatter plot associated with Mode 0 in
Figure 13 that Mode 0 suffers significantly from the lack
of content-related features, leading to cases with a larger
prediction inaccuracy. As the main goal of gaming video
quality prediction is to run it in an environment with less
requirements for computation, the hybrid models may be less
practical for real-time monitoring, as they need additional
resources. However, it is shown that in case Mode 0 type
data and pixel information can be accessed in a practical
monitoring scenario, the AVQBits|H0 models are highly
usable. The results show that AVQBits|H0|s performs as
well as AVQBits|M3 / P.1204.3 for all the four considered
gaming datasets. The AVQBits|H0|f model variant with less
requirements on the set of codecs available duringmonitoring
performs on par with AVQBits|M3 / P.1204.3 for the CGVDS
and Twitch datasets, but less well for GVS and KUGVD. This
may be due to the coefficients amap and bmap being obtained
by training on traditional 2D video datasets. A dedicated
retraining of these two coefficients for gaming content may
result in improved performance.

In addition to this, the performance of the proposed
bitstream-based models is compared with SoA models, and
the details are reported in Table 17. The performance numbers
corresponding to the SoAmodels relating to the open datasets

80342 VOLUME 10, 2022



R. R. Ramachandra Rao et al.: AVQBits—Adaptive Video Quality Model Based on Bitstream Information

FIGURE 12. Scatter plot of P.1204.3 and its extensions for PNATS-UHD-1-Long dataset.

are directly taken from respective papers. In general, it can
be concluded that AVQBits|M3 / P.1204.3 and AVQBits|M1
perform on par with VMAF across all datasets. It should
be noted that two out of the four datasets, namely, CGVDS
and the Twitch dataset use completely different encoding
strategies than the ones these models were trained on. For
CGVDS, a hardware-accelerated encoder was applied, and
the Twitch dataset consists of PVSs with proprietary Twitch
encoding. Despite this, the models perform well, indicating
the generalizability of the model framework with regard to
different encoder implementations and strategies. Although
the Mode 0 AVQBits|M0 model is the least well performing
bitstream model, it still outperforms all the considered NR
models for all datasets. The performance of the Mode
0 model could be enhanced by retraining it for the gaming-
specific use-case. Furthermore, AVQBits|H0|s performs as
well as both the best performing pixel and bitstream models.
Although the fixed encoder variant AVQBits|H0|f suffers
somewhat from a lower performance for the GVS and
KUGVD datasets, the average performance across all the
four datasets is still competitive in comparison with the SoA
models.

A FHD-specific mapping AVQBits|M3 / P.1204.3 for
gaming content has been proposed in [106] with a more
detailed handling of the target screen resolution being a topic
of ongoing work.

D. 360◦ VIDEO QUALITY
As the next application scope for evaluation, 360◦ video qual-
ity estimation is considered. For this purpose, the 360 Stream-
ing Video Quality Dataset (cf. Sec. V-F) consisting of three
different tests is considered. As in the case of gaming,
no retraining of the proposed models has been performed.
In addition to this, as with the gaming use-case, in this paper,
AVQBits|M3 / P.1204.3 and its extensions are applied directly
with the target resolution of 4K/UHD-1 despite the different
tests being considered have different target resolutions.
Table 18 provides a detailed view of the performance numbers
for all the tests for the proposed bitstream-based models.

In general, it can be observed from Table 18 that
AVQBits|M3 / P.1204.3 performs well for all the tests.
Mode 0 (AVQBits|M0) and Mode 1 (AVQBits|M1) show
satisfactory performance for test_1 and test_2, but perform
considerably worse for test_3. The general tendency towards
worse performance of these models can be attributed to the
fact that the QP estimation is not optimal for 360◦ video,
as encoders may use different strategies in QP selection
for specific bitrates. Hence, a more use-case specific QP
estimation should be considered to enhance the model
performance. Especially for these low-complexity bitstream
models, a dedicated model could be used, which is usually
even how it is handled for existing 2D video streaming
applications, due to the sheer amount of different encoding
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FIGURE 13. Scatter plot of P.1204.3 and its extensions for all Gaming datasets.

TABLE 18. Performance of P.1204.3 and its extensions on
the 360 Streaming Video Dataset.

strategies [116]. The difference in performance for the
different bitstream-based models can also be observed in
the scatter plots depicted in Figure 14. Here, it can be
seen that both AVQBits|M0 and AVQBits|M1 suffer from
large prediction errors for certain cases. The difference in
performance between the proposed models is most prominent
for test_3 which involved comparison between 4K, 6K,
and 8K 360◦ videos. It should be noted that the proposed
models have only been trained and validated on videos up to

TABLE 19. Comparison of performance of P.1204.3 and its extensions
with SoA models on the 360 Video Streaming Quality Dataset.

4K/UHD-1 resolution. Furthermore, from the results for the
Hybird No-reference Mode 0 model AVQBits|H0|s it can be
seen that the model performs well for all the three tests, and
is on par with the performance of AVQBits|M3 / P.1204.3.
The AVQBits|H0|s model performs significantly better than
Mode 0 and Mode 1 due to its ability to better estimate
the complexity of the content compared to either Mode
0 or Mode 1, as it can use the entire bitstream information
of the QEB. AVQBits|H0|f is not explicitly considered for
evaluation because the codec used to encode videos in the test
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FIGURE 14. Scatter plot of P.1204.3 and its extensions for 360 Streaming Video Quality Dataset.

was H.265, which is the default codec for AVQBits|H0|f and
hence both AVQBits|H0|s and AVQBits|H0|f are the same
model in this case.

In Table 19, a comparison of the proposed bitstream
models with a number of SoA models is reported. The
performance numbers for the SoA models are taken directly
from the work byMadhusudana et al. [44]. It can be observed
that AVQBits|M3 / P.1204.3 performs on par with the best
performing FR model, i.e. VMAF. It is further shown that
the Mode 0 model proposed in [44], hereafter referred to
as ‘‘Mode0F’’, performs better than the Mode 0 model
AVQBits|M0 proposed in this paper. It should be noted that
the Mode0F model was specifically trained for the 360◦

video use-case and the performance numbers reported in
Table 19 are based on a 50:50 training-validation strategy.
Moreover, the sources in test_1 and test_2 are the same,
which leads to an increase in prediction accuracy of the
Mode0F model. Furthermore, it can be seen that the proposed
AVQBits|H0|smodel outperforms the hybrid model proposed
by Fremerey et al. [44], despite not being specificaly trained
for 360◦ videos. This is due to the fact that a more holistic
approach is proposed in this paper with the QEB, using
re-encoded bitstream features that are considerably more
indicative of content complexity in the Random Forest part
of the underlying AVQBits|M3 / P.1204.3 model than the SI
and TI information used in [44].

E. HIGH FRAMERATE VIDEOS
The last extended use-case that is considered for the
evaluation of the proposed bitstream models in this paper is
HFR video. For this purpose the LIVE-YT-HFR dataset is
used. Although this use-case falls into the broad category of
traditional 2D videos, the HFR use-case is still considered
as an extended application scope as the proposed models
have been trained and validated only for video of framerate
up to 60 fps. As was the case with gaming and 360◦ video,
no retraining was performed on the proposed bitstream-based
models for the specific use-case.

Table 20 compares the performance of the proposed
AVQBits models with SoA models for each framerate. The
performance numbers for the SoA models are taken directly
from the work by Fremerey et al. [45]. In general, it can
be observed that AVQBits|M3 / P.1204.3 model performs
on par with VMAF for all framerates. The performance
is similarly good for the hybrid models AVQBits|H0|s
and AVQBits|H0|f , although AVQBits|H0|f with its fixed
encoder shows a slightly worse performance. The results
for this model variant could be enhanced by a dedicated
retraining of the acmap and bcmap for HFR specific content.
The Mode 0 (AVQBits|M0) and Mode 1 (AVQBits|M1)
models show similar performance to that of SSIM,MS-SSIM,
ST-RRED and FRQM. It can also be seen that prediction
accuracy in terms of both PCC and SROCC is significantly
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FIGURE 15. Scatter plot of P.1204.3 and its extensions for LIVE-YT-HFR dataset.

TABLE 20. Comparison of performance of P.1204.3 and its extensions with SoA models on the LIVE-YT-HFR dataset (The performance numbers for the
SoA models are taken directly from the work by Madhusudana et al. [45]).

worse for lower framerates than for higher framerates for all
the proposed models. This is due to the fact that the temporal
degradation component of the ‘‘Core Model’’ considers
60 fps as the maximum framerate as that was the framerate of
the used display for subjective testing for both AVT-PNATS-
UHD-1 and AVT-VQDB-UHD-1. The temporal degradation
associated with the perceived video quality is then estimated
relatively to 60 fps thereby underestimating the impact of

lower framerates on perceived video quality when viewed
on a display with higher framerate such as 120 fps. The
models show a significantly better performance at higher
framerates (≥ 60 fps), as the effect of temporal degradation
on perceived video quality decreases at higher framerates.
This is consistent with findings presented in [91]. Figure 15
illustrates the scatter plots for the different AVQBits variants
on the LIVE-YT-HFR dataset.
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VIII. DISCUSSION AND CONCLUSION
The paper presents an information-adaptive, bitstream-based
video quality model, AVQBits. With its four variants,
it can operate on bitstream-based input information of
different complexity. The so-called Mode 3 variant of the
model, AVQBits|M3, has been standardized as ITU-T Rec.
P.1204.3 [27]. The model algorithm and performance of
AVQBits|M3 have been described in [39] and [22]. The
present paper complements this work in three directions:
(1) introducing three further AVQBits variants that adapt
the model algorithm according to the input information
available in a given context; (2) proposing a long-term
integration module that allows accurate predictions for
typical HTTP-based adaptive video streaming sessions; (3)
evaluating all four short-term video model types, out-of-
the-box, for application scenarios the models have not
initially been developed for, and showing their competitive
performance in comparison with SoA models. The newly
introduced, light-weight Mode 0 model AVQBits|M0 uses
metadata such as framerate, resolution and bitrate for
prediction. The Mode 1 model AVQBits|M1 delivers more
precise predictions by additionally using frame-type and
frame-size information. Both models employ the available
input information to predictQP as the main information used
in the Mode 3 model AVQBits|M3 / P.1204.3. The third type
of video quality models presented in this paper is hybrid,
that is, metadata- / Mode 0 and pixel-based, AVQBits|H0.
The underlying approach is to re-encode the decoded pixel-
information into a ‘‘Quality-equivalent Bitstream’’, using the
metadata for selecting encoder settings. Two versions of this
algorithm are presented, one using the same codec as the
one initially employed (AVQBits|H0|s), and one using a fixed
encoder, in this case HEVC/H.265 (AVQBits|H0|f ).
All model variants were trained for traditional 2D videos

and specific encoder implementations. Based on the eval-
uation on a dataset different from the training data, it is
shown in this paper that all models have highly competitive
performance for ‘‘normal’’ 2D video, also in comparison to
SoAmodels. To analyze the generalizability of the introduced
models, all models were evaluated on different further
application scopes (contribution (3) mentioned above). For
this purpose, gaming video, 360◦ video and HFR video
have been considered. Within this evaluation on extended
application scopes, other use-cases, e.g., different encoder
implementations have also been addressed. The evaluation
for each case is based on multiple subjective tests to
investigate the impact of different designs on the prediction
accuracy of the models. For this purpose, four different
datasets for gaming, three tests from the 360 Streaming Video
Quality Dataset for 360◦ video and a dataset consisting of
HFR videos are considered.

The evaluation of the proposed models also in com-
parison to SoA models shows that the AVQBits|M3 /
P.1204.3 bitstream Mode 3 model performs very well in
terms of both RMSE and PCC for all use-cases. The
performance of this model may further be improved by

including use-case-specific features, e.g. for 360◦ or gaming
videos, updating the temporal degradation component of the
‘‘Core Model’’ in case of HFR videos. The Mode 1 model
AVQBits|M1 shows very good performance for the gaming
video use-case. The somewhat reduced performance for 360◦

video and HFR can be attributed to multiple factors, which
are, for example, the lack of a use-case-specific retraining
and missing of specific features. More sophisticated features
using framesize and frame type information to take into
account the effect of encoding of different contents may be
used to extend themodels to improve prediction performance.

The performance of the Mode 0 model AVQBits|M0 varies
more strongly in terms of accuracy for different use-cases and
also for individual tests within a specific case. This is along
expected lines since a Mode 0 model is content-agnostic and
hence its generalizability is very limited. However, it should
be mentioned, that a Mode 0 model is also more applicable
for monitoring and real-time evaluation of video quality,
for example in case that no access to encoded bitstream
information is available and a light-weight model is sought.
Furthermore, to improve the performance of such metadata-
based models, use-case specific coefficient sets may be
helpful. Moreover, for both Mode 0 and Mode 1 models, the
QP prediction may be modified and made use-case specific
to cover different encoding strategies and will be considered
for further development. The performance of both variants of
the Hybrid Mode 0 model, AVQBits|H0|s and AVQBits|H0|f ,
is comparable to the AVQBits|M3 / P.1204.3 both in terms of
PCC and RMSE for all the considered use-cases.

The comparison of the proposed models with SoA models
for different application scopes shows that for all use-
cases AVQBits|M3 / P.1204.3 either performs on par with
or outperforms the best performing FR model, i.e. VMAF.
Although the performance of the Mode 0 and Mode 1 models
varies for different use-cases, the performance of these
models is better than SoA NR models in general and also
comparable to FR models other than VMAF.

Additionally, the hybrid model AVQBits|H0|s shows great
potential not only for ‘‘normal’’ 2D video, but also for
other application scopes, with similar or only slightly worse
performance as compared to the Mode 3 AVQBits|M3 /
P.1204.3 model. Also the codec-agnostic AVQBits|H0|f
model shows good performance across the different use-
cases. A more use-case-specific parameter-handling for this
generic hybrid codec will be considered in future work, thus
even better ensuring that there is no need to develop bitstream
parsers for newer codecs in the case of having the decoded
pixels accessible.

As a further contribution, a long-term integration model
is proposed in this paper, which is the item (3) mentioned
in the beginning of this section. A simplified version of the
P.1203.3 model [36] has been proposed for this purpose.
Hence, in addition to evaluating the applicability of the
proposed models for different short-term video application
scopes, their usage as the video quality estimation component
of the proposed long-term integration model has also been
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investigated. The per-1-second quality scores estimated by
the AVQBits|M3 / P.1204.3 model are used, and shown to
yield high accuracy. Also all other model variants show good
performance when using their predictions in terms of per-1-
second scores in conjunction with the proposed integration
module. As expected, Mode 0 (AVQBits|M0) works least
well, Mode 1 (AVQBits|M1) shows intermediate and the
hybrid model AVQBits|H0|s shows strong performance,
almost as good as that of the Mode 3 model AVQBits|M3.

IX. OUTLOOK
As outlined above, the focus of the present paper was
on presenting the overall AVQBits framework and the
different models of four model types, bitstream Mode 3
(AVQBits|M3 / P.1204.3), Mode 1 (AVQBits|M1) andMode 0
(AVQBits|M0), as well as hybrid Mode 0 (AVQBits|H0|s
and AVQBits|H0|f ). The models were initially developed
for 4K/UHD-1 with a maximum framerate of 60 fps, and
shown to yield competitive performance also in comparison
to SoA models. The performance evaluation of the models
for other application scopes than the one they were initially
developed for was performed with the models out-of-the-
box. Although the proposed models have been evaluated
for different scenarios showing competitive performance, the
models can be enhanced to increase the prediction accuracy,
adjusting them to the specific use-cases. As a starting point
for future work, retraining the coefficients of the Mode
0 and Mode 1 models AVQBits|M0 and AVQBits|M1 with
several application-specific databases will be performed.
Furthermore, a dedicated HFR variant of AVQBits|M3 /
P.1204.3 will be developed (see Sec. III-A), from which the
hybrid models AVQBits|H0|s and AVQBits|H0|f can directly
be derived. To this aim, the existingMode 3 bitstream features
will be adapted to be more frame-rate specific. For example,
scaling the motion vectors in a more precise way to the
actual speed of motion in pixels per time is expected to
improve the specificity of the motion complexity information
utilized in the Random Forest part of the model. Here, new
and complementary bitstream features can be considered
in addition. Already the retraining of the Random Forest
component with a mixed dataset comprising some of the data
from the LIVE-YT-HFR ( [45], see Sec. V-G) and the AVT-
PNATS-UHD-1 dataset (see Sec. V-B) is expected to result in
an improved handling of low and high framerates. It is noted
that the subjective test data initially used for the AVQBits
model development did not comprise many combinations of
low or high framerates with other diverse video settings in
terms of resolution or bitrate.

Moreover, improvements of the Dt component in the
Core model that captures frame-rate specific effects will be
considered for all model variants. This way, also the content-
agnostic Mode 0 model can be further improved for HFR
video quality estimation. Similarly to the Mode 3 feature
adaptations for the Random Forest model component to
HFR, improvements are conceivable for the 360◦ video
case. Here, modifications to motion-related features as well

as other features that better handle the specific projection
geometry will be addressed, and are expected to lead to
an even better prediction performance. In addition to this,
further investigations of the proposed models on newer
applications such as quality evaluation of user generated
content, encoding optimization, newer video codecs, or point
cloud compression will be considered.
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