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ABSTRACT At present, the fault diagnosis methods of lithium battery pole rolling mill mostly rely on
manual experience and the self-test function of mature control devices such as frequency converters and
lack the ability of intelligent fault diagnosis for the whole equipment and the ability to evaluate the health
state of the equipment during operation. To improve the intellectual health diagnosis ability of lithium battery
pole double rolling mill equipment, starting from the structure and technology of lithium battery pole double
rolling equipment, this paper analyzes its common fault types. It summarizes the shortcomings and common
fault types of existing equipment. Then, we introduce fuzzy reasoning into the fault diagnosis method based
on Expert Systems and establish the FEFDM of lithium battery pole double rolling equipment. Finally,
we introduce the concept of health degree, effectively connect BP neural network and health degree through
the fuzzy set, and establish an equipment operation health state evaluation method based on an improved
BP Neural Network, which realizes the evaluation ability of the health state of double roller equipment.
In addition, we use Extended Kalman Filtering (EKF) to clean the ‘‘dirty data’’ and filter out the Gaussian
white noise from the signal. The health diagnosis method proposed in this paper can meet the ability to
accurately locate and diagnose the fault of lithium battery pole double roller equipment and evaluate the
health state of equipment operation and maintain the equipment in advance.

INDEX TERMS Compound fault diagnosis, health status assessment, BP neural network, FEFDM.

I. INTRODUCTION
With the rapid growth of new energy vehicle sales, the global
lithium battery production continues tomaintain a fast growth
form, and the speed of relevant technological innovation in
the industry continues to improve [1]. The global lithium
battery market scale and demand trend are shown in Fig.1.
According to the data, the lithium battery industry proliferates
every year. By the end of 2016, the global sales of new
energy vehicles had exceeded 510 thousand, and the lithium
battery market was about 81.3 billion yuan. The demand for

The associate editor coordinating the review of this manuscript and

approving it for publication was Baoping Cai .

power batteries was about 47.6 billion yuan, a year-on-year
increase of 58.7%. According to the statistics in Fig.1, the
global lithium battery capacity reached 104 GWH in 2016.
In 2020, the demand for lithium batteries will get five times
that of 2015. It is estimated that the scale of the global lithium
battery industry will reach about 48.7 billion dollars by 2022.
Therefore, as the core component of electric vehicles, lithium
battery still has significant demand. It is essential to optimize
lithium batteries’ production and assembly [2].

As the lithium battery pole piece double rolling equip-
ment responsible for the production of lithium battery pole
piece belt in the production process of lithium battery, it is
also facing new opportunities and challenges. The traditional
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FIGURE 1. Global Lithium-ion Battery market size and demand trend.

lithium battery pole double rolling equipment has a high
level of automation, which can realize the automatic rolling
production process of the lithium battery pole strip [3]. The
control system of double roller equipment is more complex
than that of single roller equipment, and there is a strong cou-
pling relationship between multiple control elements. There-
fore, in the continuous rolling process of battery pole double
rolling equipment, with the increase of rolling working time
and the change of internal conditions and external environ-
ment of the equipment, failure and ‘‘Sub-Health’’ state which
is not conducive to the regular operation of the equipment
will inevitably occur [4], [5]. Combined with the background
of current industry 4.0 and conforming to the development
trend of the intelligent manufacturing industry, it is urgent to
improve the intellectual level of lithium battery pole double
roller equipment, reduce equipment faults and sub-health sta-
tus, and apply health diagnosis technology to lithium battery
pole double roller equipment [6].

Lithium battery pole piece rolling mill equipment first
appeared in the 1970s, controlled by an advanced hydraulic
servo system. Ji et al. [7] adopted AGC hydraulic servo
control system produces pole rolling force between 100-300T
cruising speed between 90-120 M / min. The rolling mill
equipment has high control accuracy and self-monitoring
function to realize the equipment’s fault diagnosis and state
detection function. Although the control effect is perfect, its
diagnosis is mainly aimed at the hydraulic part of the equip-
ment. The diagnosis effect of the overall state of the equip-
ment, sensors, and other factors is not high, and the system
cost is expensive. After that, the lithium battery pole chip
control system with PLC as the core appeared suitable for
application in complex industrial sites. To solve the curacy
decline caused by friction heating, Zhao et al. [8] developed
a new type of unwinding roll movement structure based on
the traditional lithium electric mill, and realized multi-axis
control by PLC controller. However, most of the fault diag-
nosis functions of this equipment are realized through the
self-detection part of PLC andmature rules such as frequency
converter. They lack the overall fault diagnosis of the equip-
ment and do not have the health status [9].

Fault diagnosis technology is a comprehensive
cross-technology formed and developed to meet equipment
production needs [10]. It has experienced from the diagnosis
stage based on manual field experience to the diagnosis stage
based on sensor signal detection technology [11], [12]. With
the development of information acquisition and processing
technology, the new intelligent diagnosis technology con-
structs the brilliant fault diagnosis model and method based
on the traditional sensor signal acquisition method and the
smart machine learning algorithm. The fault diagnosis system
is often composed of a monitoring system with the computer
as the information processing and monitoring center and a
diagnosis strategy with an Expert System, Neural Network,
Support Vector Machine, and other fusion or improved algo-
rithms as the center [13]. He and He [14] proposed the
use of short-time Fourier transform (STFT) to pre-process
sensor signals, and constructed an optimized deep learning
structure, the mass memory storage retrieval (LAMSTAR)
neural network, for bearing fault diagnosis based on the
simple spectral matrix obtained from STFT. The mechanical
design of rolling mill equipment is complex, and the fault
point is difficult to locate accurately. As the crucial part of the
rolling mill, roll determines the whole process from extrusion
to forming [15]. Aiming at the particularity of rolling mill
bearing vibration signal, Zhao et al. [16] proposed a fault
diagnosis method combining AMVMD (Adaptive Multivari-
able Variational Modal Decomposition) and MCLDCNN
(Multi-Channel One-Dimensional Convolutional Neural Net-
work), which solves the problems of insufficient data and
low diagnostic accuracy in the fault diagnosis of multi-row
bearings such as rolling mills. The failure of the rolling mill
may also be caused by other factors, such as the axis of the
roll [17], the drive shaft [18], the gear [19], and the hydraulic
system [20].

With the vigorous development of fault diagnosis technol-
ogy, the traditional fault diagnosis theory with fault as the
primary research object began to transfer to the state analysis
of equipment operation [21]. The United States first tried to
predict the operation degree of equipment in the aerospace
field and invented an intelligent maintenance system with
deteriorationmonitoring technology, fault prediction technol-
ogy, and intelligent maintenance technology as the core [22].
After that, the PHM technology (Fault Prediction and Health
Management) appeared. This technology introduces the con-
cept of fault prediction based on the diagnosis of the original
fault. It predicts the possible defects of the equipment and
the operation state of the equipment in advance, which is
used to judge the service life of the equipment [23]. Many
scholars have put forward novel methods to evaluate the
operation status of rolling equipment, such as hot continuous
rolling mills and finishing mills. Li [24] had made detailed
research on some machine learning algorithms, hybrid hid-
den Markov model, neural network, knowledge reasoning
methods, and other theories, which provides a good idea for
the follow-up research of health management technology.
Fu et al. [25] calculated the envelope of the original rolling
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pressure data through the sliding window mean filtering
method to diagnose and give feedback on the problems of
rolling pressure measurement accuracy, the size difference of
themain roll contact pad, andmaintenance of primary bearing
support, which is of great significance to maintaining the
accuracy and equipment pre-maintenance of the hot contin-
uous rolling mill. Qiao et al. [26] proposed a multi-objective
optimization method based on adaptive coupled neurons to
enhance mechanical early failure features to overcome the
disadvantage of using useless noise techniques to suppress
blindly and eliminate noise and easily remove weak useful
features closely related to mechanical health status. The com-
monly associated technologies are primarily concentrated in
steel rolling and other similar fields, and the health diagnosis
of key components of multiple rolling mills has been real-
ized [27]. Sun [28] started with the health status of the rolling
mill in the working process, establishes a diagnosis method
of the rolling mill working health status by using fuzzy theory
and deep confidence network method, realizes the health
status evaluation function of the rolling mill working process,
determines the health status level of the rolling mill running
process and gives the operation and maintenance decision by
comparing the health status degree table.

To sum up, the current research on health diagnosis of
lithium battery pole strip mill has the following problems:

(1) Some deep learning, migration learning, and reinforce-
ment learning methods require large amounts of labeled data,
long model training time, and weak generalization and porta-
bility of the models. Complex models require more consid-
erable development costs, and fault diagnosis models cannot
correlate well with field monitoring equipment.

(2) However, there are many technical differences related
to the steel strip, such as the accuracy [29]. At present,
the lithium battery pole double rolling equipment still lacks
fault diagnosis technology for the whole kit and evaluation
technology for the operation of the equipment.

(3) The fault diagnosis function of lithium battery pole
piece rolling mill equipment is single, which only diagnoses
whether individual electrical parts can work normally, and
lacks in-depth research on the overall operation state of the
equipment in the production process.

(4) The lithium battery pole piece double rolling equip-
ment lacks a health status evaluation method for equipment
operation. In most cases, the evaluation of equipment status
depends on the subjective experience judgment of profes-
sional technicians, and there is a lack of health status eval-
uation method of lithium battery pole piece double rolling
equipment based on quantitative prediction method.

We deeply study the lithium battery pole double rolling
equipment given the above problems. Aiming at the problems
of its control system and mechanical mechanism, complex
fault types, and low equipment reuse rate, we design a fault
diagnosis method for lithium battery pole double rolling
equipment based on FEFDM and a health state evaluation
method for lithium battery pole double rolling equipment
based on improved neural network, The combination of the

two forms the health diagnosis method proposed in this paper.
The diagnosis method realizes the rapid diagnosis of the
fault location of the equipment and the healthy state of the
equipment to ensure the stability of the long-term control
performance of the lithium battery electrode.

Firstly, we analyze the failure of lithium battery pole dou-
ble rolling equipment. The common fault types of the lithium
battery pole double rolling equipment are summarized by a
detailed analysis of the equipment structure, rolling process,
and control elements of the lithium battery pole double rolling
equipment. The overall framework of the health diagnosis
method is established.

Secondly, aiming at the fault types of battery pole double
rolling equipment, we propose a fault diagnosis method of
lithium battery pole double rolling equipment based on the
fuzzy expert system. This method combines fuzzy theory
with expert system theory, establishes a fuzzy expert knowl-
edge database and fuzzy reasoning mechanism, and realizes
the fuzzy reasoning of the general fault of double roller
equipment.

Finally, aiming at the problem that the lithium battery pole
double rolling fault diagnosis system cannot distinguish the
health state of equipment, the concept of health degree is
introduced on the original basis, and a health state evaluation
method of lithium battery pole double rolling equipment
based on Fuzzy BPNeural Network is proposed. This method
effectively connects fuzzy logic with the BP Neural Network
and health degree through unclear membership function to
distinguish sub-health and fault states of double roller equip-
ment.

The intelligent health diagnosis method of battery pole
double rolling equipment driven by Hybrid BP Neural
Network Expert System has the following innovations:

1. To evaluate the overall operation state of lithium battery
pole double rolling equipment, this paper summarizes the
composite fault type of lithium battery pole double rolling
equipment by analyzing its equipment structure, rolling pro-
cess, equipment control components and considering the
strong coupling relationship between mechanical parts.

2. To solve the problem that the overall fault diagnosis
accuracy of lithium battery pole double rolling equipment is
not high, this paper introduces fuzzy reasoning into the fault
diagnosis method based on the expert system, and establishes
the FEFDM of lithium battery pole double rolling equipment.
The fault diagnosis method makes the equipment have the
ability to accurate fault diagnosis and lays a foundation for
establishing subsequent health status evaluation methods.

3. To solve the problem that the lithium battery pole double
rolling equipment cannot evaluate the health status of the
equipment at present, the concept of health degree is intro-
duced in this paper, and the BP neural network and health
degree are effectively connected through the fuzzy set. This
paper distinguishes the health, sub-health, and fault, states of
the equipment, establish the equipment operation health state
evaluation method based on an improved neural network, and
realizes the evaluation ability of the health state of double
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FIGURE 2. Structure diagram of lithium battery pole piece double rolling
equipment.

roller equipment. In this paper, the health status evaluation
method of double rolling equipment is combined with the
fault diagnosis method to form the health diagnosis method
of lithium battery pole double rolling mill equipment.

The paper is organized as follows: in section II, we ana-
lyzed the failure mechanism of lithium battery pole double
rolling equipment, including the rolling system, unwinding
system, and winding system. In section III, we have estab-
lished a fault classification and location method based on
FEFDM and a fuzzy knowledge base, database, and inference
engine. In section IV, we propose a BP neural network health
evaluation method and establish a three-phase fuzzy health
mapping model to realize rolling mill equipment’s
health diagnosis and evaluation. In section V, we carried out
experimental verification.

II. FAILURE MECHANISM ANALYSIS
A. PROCESS FLOW ANALYSIS
The lithium battery pole piece double rolling equipment is
mainly composed of three parts: unwinding system, rolling
system, and winding system, as shown in Fig.2 [30]. The
rolling system will carry out secondary rolling of the lithium
battery pole strip. Compared with the single rolling mill,
the deformation of the pole strip is divided into two rolling
to meet the requirements. This process reduces the rebound
caused by the pole strip’s tension, reduces the pole strip’s
internal stress, and can effectively improve the production
speed and quality [31], [32]. Table 1 predefines the meaning
of the symbols used in this paper.

The roll gap adjustment part is introduced into the rolling
system to control the rolling accuracy of the roll, and the
rolling pressure system is used to adjust the rolling pressure.
The rolling speed of the two main rolling devices is different
because the accuracy of the pole plate after two rolls is higher
than that of one rolling. At this time, the pole strip between
rolls will produce tension. The tension control system needs
to be introduced to stabilize the pressure, and achieve the
purposes of accurate position, slight tension fluctuation, and
stable rolling force in the production process of battery pole
strip, to the quality and production rate of pole strip. The
unwinding and winding systems are the same as the sin-
gle roller press equipment. Some scholars have analyzed
their workflow in detail [33], [34], which is not described
here.

FIGURE 3. Schematic diagram of fault types of the rolling system.

B. FAULT ANALYSIS OF MAIN ROLLING SYSTEM
The rolling system is divided into rolling speed system fault,
move gap adjustment system fault, and rolling pressure sys-
tem fault according to the structure and process of lithium
battery pole double rolling equipment. The specific fault
types are shown in Fig.3 below.

1) ROLLING SPEED SYSTEM FAILURE
The fault types of rolling speed systems mainly include
coupling fault and main roll motor fault. The coupling is
a mechanical structure used to transmit torque and motor
speed. The lithium battery pole double rolling equipment is
responsible for transmitting the speed and torque of the main
roll motor to the roll [35], as shown in Fig.3. As the pole
piece rolling equipment is a rotating machine, the coupling
will inevitably produce vibration under strong torque, which
is easy to cause the coupling to loosen.

The control motor of the main roll is generally a three-
phase asynchronous motor [36]. Long-term candle invasion
of motor winding in the humid working environment or
mechanical wear of coil will cause armature fault, and short
circuit and the open circuit between motor boxes will cause
the winding fault.

2) ROLL GAP ADJUSTMENT SYSTEM FAILURE
The fault types of roll gap adjustment system mainly include
servo motor fault controlling its action and worm gear struc-
ture adjustment device fault [37]. Servo motor faults include
the circuit burn out of the servo driver used to control the
servo motor due to current impact, improper setting of driver
reduction ratio, servo motor encoder fault, etc. The instal-
lation position of the worm structure adjustment device is
shown in Fig.3. It is located at the inlet of the pole strip,
so there are often faults such as gear wear and cracks.

3) ROLLING PRESSURE SYSTEM FAILURE
The faults of the rolling pressure system mainly include the
responsibilities of the gas-liquid booster pump and solenoid
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TABLE 1. Symbol definition.
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TABLE 1. (Continued.) Symbol definition.

valve. Their installation positions are shown in Fig.3. The
gas-liquid booster pump may fail to pressurize the two
hydraulic cylinders due to the leakage of the sealing part of
its one-way valve. The pole rolling equipment cannot provide
sufficient rolling force and affect the accuracy of the pole
strap. The solenoid valve in the rolling pressure system is used
to control the gas-liquid booster pump. The magnetic pull of
the solenoid valve coil may weaken or even fail, and the valve
of the gas-liquid booster pump cannot be connected, resulting
in equipment failure.

C. FAILURE ANALYSIS OF WINDING AND UNWINDING
SYSTEM
In the winding and unwinding system, the battery pole strip
may deviate and fold due to the interference factors of the
equipment’s control system or the external environment.
These factors will affect the quality and production rate of
the pole strap. The specific fault types are shown in Fig.4.

1) FAILURE OF WINDING AND UNWINDING TENSION
SYSTEM
The main faults of the winding tension system are the high
temperature of the magnetic powder brake and the jamming
of the magnetic powder brake. As the battery pole rolling
equipment will generate a lot of heat when running at high
speed, the friction will increase when the heat dissipation is
insufficient [38]. This will lead to internal magnetic particle
failure, magnetic particle brake failure, low output torque, and
tension adjustment accuracy.

FIGURE 4. Schematic diagram of fault types of winding and unwinding
system.

2) FAILURE OF WINDING AND UNWINDING DEVIATION
CORRECTION SYSTEM
The faults of the winding and unwinding deviation correc-
tion system mainly include deviation correction sensor fault
and deviation correction control motor fault. The deviation
correction sensor may be due to the vibration generated by
the rolling equipment during continuous operation, resulting
in loose position deviation of the deviation correction sen-
sor, resulting in inaccurate measurement results and other
faults [39]. There may also be circuit faults inside the devi-
ation correction sensor, which will lead to sensor damage in
severe cases.
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FIGURE 5. Lithium battery double pole frame diagnosis method.

3) FAILURE OF THICKNESS CONTROL SYSTEM
The fault of the thickness sensor mainly causes the responsi-
bility of the thickness control system. Because the thickness
control system precisely measures the real-time thickness
through the laser thickness sensor and compares it with the
set thickness. It controls the roll gap adjustment system and
rolling pressure system in the main rolling system through the
control algorithm to control the thickness of the pole strap.
The laser thickness measurement sensor in the pole piece
rolling equipment may have a loose position offset, resulting
in the wrong measurement position.

D. HEALTH DIAGNOSIS STRATEGY OF LITHIUM BATTERY
POLE DOUBLE ROLLING EQUIPMENT
We integrate the advantages and disadvantages of various
single or fusion diagnosis methods and adopt the combined
diagnosis method to improve the overall diagnostics accuracy
of the equipment [40]. In this paper, the FEFDM of lithium
battery pole double rolling equipment and the fuzzy set
improved BP Neural Network health state evaluation method
of lithium battery pole double rolling equipment are com-
bined to achieve the overall comprehensive diagnosis ability
of the equipment through its internal relationship. The frame
structure of the health diagnosis method of lithium battery
pole double rolling equipment is shown in Fig.5.

It can be seen from Fig.5 that this method takes the expert
system theory as the basis of the overall diagnosis framework,
and the reasoning part adopts two methods: fault diagnosis
reasoning and health state evaluation. The functions of each
module are as follows:

(1) Human-computer interaction module: Be responsible
for the operation and control of the whole system, provide
various information and operation interfaces of the equip-
ment, and facilitate the management of the equipment.

(2) Knowledge acquisition module and machine learning
module: It is used to update the fuzzy knowledge base of
the diagnosis method and the database of pole piece double
rolling equipment, to improve the intelligent ability of the
equipment.

(3) Fuzzy knowledge base, database and model base:
The knowledge base is called by the fault diagnosis infer-
ence engine—the database for managing and storing various
equipment. The model base is responsible for the health
evaluation of lithium battery pole double rolling equipment.

(4) Fault diagnosis reasoning and health status evaluation
module: It is responsible for using the data collected by the
system and fuzzy reasoning method to complete the fault
diagnosis and health state evaluation of pole piece double
roller equipment.

(5) Interpretation mechanism module: Be responsible for
recording the process of fault diagnosis and health status
evaluation, including the intermediate results of the diagnosis
and evaluation process, so as to facilitate the equipment users
to understand the diagnosis process.

III. RESEARCH ON FAULT DIAGNOSIS METHOD
A. COMPREHENSIVE DIAGNOSIS METHOD OF FEFDM
For the lithium battery pole double rolling equipment, due
to the complexity of the equipment, many fault knowledge
is fuzzy and cannot be accurately expressed. The fuzzy fault
diagnosis method can fuzzily represent the uncertain knowl-
edge in the complex equipment diagnosis object, reduce the
number of rules set in the knowledge base, and improve
the accuracy of fault diagnosis of the expert system [40].
The fuzzy comprehensive diagnosismethod used in this paper
first needs to diagnose each fault cause separately, and then
comprehensively analyze all fault causes, which is mainly
composed of the following five parts:

1) FAULT SYMPTOM SET
U is a collection of different signs that each fault may cause.
On the other hand, fuzzy integrated diagnosis determines
possible equipment signs after considering all the causes of
the failure together.

2) FAULT CAUSES SET
V is a traditional set, and many of the failure causes in the set
have fuzzy properties.

3) FAULT CAUSES WEIGHT SET
The failure causes of lithium battery pole double rolling
equipment may be complex and diverse. To characterize each
cause vi for the importance of all fault causes, set the corre-
spondingweight as ai. Thenwe can getA = {a1, a2, · · · , an}.
ai can be normalized and meet the non-negative condition.
Each element ai in the weight is used to represent the degree
of membership of vi. It can be seen that the A is a fuzzy subset
of V , and its expression is:

A =
a1
v1
+
a2
v2
+ · · · +

an
vn

(1)

a: SINGLE FAULT CAUSES FUZZY DIAGNOSIS
If the membership degree of the i-th element ui in the fault
symptom set corresponding to the j-th element vj in the fault
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cause set is rij, then the result of vi diagnosis can be expressed
by fuzzy set:

Ri =
ri1
u1
+
ri2
u2
+ · · · +

rin
un

(2)

Ri is a fuzzy subset of fault symptom set V , which can
be recorded as Ri = {ri1, ri2, · · · , rin}. R is the fuzzy rela-
tionship between U and V , which represents the subordinate
relationship between fault symptom ui and fault cause vi.

b: FUZZY COMPREHENSIVE DIAGNOSIS OF FAULT CAUSES
The single fault causes fuzzy diagnosis of the possible symp-
toms of the diagnosis equipment must be inaccurate by ana-
lyzing a single fault cause. The accurate diagnosis results
can be obtained only by comprehensively considering the
influence of all fault causes. We can get:

B = A · R = (a1, a2, · · · , am) ·

 r11 . . . r1n
...

. . .
...

rm1 · · · rmn


= (b1, b2, · · · , bm) (3)

bj =
m
∨
i=1

(ai ∧ rij), j = 1, 2, · · · , n (4)

bj represents the membership degree of the diagnosis
object to the j-th element in the fault cause symptom set after
comprehensively considering the cross-influence of various
fault causes.

B. DATABASE
Through the analysis of the fault types of double roller press
equipment in the Section II, the following nine main fault
symptom parameters affecting the regular operation of the
equipment are summarized: T , T ′, TO, F , F ′, Q, v, v′ and P.
According to their different characteristics, they are divided
into different quantization levels. The level division and fault
signal membership function are shown in Fig.6.

The relative error of the tension set in this paper is ± 10N.
The Z-type membership function is used as the left boundary
and the anti-Z-type membership function is used as the right
boundary. The triangular membership function is adopted
data when the tension value is less than or greater than
the grade. The degree of tension fluctuation largely reflects
whether the tension control system is stable. Its calculation
method calculates the standard deviation of the tension value,
and the expression is shown in equation (5).

S =

√
1
n
[(T1 − m)2 + (T2 − m)2 + · · · + (Tn − m)2] (5)

The Z-type membership function is the right boundary
in the boundary selection, and the triangular membership
function is used when the tension value is medium.

There is a linear relationship between the excitation current
and torque of the magnetic particle brake, which takes the
magnetic particle as the transmission medium to transmit the
torque, and finally realizes the control of the torque. In this
paper, the Z-type membership function is used as the left

FIGURE 6. (a) Membership function of tension; (b) Membership function
of tension fluctuation; (c) Membership function of magnetic particle
brake torque; (d) Membership function of rolling pressure;
(e) Membership function of rolling pressure fluctuation; (f) Membership
function of polar strip thickness; (g) Membership function of rolling
speed; (h) Membership function of rolling speed fluctuation;
(i) Membership function of rolling motor operating power.

boundary, the anti-Z-type membership function is used as the
right boundary, the trapezoidal membership function is used
to keep the membership function stable when the grade is
normal, and the triangular membership function is used when
the grade is less than or greater than the grade.

The rolling pressure adopts the Z-type membership func-
tion as the left boundary and the anti-Z-type membership
function as the right boundary. The fluctuation degree of
rolling pressure can reflect the faults of the main rolling
system of equipment. The Z-type membership function is
also the left boundary in the boundary selection. The anti-
Z-type membership function is used as the right boundary.
The triangular membership function is used when the tension
value is medium.

The thickness of the polar strip is mainly controlled by
adjusting the roll gap adjustment system. The Z-type mem-
bership function is also the left boundary in the boundary
selection. The anti-Z-type membership function is used as the
right boundary. The triangular membership function is used
when the tension value is medium.

The running power of the trolling motor is one of the
fault-sensitive parameters of the double rolling equipment,
and its running ability can reflect the working condition of
the engine. The establishment method of its membership
function is similar to the previous analysis, which is mainly
composed of Z-type, anti-Z-type, triangular, and trapezoidal
membership functions.

C. KNOWLEDGE BASE
Fuzzy knowledge is a fuzzy relation matrix established
between fault cause and fault symptom fuzzy set. The value
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TABLE 2. Fuzzy fault symptom set of pole piece double rolling equipment.

TABLE 3. Fuzzy fault reason set of pole piece double rolling equipment.

in the fuzzy relation matrix represents the closeness between
the corresponding fault symptom and the fault cause [41],
[42]. Table 2 summarizes the fuzzy fault symptom set U =
{u1, u2, u3, . . . , u9}. Then, we classify and summarize the
possible fault causes and fuzzy the fault cause set V =
{v1, v2, v3, . . . , v10}, as shown in Table 3.

D. INFERENCE ENGINE
This paper selects the fuzzy comprehensive diagnosis method
of fault causes. This method mainly calculates the fuzzy
diagnosis index, and then selects the appropriate index pro-
cessingmethod to obtain the diagnosis result. Considering the
influence of multiple fault sign factors, the weighted matrix
multiplication operation of U and R is carried out to derive
the comprehensive diagnosis index, and then the maximum
affiliation principle and the threshold principle are adopted
to combine to obtain the diagnosis results.

Firstly, the corresponding membership degree of each
fuzzy fault reason is calculated, and the fault reason with the
most significant membership degree is taken as the candidate
reasoning result, that is, yvj = max(yv1, yv2, · · · , yv9). Then
select the appropriate one through the threshold principle λ,
finally, a reasonable diagnosis result is obtained. In this paper,
the threshold is finally set according to the actual situation of
the equipment λ = 0.2. To avoid the false alarm when the
equipment has no-fault, the following simulation verification
is carried out when the parameter level of each fault symptom
of the equipment is normal. The reasoning results under the

condition of no fault of the simulation equipment are shown
in Table 4.

IV. RESEARCH ON HEALTH STATUS EVALUATION
METHOD
In this section, we propose the concept of health degree,
divide the health state level through the fault state, and com-
plete the mapping from health degree to health state level by
using BP Neural Network and fuzzy set method, to conduct
the research on the evaluation method of the health state of
lithium battery pole double rolling equipment.

A. FAULT STATE HEALTH DIVISION
Through the study of health assessment methods, this section
proposes the use of HD indicators to reflect the working
condition of the equipment accurately. The HD function is
defined by x1, x2, · · · xn, which can be recorded as:

HD = f ′(x1, x2, · · · , xn) (6)

HD is an important concept, which has been studied in
Engineering Technology for a long time. It is defined as
HD ∈ [0, 1]. When HD is 1, it indicates that the equipment
is very healthy, while when HD is 0, it indicates that the
equipment has failed. The running state of the rolling mill
is divided into fault state, sub-health state and health state,
as shown in Table 5.

B. HEALTH MAPPING MODEL
Because this paper considers adding sub-health state to eval-
uate the running condition of the rolling mill, the three-phase
fuzzy statistical method is adopted. Using the random interval
theory of trisection method, three fuzzy subsets are estab-
lished according to the division of health degree of pole piece
double rolling equipment and the characteristics of improved
BP Neural Network method: →∼ A1 = ‘‘Fault ′′,→∼ A2 =

‘‘Sub − health′′,→∼ A3 = ‘‘Health′′. let X ∈ [0, 1], and
determine the division of X as:

X =→∼ A∗1∪ →∼ A∗2∪ →∼ A∗3 (7)

Assuming that u and v are the boundary points of→∼ A∗
1

and →∼ A∗2, →∼ A∗2 and →∼ A∗
3
respectively, then (u,v) can

be obtained from (→∼ A∗
1
,→∼ A∗

2
,→∼ A∗

3
). We take (u,v) as

the observation value of a two-dimensional random vector for
sampling. We can get the probability distribution of u and v,
and finally get the membership function of →∼ A1 , →∼ A2
and→∼ A3.

Because→∼ A1 ,→∼ A2 ,→∼ A3 ∈ f ′(X ), (U,V) is random
vector, and meet P(U ≤ V )= 1,∀u, v ∈ X , So (u,v) can
determine the mapping:

f ′(u, v) : X → {→∼ A1,→∼ A2,→∼ A3} (8)
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TABLE 4. Fault free simulation reasoning results.

TABLE 5. Health status classification.

get ∀x ∈ X , including:

f ′(u, v)(x)


→∼ A1, 0 ≤ x < u

→∼ A2, u ≤ x < v

→∼ A3, v ≤ x ≤ 1

(9)

If PU (t) and PV (t) are probability density functions corre-
sponding to U and V , then:

→∼ A1(x) =

1∫
x

PU (t)dt (10)

→∼ A3(x) =

1∫
x

Pv(t)dt (11)

→∼ A2(x) = 1−→∼ A1(x)−→∼ A3(x) (12)

So, V = {v1(Fault), v2(Sub − health), v3(health)}, after
quantizing, V = (v1, v2, v3)T (where v1, v2, v3 are non-
negative coefficients).

Then the calculation formula of health degree can be
obtained as:

HD = →∼ A · V = (a1, a2, a3) ·

 v1
v2
v3


= v1a1 + v2a2 + v3a3 (13)

In the formula (13),→∼ A is the corresponding membership
degree of the health state fuzzy set calculated by BP Neural
Network; v1, v2, v3 is a positive coefficient.

C. OPTIMIZATION OF NETWORK TOPOLOGY STRUCTURE
The determination of input layer nodes should consider
the characteristics of pole piece double rolling equipment
and the correlation between each parameter. Integrating the
fault symptom analysis and principal component analysis in
Section III, the input variables are determined as T , TO, F ,Q,

TABLE 6. Variable definition of neural network.

V and P. The description of BP Neural Network input nodes
is shown in Table 6.

Although the number of hidden layers can enhance the net-
work performance, it will increase the training time. There-
fore, this paper adopts the three-layer network structure of
a single hidden layer. BP Neural Networks have the best
number of hidden layer node s∗, When the number of hidden
layer nodes s > s∗, it is easy to appear ‘‘overfitting’’ in the
process of training, When the number of hidden layer nodes
s < s∗, the inductive learning ability of neural network will
decline. The commonly used empirical formula is:

s = 2
6∑
i=1

Ii + 1 (14)

s =

√√√√ 6∑
i=1

Ii +
3∑
i=1

Oi + a, a ∈ [1, 10] (15)

To improve the network performance, we use the measure-
ment method of percentage accuracy to verify the prediction
performance of neural networks with different hidden layers.
Its main performance indicators are defined as:

Accuraryi = (1− |HDi − HDi|)× 100%, i = 1, 2, · · · , n

(16)

Accuracy =
1
n

n∑
i=1

Accuracyi, i = 1, 2, · · · , n (17)

where, Accuraryi is the accuracy of each sample, Accuracy
is the average accuracy of all models, n is the number of
pieces. In this test, n = 200, the expected error is 0.01,
and the training times are 800. The average accuracy of
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FIGURE 7. Neural network structure of pole piece double rolling
equipment.

TABLE 7. Average accuracy of the neural network corresponding to
different numbers of hidden layer nodes.

TABLE 8. Hyperparameters for the experiments.

the neural network corresponding to the different number of
nodes is shown in Table 7. Compared with the number of
other hidden layer nodes, when the number of nodes is 8, the
value Accuracy is the largest, so the extension structure of
this neural network is 6-8-3, and the design of the BP neural
network is shown the Fig.7

The BP Neural Network is trained using the Sigmoid
algorithm for supervised training, and the model is prepared
using a small batch sampling method. The model’s hyper-
parameters, such as learning rate and expectation error, are
continuously updated using the gradient descent algorithm,
as shown in Table 8.

D. DATA ACQUISITION AND PREPROCESSING
1) DATA ACQUISITION
From the previous chapter, we determined the variable prop-
erties of the final input network. We have installed corre-
sponding sensors on the mechanical equipment to obtain
accurate on-site real-time data. Among them, I5 and I6 are

FIGURE 8. (a) Tension sensor installation location; (b) Pressure sensor
installation location; (c) Torque sensor mounting position; (d) Thickness
sensor installation location.

directly obtained from the inverter and the rollingmotor with-
out installing sensors. We installed sensors on the pressure
roller, magnetic powder brake, hydraulic system, and pole
piece belt, respectively, to collect the data of I1-I4. The spe-
cific installation location is shown in Fig.8, and the meanings
of the relevant characters are shown in Table 1.

The TS is installed between the two guide rollers. To ensure
tension stability, the θ between the TS and the pole strip on
both sides should be kept the same. The specific installation
position is shown in Fig.8(a).

The hydraulic system generates the rolling pressure, so it is
only necessary to install the FS between the hydraulic system
and the roll to obtain the rolling pressure precisely. The spe-
cific installation position is shown in Fig.8(b). We installed
FS on each side of the rolls, and the final pressure value is
the arithmetic average of the two FSs, eliminating the effect
of body vibration on FS.

The magnetic powder brake is installed in the winding and
unwinding system, and its internal structure and TOS instal-
lation position are shown in Fig.8(c). The magnetic powder
brake torque control can affect the tension of the winding
and unwinding rolls. Changing the tension force inside the
magnetic powder brake can shrink or stretch the pole strip.
We have arranged three TOS inside the magnetic powder
brake, which can collect the tension force in three directions.

We install THS at the end of the winding mechanism, THS
is a photoelectric sensor, which can be used to measure the
thickness of the pole piece.

The sample data of pole piece double rolling equipment
are selected from three states: normal operation, sub-health
operation and fault operation. Table 9 shows part of the
original data.

2) EKF
The lithium battery pole mill is a nonlinear mechanical sys-
tem, so we use nonlinear data digital filtering algorithm. The
EKF is a linearization of a nonlinear function in the form
of a Taylor series expansion that preserves the first order
term to achieve linearization of the nonlinear function [43],
[44]. It replaces the state transfer matrix in the Kalman filter
equation with the Jacobi matrix. It then calculates the state
estimates and variance of the system using the Kalman filter
algorithm as a framework [45]. EKF can effectively solve the
nonlinear state estimation problem [46].
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TABLE 9. Part of the original data.

We consider the lithium battery pole mill operation data
containsGaussianwhite noise, the state space of the nonlinear
stochastic system is defined as, the meaning of the variables
in the state space equation is shown in Table 1:{

xk+1 = f (xk )+ ωk
zk = h(xk )+ ck

(18)

We use a first-order Taylor function to implement the nonlin-
ear running parameters for linearization. We perform a first-
order Tait expansion of the nonlinear function f (xk ) at x̂k|k :

f (xk ) = f (x̂k|k )+
∂f
∂xk
|xk=x̂k|k (xk − x̂k|k )+ o(xk − x̂k|k )

(19)

where o(xk − x̂k|k ) is a higher order term, we define
∂f
∂xk
|xk=x̂k|k = Fk . Neglecting the higher order terms [47], the

equation of state simplifies to:

xk+1 = f (x̂k|k )+ Fk (xk − x̂k|k )+ ωk (20)

Further, we can obtain the one-step state prediction and
the one-step state prediction covariance for the nonlinear

function:

x̂k+1|k = E[f (x̂k|k )+ Fk (xk − x̂k|k )+ ωk ] (21)

Pk+1|k = E[(xk+1 − x̂k+1|k )(xk+1 − x̂k+1|k )T]

= FkPk|kFT
k + Qk (22)

After that, we expand the nonlinear function h(·) in a
first-order Taylor expansion at the one-step state prediction
x̂k+1|k [48]:

h(xk+1) = h(x̂k+1|k )+
∂h
∂xk+1

|xk+1=x̂k+1|k (xk+1 − x̂k+1|k )

+o(xk+1 − x̂k+1|k ) (23)

where o(xk+1 − x̂k+1|k ) is a higher order term, we define
∂h

∂xk+1
|xk+1=x̂k+1|k = Hk+1. Neglecting the higher order terms,

the observation equation simplifies to:

zk+1 = h(x̂k+1|k )+ Hk+1(xk+1 − x̂k+1|k )+ ck+1 (24)

Pzz,k+1|k = E[(zk+1 − ẑk+1|k )(zk+1 − ẑk+1|k )T]

= Hk+1Pk+1|kHT
k+1 + Rk+1 (25)
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FIGURE 9. (a) Tension data EKF filtering results; (b) Torque data EKF
filtering results; (c) Rolling force data EKF filtering results; (d) Thickness
data EKF filtering results; (e) Rolling speed data EKF filtering results;
(f) Motor power data EKF filtering results.

Pxz,k+1|k = E[(xk+1 − x̂k+1|)(zk+1 − ẑk+1|k )T]

= Pk+1|kHT
k+1 (26)

Finally, we must obtain the state gain matrix, which is
used to calculate the state estimation covariance matrix at the
time [49]. The state gain matrix is:

Kk+1 = Pxz,k+1|k (Pzz,k+1|k )−1

= Pk+1|kHT
k+1(Hk+1Pk+1|kH

T
k+1 + Rk+1)

−1 (27)

State estimate at time k + 1:

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − ẑk+1|k ) (28)

State estimation error covariance matrix:

Pk+1|k+1 = E[(xk+1 − x̂k+1|k+1)(xk+1 − x̂k+1|k+1)T] (29)

The data after filtering are shown in Fig.9. We set a fixed
accuracy for each variable present in the experiment to ensure
that the correct estimation information is extracted [50].
As shown in Fig.9(a), the initial value of tension is set to
117N. In the 0 moment of x(0|0) and P(0|0) are 117 and 1,
respectively, the use of k moment tension is expected to the
moment of tension, at this time, Pk+1|k = 0.2,Kk+1 =
0.8005, according to which the next moment of tension value
of 116N. In the same way, according to the set parameters,
update Pk+1|k and Kk+1 at time k of other parameters, and
update the data at the next time [51].

In addition, as shown in Fig.9(a)-(f), we collect the time
points where the deviation between the original data and
the predicted data is large, and we find that the time points
with large deviation are concentrated in the middle time step.
By calculation, the mean squared error of the EKF-based
digital filteringmethod is 1.21, and the prediction error is low.

3) EXPERIMENTAL SIMULATION
There are 1200 sets of sample data of lithium battery pole
double rolling equipment, of which 900 sets are selected for
training and the remaining 300 sets are selected for testing.

Test the remaining 300 groups of samples, including
100 groups of data of health status, sub-health status and

fault status. After the membership degrees of the corre-
sponding three sets are obtained through improved neural
network training, the corresponding health degree (V =

(v1, v2, v3)T = (1.0, 0.5, 0)T) is further calculated by equa-
tion (13). The membership and health of 18 groups of test
data and the corresponding health status of pole piece double
rolling equipment are listed here. 6 groups are selected for
each status, as shown in Table 10 below.

It can be seen from Table 10 that when the pole piece
double rolling equipment is in healthy operation, the health
degree of the collected data is between 0.8-1, and the
‘‘Health’’ evaluation result is consistent with the actual pro-
duction state of the equipment. When the pole piece double
rolling equipment is in sub-health operation, the health degree
of the collected data is almost between 0.2 and 0.8. Although
one of them is rated as ‘‘Health,’’ its health degree is also very
close to the critical value of 0.8, and the evaluation result of
‘‘Sub-health’’ is consistent with the actual production state
of the equipment. When the pole piece double roller press
equipment is in fault operation, the health evaluation of the
collected data is between 0-0.2, and the evaluation result of
‘‘Fault’’ is consistent with the actual production state of the
equipment. It can be seen that the establishment of the health
status evaluation method is basically in line with the actual
situation, and the evaluation of the operation status of lithium
battery pole double rolling equipment is reasonable.

V. EXPERIMENT
This section applies the health diagnosis method to the
lithium battery pole piece double rolling equipment. During
the operation of the pole piece double rolling equipment, the
equipment state is detected, the inference engine of the fault
diagnosis method is used to diagnose the equipment fault, and
the health state of the equipment is evaluated by using the
health theory of the health state evaluation method.

A. EXPERIMENT I
During the working process of lithium battery double rolling
equipment, the tension value will be set in advance according
to the specific production requirements. In this paper, the
tension value of 120 N is taken as the set value. The upper
limit of tension is 130N and the lower limit is 110N. After the
equipment operates continuously for some time, the tension
sensor interferes artificially, and the fault alarm function
is triggered at this time. The human-computer interaction
interface automatically jumps to the fault diagnosis interface,
as shown in Fig.10.

As shown in Fig.10, the fault diagnosis interface has diag-
nosed and made decisions on the results. It is determined that
the fault location is the winding control system, and the fault
reason is the fault or offset of the tension sensor. Two fault
decisions are given: replacing the tension sensor and checking
the winding motor, consistent with the experimental human
intervention results. Observe the tension curve interface of
the real-time monitoring interface, as shown in Fig.11.
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TABLE 10. Simulation results of health status evaluation of pole piece double rolling equipment.

FIGURE 10. Fault diagnosis interface.

Observing the actual value curve of tension shows that
when the equipment is in normal operation from 7:57 to 8:06,
the fluctuation degree of tension value is relatively stable
and stable within 5%. When the tension value suddenly rises
after 8:06, the tension value is 133.16N, triggering the alarm.
According to the fault characteristic parameter signal, the
fuzzy fault symptom set at this time is obtained as:

U = {0.9257, 0.8635, 0.9813, 1, 1, 1, 1, 1, 1}

According to the comprehensive diagnosis index formula,
the weight matrix method is used for fuzzy operation. The
membership degree corresponding to each fault cause vj in the
fuzzy fault cause set V is calculated. The calculation results

FIGURE 11. Tension curve interface.

are as follows:

Y = {0.3581, 0.15, 0.8562, 0.5874, 0.1, 0.15,

0.05, 0.1, 0.1, 0.2}

The final result of fuzzy reasoning is yv3 = 0.8562, and the
corresponding fault cause is v3. Therefore, the fault reason in
the component interface of fuzzy fault diagnosis is the fault
or offset of the tension sensor, which is the result of the fuzzy
diagnosis.

B. EXPERIMENT II
The no-load test shall be carried out before the lithium battery
double roller equipment starts operation. In this experiment,
the rolling speed is preset to 40 m / min. After the equipment
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FIGURE 12. Health status assessment interface.

FIGURE 13. Rolling speed curve interface.

TABLE 11. Health status assessment results.

operates stably for a period of time, in order to reduce the
motor speed and reduce the rolling rate, the equipment will
give an alarm. The health status evaluation interface is shown
in Fig.12. It can be seen from Fig.12 that the health status
evaluation interface has evaluated the health level and made
a decision. It is determined that the pole piece double rolling
equipment is in sub-health status. The rolling speed curve
interface of the real-time monitoring interface is shown in
Fig. 13.

By observing the rolling speed curve, it can be seen that the
equipment is in normal operation from 9:04 to 9:09. At this
time, the fluctuation degree of rolling speed is relatively
stable and stable within 5%. After 9:09, the rolling speed
begins to decline rapidly. At this time, the rolling speed is
36.57m/min, triggering the sub-health state alarm. At this
time, the equipment health evaluation results are shown in
Table 11. The experiment shows that the rolling mill opera-
tion state evaluation is accurate and suitable for an industrial
site.

VI. CONCLUSION
This paper mainly introduces an intelligent health diagnosis
method of battery pole double rolling equipment based on
the Hybrid BP Neural Network Expert System. This paper
analyzes the research status of health diagnosis methods of
battery pole double rolling equipment. It summarizes the
development trend and shortcomings of health diagnosis
methods of battery pole double rolling equipment. In this
paper, the rolling process and the control elements of the
equipment are analyzed in detail, and the failure of the lithium
battery pole double rolling equipment is summarized. At the
same time, a fault diagnosis method of double roller press
equipment based on FEFDM is proposed in this paper. Com-
bining fuzzy theory with expert system theory, the core part
of fuzzy fault diagnosis expert system of pole piece double
rolling equipment is analyzed in detail. Finally, based on
the original fault diagnosis method, this paper introduces the
concept of a health degree. It puts forward a health state evalu-
ationmethod of lithium battery pole double rolling equipment
based on a fuzzy improved neural network.

Aiming at the problem of complex and uncertain fault
causes of double roller press equipment, combined with
mathematical statistics and expert experience technology, the
problem that it is challenging to establish expression rules for
fuzzy issues in an expert system knowledge base is effectively
solved. The fuzzy reasoning method is used to improve the
reasoning mechanism of the expert system, realize the fuzzy
reasoning of the fault of the lithium battery pole double
rolling equipment, and establish the fault diagnosis method
of the fuzzy expert system of the lithium battery pole double
rolling equipment.

Combined with the actual situation in which the equipment
fault state is fuzzy, this paper puts forward the concept of
health degree and divides the equipment health state. Sec-
ondly, after analyzing the nonlinear characteristics of the
double roller equipment system, a health evaluation method
using fuzzy set optimization BP neural network to complete
the health mapping is proposed. We calculate the member-
ship degree corresponding to each fuzzy set, establish the
mapping relationship between membership degree and health
degree, realize the quantitative evaluation method of equip-
ment health state, and establish the health state evaluation
model of lithium battery pole double rolling equipment.

In the future, the improvement of the intelligent health
diagnosis method of battery pole double rolling equipment
driven by the Hybrid BP Neural Network Expert System is
mainly reflected in the following aspects:

(1) To speed up the network training, this paper only lists
some important fault factors. It is challenging to locate and
diagnose unknown faults in equipment production accurately.
The fault types of pole piece double roller equipment can be
continuously improved and supplemented in the future.

(2) The fuzzy knowledge base needs to be supplemented
with the accumulation of the number of fault cases diag-
nosed and the gradual supplement of professional knowledge.
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Professional techniciansmustmodify every time, which is not
conducive to themaintenance and upgrading of a fuzzy expert
system. Here, the more advanced self-learning adaptive algo-
rithm can be introduced to optimize combined with the expert
system.

(3) In the future, this health diagnosis method can be com-
bined with remote monitoring technology to realize remote
health diagnosis of pole piece double roller equipment, which
is helpful to upgrade and maintain the system. Especially
in today’s epidemic background, remote diagnosis is more
important.
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