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ABSTRACT The goal of radar emitter recognition (RER) is to extract the features of the received emitter
signal. This has become a critical issue as new radar types are emerging, and the electromagnetic environment
is becoming denser and more complex. Deep neural networks (DNNs) have recently proven effective
for emitter identification; however, the recognition of phase-coded waveforms at a low signal to noise
ratio (SNR) remains challenging. In this paper, a novel phase-based RER approach using short time fourier
transform (STFT) and bidirectional long short term memory (BiLSTM) is proposed, while enhancing the
ability to learn features from noisy signals. The phase spectrum of phase-coded signals was analyzed
in contrast to the amplitude spectrum used in state-of-the-art approaches in the literature. The derived
phase-based features were directly provided as inputs to the proposed BiLSTM architecture. The fully
connected layer follows the BiLSTM layer. Finally, a softmax classifier was employed to accomplish
the recognition task. Six distinct types of phase-coded waveforms degraded by additive white gaussian
noise (AWGN)with SNRs ranging from−8 dB to 8 dBwere simulated. Themethod proposed in this research
involves simple pre-processing and exhibits an overall recognition accuracy of more than 90% at SNR of
−2 dB.

INDEX TERMS Bidirectional long short term memory (BiLSTM), emitter identification, phase coded
waveforms, time-frequency transform, deep neural network.

I. INTRODUCTION
The complexity of today’s radar environment makes it diffi-
cult to distinguish between the different threat signals present
in a measured spectrum. The rapid advancement of radar
design theory and manufacturing technology leads to a grow-
ing number of new radar types [1], [2]. These characteristics
make the recognition of radar signals extremely difficult [3].
It is very hard to create a radar emitter recognition (RER)
system that can perform efficiently with a variety of radar
types. Low probability of intercept (LPI) radars are spe-
cially designed radars that try to obscure their emissions
from hostile receivers including radar warning receivers
(RWRs) [4]–[6]. A typical way to realize LPI radar signals
is to reduce the radar’s peak effective radiated power (ERP)
using pulse compression techniques. The use of intrapulse
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modulation for pulse compression is very effective. It has
a high bandwidth-time product and large radar signal pro-
cessing gain [7]. The transmitted pulse is either frequency
or phase-modulated to increase the bandwidth. The top-level
diagram for an airborne RWR is shown in Fig. 1. The process
of emitter recognition, which is an important technology
in the field of electronic countermeasures, is as follows:
first, the radar signal is preprocessed; then, the prepro-
cessed signal is analyzed to identify the intrapulse modu-
lation schemes used by threat emitters. The extraction of
these characteristics investigates the model of threat emitter,
function, threat level, and other information to distinguish
enemy radars. RER technology has evolved through differ-
ent stages. In the first stage, traditional methods using the
parameter matching approach were used to match the intra-
pulse parameters of intercepted signals with the information
maintained in a database [8]–[10]. Radar signal identifica-
tion has made a lot of progress after decades of research.
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FIGURE 1. Signals received at RWR by multiple threat emitters.

Deep learning has made significant progress in this field.
In the second step, artificial intelligence technology is used
to integrate the intelligence component into the parame-
ter matching approach. Deep learning methods, which are
based primarily on the time-frequency transform fall under
the third category. LPI radar signals are non-stationary so
the time-frequency transforms are widely used for feature
extraction [11], such as smoothed pseudo wigner ville distri-
bution (SPWVD) [12], wigner ville distribution (WVD) [13],
short-time fourier transform (STFT) [14], [15], choi-william
distribution (CWD) [16], stockwell transform (ST) [17], and
fourier based synchro squeezed transform (FSST) [18].

A. RELATED WORK IN MACHINE LEARNING
Deep learning has attracted much interest in the field of
automatic radar waveform recognition and has increased the
recognition accuracy of radar emitter signals [19]. In [20],
a recognition approach based on convolutional neural net-
works (CNN) and sample averaging techniques (SAT) is
proposed, however FRANK, P1, and P4 signals still need
to enhance their recognition rates. Furthermore, the problem
of identifying Barker codes has yet to be overcome. Lunden
in [21] proposes a supervised classification technique based
on features extracted from received pulses. The overall recog-
nition rate is 98% at signal to noise ratio (SNR) of 6 dB.
A novel technique based on intrapulse parameters is proposed
in [22] using the variant of STFT and reinforced deep belief
network (RDBN) but linear frequency modulation (LFM)
and non-linear frequency modulation (NLFM) get confused
with other modulation schemes. The modulation classifica-
tion problem is considered in [23] when the intercepted radar
signals are sent using radio over fiber networks. It is observed
that at SNR of −2 dB the recognition accuracies of phase
coded signals is less. A novel 1D deep residual shrinkage
network (DRSN) based radar emitter recognition method is
provided in [24]. The recognition accuracies of phase-coded
signals are not considered in this research. A waveform cat-
egorization method based on the FSST combined with deep
learning is used in [25]. However, for low SNR levels, the pro-

posed approach has less capability to differentiate between
LFM and Costas codes.

B. RELATED WORK IN REFERENCE TO LSTM
In RER algorithms, recurrent neural networks (RNNs) are
used to categorize the intercepted signals and is used
for de-noising, classification, and de-interleaving of pulse
streams [26]. The phase-based radar sequences are not used
at the input of RNN. In [12], a hybrid network built on a
shallow CNN, LSTM, and DNN is proposed that can recog-
nize six distinct radar emitter signals with SNRs ranging from
−14 dB to 20 dB. The suggested approach, however, does
not address the identification of polyphase-coded waveforms.
In [27], a novel recognition approach based on CNN-LSTM
and STFT is presented. The suggested method can identify
eight distinct radar signals with an overall accuracy of 96%
at an SNR of −2 dB. However, the recognition accuracies of
polyphase coded signals other than P2 are not discussed. The
multiple feature images joint decision (MFIJD) model with
two different feature extraction structures is proposed in [28].
It is observed that Structure 2 is based upon LSTM and
has less recognition accuracy for phase-coded signals at low
SNR values. For decades, identifying the different Intrapulse
modulation techniques used by LPI radar waveforms has been
a major research challenge.

In most state-of-the-art techniques, low recognition
accuracies are observed for phase-coded signals using the
magnitude spectrum at low SNR values [29]. In this
work, we propose a phase spectrum-based feature extraction
method as phase should be an important candidate for the
recognition of phase-coded signals. We are filling the gap to
achieve good recognition accuracies at low SNR by investi-
gating the phase spectrum of the phase-coded waveforms.

C. PAPER’s CONTRIBUTION
To the best of our knowledge and comparison of some previ-
ous works the main contribution of this paper is summarized
in the subsequent points:

1) A novel feature vector based on phase information is
derived from noisy emitter signals and is given at the
input of bidirectional long short term memory (BiL-
STM) network.

2) A DNN model based on BiLSTM architecture is
proposed where mini-batch processing allows for
anti-causal behavior and effectively increases the
amount of data accessible to the network at every time
step, providing the algorithm richer context.

3) The identification accuracies of phase-coded signals
including Barker codes at low SNR levels are compared
with other state-of-the-art techniques in the literature.

The remainder of this paper is structured as follows. LPI
radar waveforms, including Barker and polyphase codes,
are discussed in Section II along with the feature extraction
using STFT. The system overview is given in section III.
The proposed phase-based emitter recognition algorithm
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using the BiLSTM network is explained in section IV.
Section V contains the simulations and performance eval-
uations. In Section VI, the suggested method is compared
to existing state-of-the-art techniques in the literature. The
conclusion of the whole work is drawn in section VII.

II. THEORETICAL BACKGROUND
In this section, LPI radar waveforms are discussed along with
the proposed phase-based feature extraction method using
STFT.

A. PHASE CODED LPI RADAR WAVEFORMS
In the LPI radar system, a long-duration pulse is phase or
frequency modulated before transmission, and the received
signal is then passed through a matched filter to concentrate
the energy into a shorter pulse. Barker, Frank, P1, P2, P3, and
P4 codes are among the phase-coded signals utilized in our
research.

1) BARKER CODE
The Barker codes are a collection of binary phases with a
peak-to-peak side lobe ratio of M (Length of code). Barker
codes are not defined for M>13, and the sidelobe level ratio
for the largest length code is observed to be−22.3 dB. Binary
phase modulation is commonly used in Barker-coded pulses
and they offer low complexity [30]. These codes have the
unity magnitude side lobes and are only available for lengths,
M= 2, 3, 4, 5, 7, 11, and 13.

Polyphase modulation refers to the exploitation of several
phase values to modulate long-duration pulses. Lower side-
lobes are produced using polyphase codes as compared to
biphase codes. This subsection introduces the mathematical
definition of polyphase-coded waveforms.

2) FRANK CODE
Frank proposed a polyphase code with good non-periodic
correlation properties named as Frank code. The Frank code
is a perfect code derived from the phase history of the LFM
pulse. Only perfect square length (N = L2) is applicable with
this code. The formula for generating phases of sub-pulses is
expressed in (1).

φm,n =
2π
L

(m− 1)(n− 1) (1)

where, 1≤ m ≤ L and 1 ≤ n ≤ L. In Frank code, the middle
of the code has the largest phase increments as compared to
both ends [30].

3) P1 CODE
Both P1 and P2 codes are obtained from the step approxi-
mation of an LFM signal. The length of the code is (N =
L2) [30]. If m denotes a sample number in a given nth fre-
quency step, then the phase value of the mth sample of the nth

frequency step can be calculated by using (2).

φm,n = −
π

L
[L − (2n− 1)][(n− 1)L + (m− 1)] (2)

where, m= 1, 2, 3, . . . .., L, n= 1, 2, 3,. . . .., L and N should
be a perfect square length. Peak sidelobe level (PSL) for P1
code is expressed by using the formula:

PSL = 20log10
( 1
Lπ

)
(3)

4) P2 CODE
The P2 code works for perfect square lengths as well,
although even values of L result in low-level autocorrelation
sidelobes. P2 has the same phase increments as P1, but the
initial phase values are different [30]. The following formula
is used to calculate the phase values for sub-pulses:

φm,n = −
π

2L
[2m− 1− L][2n− 1− L] (4)

where, m= 1, 2, 3,. . . , L, n= 1, 2, 3, . . . , L and L= 2, 4, 6,
. . .High phase increments are observed at both ends of the
code relative to the middle of the code for both P1 and P2
codes.

5) P3 CODE
P3 and P4 codes are derived from the approximation of
Zadoff-Chu given in [31], which are valid for any length Nc.
The formula given in (11) may be used to compute the phase
of the mth sample of the P3 code [30].

φm = −
π

Nc

(
m− 1

)2 (5)

where, m = 1, 2, . . . ., Nc, and Nc is the compression ratio.

6) P4 CODE
The phase values of a P4 code are described by the formula
given in [30]:

φm = −

[
π (m− 1)2

Nc

]
− π (m− 1) (6)

where, m= 1, 2, . . . ., Nc. The P3 code varies from the P4
code in that it has the largest phase increments in the middle,
similar to the Frank code. P3 and P4 codes, in comparison to
other polyphase codes, are more Doppler resistant.

B. NOVEL PHASE-BASED FEATURE EXTRACTION
Feature extraction helps in the reduction of unnecessary data
that accelerates the learning and generalization stages of the
machine learning algorithm. In this work, the phase-based
feature is extracted using STFT. It is most extensively
used, simple to interpret, and has speedy implementations
[32]–[34].

X (m, ω) =
∞∑

n=−∞

x[n]ω[n− m]e−jωn (7)

where, x[n] is the signal andw[n] is the window used for com-
puting STFT. In the literature [24]–[27], feature extraction
is usually done using amplitude values obtained from time-
frequency transforms. We have computed phase values from
the output of the STFTs. Phase offset is intentionally intro-
duced in the phase-coded waveform at the transmission side.
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This waveform is eventually intercepted by the electronic
warfare (EW) receiver. It is intended to measure the phase
offsets introduced by the emitter in the intercepted waveform
during the phase coding process. These measured offsets will
help in recognizing the unknown phase coding scheme used
by the emitter.

1) OPTIMAL WINDOW SIZE FOR FEATURE EXTRACTION
It is imperative that the window of data samples used for
phase offset estimation should be short enough to ensure that
the phase offset of each sub-pulse remains intact. The optimal
window size is chosen to get more precise phase informa-
tion and the carrier must complete its one cycle within that
window. The duration of the sub-pulse is usually longer than
that of a carrier cycle so the phase offset remains unchanged
within the measured window. For STFT calculations, the
window length (samples) and the number of fast fourier
transform (FFT) points are kept uniform.

2) STEPS FOR PHASE-BASED FEATURE EXTRACTION
The detailed algorithm for phase-based feature extraction is
outlined in the flowchart shown in Fig. 2 and is divided
into two parts; Detection Problem and Recognition Problem.
In Detection Problem, the carrier frequency of intercepted
noisy signal is determined using following steps:

1) The modulated discrete signal corrupted with additive
white gaussian noise (AWGN) is intercepted at the EW
receiver and its FFT is computed.

2) The absolute value of the FFT result is obtained and
the frequency corresponding to the maximum value is
identified known as carrier frequency Fc.

3) The reciprocal of Fc is computed to obtain the time
required by the carrier to complete its one cycle known
as Tc.

Tc =
1
Fc

(8)

4) Tc is multiplied with a sampling frequency Fs to obtain
the window size in terms of samples. Ts is the sampling
time.

window(samples) = Tc ∗ Fs (9)

window(time) = Ts ∗ window(samples) (10)

After determining the Fc and optimal window size, the
Recognition Problem is encountered that consists of follow-
ing steps:

1) The window is slid over the signal for the first time
to obtain a column vector with a length equal to FFT
points.

2) The maximum value is determined from the column
obtained and its phase is computed that corresponds to
the phase offset of the carrier frequency signal.

3) The window is ultimately slid over the entire length of
a signal and the STFT is computed window-wise.

4) The phase value acquired from each window is
recorded in a pre-initialized vector and ultimately a

FIGURE 2. Flowchart of phase-based feature extraction algorithm.

phase-based feature vector for each corresponding sig-
nal is obtained.

5) The feature vector is further provided as an input to the
BiLSTM network for recognition.

6) The above process is repeated for all the intercepted
signals at different SNR values.

7) The efficacy of the trained BiLSTM network is evalu-
ated by using the testing dataset containing signals of
different SNRs ranging from −8 dB to 8 dB.

The phase features derived using the proposed method are
shown in Fig. 3 for specific phase-coded signals at different
SNR values. The phase of actual Barker Code (Length=13)
without AWGN is shown in Fig. 3a, which serves as a bench-
mark. The Barker Code (Length=4) is the shortest length
signal used for simulations that can be obtained within 2µs.
It is practically viable to do recognition on the basis of overall
phase feature vector of this signal. Time duration of signals
are shown on the x-axis, while phase values (degree) are
shown on the y-axis. The phase is 0◦ from 0µs till 5µs and
180◦ for 5µs through 7µs. From 7µs to 9µs, it switches to
0◦, and so on. The extracted phase feature vectors of Barker
Code are displayed in Fig. 3b, Fig. 3c, and Fig. 3d for SNR
values of 2 dB, 0 dB, and −2 dB, respectively. Although the
phase fluctuations of retrieved Barker code features are nearly
identical to those of benchmark code but they are noisy since
AWGN is present. Similarly, the phases of other signals are
compared to their respective benchmark codes and are shown
in Fig.3d till Fig.3x. The tangent inverse is used to compute
the phase of the STFT output. Since the tangent’s period is π ,
whenever the phase value exceeds 180◦ on both the positive
and negative sides due to noise, wrapping occurs, which is
obvious in plots.

3) PHASE-BASED FEATURE IMAGES USING STFT
The phase-based feature images produced for the Barker code
of length (M=13) and the Frank code of length (L=6, N=36)
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FIGURE 3. Examples of phase features derived from phase-coded signals at different SNR ratios using the proposed technique.
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FIGURE 4. Phase Feature Plot of Barker Code (Length=13, SNR=−2 dB).

FIGURE 5. Phase Feature Plot of Frank Code (L=6, SNR=−2 dB).

are presented in Fig. 4 and Fig. 5, respectively. Both plots
are given for SNR= −2dB. If we follow the detailed steps
of the detection part in the algorithm then Fc and window
size can be calculated. The window is moved over entire
length of signal, and the phase values from each window
output are horizontally stacked, producing a 2D matrix. The
heatmap (image) of the 2D matrix is then generated. These
images have nothing to do with the simulations; they are only
intended to illustrate how phase values appear on a frequency
versus time graph (STFT). The seventh row in the plots in
both Fig. 4 and Fig. 5 corresponds to the phase offset of carrier
signal introduced by the particular modulation schemes and
is given as a feature vector to the BiLSTM network. The
remaining rows correspond to the noise.

III. SYSTEM OVERVIEW
This section involves a detailed overview of the overall recog-
nition system. The proposed identification system, as shown
in Fig. 6, is composed of three main components: time-
frequency transform, phase-based feature extraction, and a
classification network. In the first step, STFT is computed for
all waveforms. Using the appropriate window size for STFT,
the phase of output is computed. The second step involves the
formation of a phase-based feature vector that will be further
provided at the input of the BiLSTM network in third step for
recognition purposes. The system collects a lot of information
about various types of waveforms after the first and second
parts, then all waveforms are classified in the third section.
The classifier can distinguish between six different types of
phase coded waveforms including Barker, Frank, P1, P2, P3,
and P4.

FIGURE 6. Proposed recognition method is divided into three main steps.
In the first step, STFT is applied to all phase-coded signals. The second
step involves the computation of a phase-based feature vector that is
further provided at the input of the BiLSTM network in the third step.

IV. PHASE BASED EMITTER RECOGNITION USING
BILSTM NETWORK
In this section, the proposed emitter recognition method is
explained in detail along with the function of the BiLSTM
network.

For the past few decades, deep learning algorithms have
been well researched and frequently used to extract infor-
mation from various kinds of data. Artificial neural network
(ANN), Elman network, CNN, deep belief network (DBN),
and RNN are some of the deep learning architectures used
for LPI radar waveform recognition applications, as men-
tioned in [24]–[26]. DNN and CNN are mostly incapable
of retrieving temporal information from given data. RNNs
are commonly utilized in applications that include sequential
data such as audio, text, and video. RNNs are incapable to
deal with cases when there is a wide gap between the current
input and relevant information. Hochreiter [35] suggested an
LSTM network that can handle long-term dependence in the
given time series. Several isomorphic cells exist in LSTM
that can store information for a long period by updating the
internal state.

A. BILSTM NETWORK DESIGN
The Forget gate, Cell state (memory), Input gate, and Output
gate are the four main elements of each BiLSTM cell. Emitter
recognition using the BiLSTMarchitecture is shown in Fig. 7.
The functions of these gates is explained below:

1) FORGET GATE
The initial task of LSTM is to figure out which data is
valuable and which should be discarded. The ‘‘Forget Gate,’’
which contains the sigmoid layer is responsible for this deci-
sion. It looks at the current input xt and previous recurrent
information ht−1 and returns a value that could be 1 or 0.

ft = σ (Wf .[ht−1, xt ]+ bf ) (11)

Here, bf is the bias term for forget gate and Wf are the
weights; σ represents the sigmoid activation function.

2) INPUT GATE
The input gate regulates how the current cell state is updated
in response to the current input. It is divided into two main
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sections. The ‘‘Input Gate,’’ a sigmoid layer, determines
which values need to be modified first. Second, a tanh layer
creates a new vector called C̃t , which is then added to the cell
state as expressed in (13).

it = σ (Wi.[ht−1, xt ]+ bi) (12)

C̃t = tanh(Wc.[ht−1, xt ]+ bc) (13)

where bi is the bias term for input gate and Wi are the corre-
sponding weights; bc and Wc are the bias term and weights
for updating cell state.

3) CELL STATE
The current cell state Ct is obtained by updating the past cell
state Ct−1. The old cell state is multiplied by the output of
forget gate and then an update to cell state C̃t is multiplied by
the input gate. Both candidates are then added to update the
cell state.

Ct = (ft ∗ Ct−1 + it ∗ C̃t ) (14)

4) OUTPUT GATE
Finally, a decision has to be made about what should be sent
to the output. This will require the cell state to be updated. The
sigmoid is used in the first stage to determine what should be
given at the output. The state of the cell is then passed through
the tanh layer and multiplied by the output of the Output gate.

ot = σ (Wo.[ht−1, xt ]+ bo) (15)

ht = ot ∗ tanh(Ct ) (16)

where bo is the bias term for output gate and Wo are the
weights; ht represents the current recurrent information. The
gate structure has been deliberately designed to address
the problem of vanishing or exploding gradients in RNN. The
BiLSTM is a network model that consists of two LSTMs,
one of which accepts input in one direction while the other
takes input in the opposite direction. The BiLSTM reverses
the input sequence and calculates the output in the same
way as an LSTM layer. The end result is a stack of forward
and reverse LSTMs that achieve the goal of incorporating
contextual information. As compared to LSTM networks,
BiLSTM networks learn faster. Forward propagation is used
twice in such networks to train both forward and backward
cells. The final output is denoted by yt , which may be stated
as follows:

yt = [ht f , ht b] (17)

Here, t= 1,2,3, . . . , n, represents the time steps. Hence, both
the forward ht f and backward activations ht b are used to
calculate the output at any time instant t .

V. SIMULATION RESULTS
In this section, we simulate different kinds of phase coded sig-
nals to test the efficacy of the proposed recognition algorithm.
MATLAB 2021b is used to simulate all of the generated data
and results. Each waveform has its own set of parameters that
should be adjusted.

A. SIMULATION SETTINGS
The performance of the suggested classification method is
tested by utilizing six different types of phase-modulated
signals, including Barker, Frank, P1, P2, P3, and P4 codes.
The sampling frequency is Fs =500 MHz and the carrier
wave frequency is Fc =50MHz for all signals. For simulation
purposes, intermediate frequency (IF) signals are assumed.
The pulse width varies, but the pulse repetition interval (PRI)
for all signals is considered to be 0.2 ms. The Barker code
elements of length (M= 4, 7, 11, and 13) are used in the
simulation having the pulse widths of 2 µs, 14 µs, 11 µs and
13 µs respectively. The Frank codes are generated for (L= 3,
4, and 6) using the formula mentioned in section II having the
pulse widths of 9µs, 16µs, and 36µs respectively. Similarly,
P1 codes are produced for lengths (L= 2, 4) having the pulse
widths 8 µs, and 16 µs respectively. Using the formula given
in section II, the P2 codes are generated for lengths (L= 4, and
6) having the pulse widths of 16 µs, and 36 µs respectively.
P3 codes are developed for lengths (Nc= 4, 12, 16) with
the pulse widths of 8 µs, 12 µs, and 16 µs respectively.
Signals are created for lengths (Nc= 4, 12, 15) with pulse
widths of 8 µs, 12 µs, and 15 µs, respectively, using P4
codes. The parameters of simulated phase-coded signals are
given in Table 1. The model’s output is the category labels
of the emitters. At each SNR value, number of samples for
Barker, Frank, P1, P2, P3, and P4 codes are 20000, 35000,
12000, 16000, 28000, and 17500 respectively. There are total
17 signals belonging to six different categories of phase coded
waveforms as mentioned earlier. At each SNR value, AWGN
is added to signals five times for generating training dataset.
There are nine SNR values ranging from−8 dB to 8 dB with
a stepzize of 2dB.

Training signals (total) = 17X5X9 = 765 signals

(18)

Testing signals (at each SNR) = 17X5 = 85 signals (19)

After the various emitter signals are simulated with different
phase coding schemes, the proposed BiLSTM network is
trained using 765 signals for six different types of phase-
coded waveforms. We divide the labels into two parts, 80%
labels for training and 20% for validation. The ability of
BiLSTM network to recognize phase-coded signals is tested
using the testing dataset containing 85 signals at each SNR
value ranging from−8 dB to 8 dB and their confusion matri-
ces are also given in this section.

B. NETWORK PARAMETERS
For our classifier model to perform classification tasks, hid-
den nodes in the BiLSTM layer, network depth, activation
functions, and other parameters are all established. The input
and recurrent weights are initialized randomly using a Gaus-
sian distribution with a 0 mean and a standard deviation of
0.01. For all gates, the initial bias terms are set to zero.
Training epochs are also important throughout the learning
phase. In our BiLSTM design, the network is trained with
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FIGURE 7. BiLSTM Architecture for recognition of phase coded signals.

TABLE 1. Parameters Settings of Radar Signals.

TABLE 2. Training Parameters for BiLSTM Architecture.

only 100 epochs and hidden nodes for the BiLSTM network
are kept as 110. The Adam optimizer is used to acquire the
best-learned weights. The mini-batch size is kept 383 signals

for each training iteration which is half of total training
signals. The initial learning rate for training is 0.01. The
learning rate schedule is piecewise, the software changes it
every 50 epochs by multiplying it by 0.1. The validation
frequency is kept as 20 so that the network will be validated
after 20 iterations during the training process. The gradient
threshold is taken 1 and the length of sequence for a single
iteration of the mini-batch is adjusted by the network itself.
The best training parameters chosen for simulation are given
in Table 2 along with their values.

C. RECOGNITION RESULTS
The number of misrecognition is calculated by comparing the
recognition results to the testing labels. The confusion matrix
is used to analyze the effectiveness of the algorithm as well
as to estimate the recognition accuracies of the phase-coded
waveform for testing datasets. Radar emitter identification
accuracy (RERA) is plotted versus SNR ranging from−8 dB
to 8 dB as shown in Fig. 8. Each waveform has its unique
relationship between SNR and RERA. All waveforms in our
system have a positive correlation between SNR and RERA.
When SNR is less than−2 dB, RERA increases significantly
for all phase-coded waveforms. The majority of waveforms
have a RERA of 90% at−2 dB, except P1 codes. The overall
accuracy for all codes is about 90% at an SNR of −2 dB.

The confusion matrix is shown in Fig. 9 that represents
the testing accuracies of phase-coded waveforms at the SNR
of −4dB. The recognition accuracies of codes are given in
the bottom row of the confusion matrix. Barker, P2, and P4
codes have about 90% recognition accuracies as compared
to other codes. Frank code has an accuracy of 86.7%, P1
has 50%, whereas P3 has 80% as it is confused with Barker
code. The overall recognition accuracies of all phase-coded
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FIGURE 8. Recognition accuracies of phase coded waveforms versus SNR
(a) Barker, (b) Frank, (c) P1, (d) P2, (e) P3, (f) P4 (g) Overall Recognition
accuracies for all phase coded waveforms.

waveforms using the proposed algorithm are observed to be
83.5% at SNR of −4dB. Similarly, as shown in Fig. 10, the
confusion matrix is displayed at SNR of −2dB. More than
90% accuracy is observed for Barker, P3, and P4 codes. P2
code has an accuracy of 90%, 86.7% for Frank, and 80% for
P1 code as it gets confused with P4 code.

VI. DISCUSSION AND COMPARISON
In this subsection, the suggested RER methodology is com-
pared to other state-of-the-art methods reported in the lit-
erature. In terms of the SNR requirement, the suggested
approach is compared to the othermethods given in [19], [23],
and [28].

1) COMPARISON WITH [23]
In [23], the recognition accuracies of polyphase coded signals
are given under the effect of Gaussian noise at SNR=−2 dB.

FIGURE 9. Confusion Matrix for the testing dataset at SNR of −4 dB.

FIGURE 10. Confusion Matrix for the testing dataset at SNR of −2 dB.

FIGURE 11. Confusion Matrix for the testing dataset at SNR of 0 dB.

It is observed that recognition rates for P2, P3, and P4
codes have improved using our proposed method. The recog-
nition rate has reduced for P1 code as it got confused with
the P4 code. The Frank code needs further improvement in
their recognition accuracy.Moreover, Barker codes have 95%
recognition accuracy.

2) COMPARISON WITH [19]
A hybrid classifier model based on CNN and elman neu-
ral network (ENN) method for identifying twelve different
types of radar waveforms is proposed in [19]. Recognition
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TABLE 3. Comparison of Radar Emitter Recognition Accuracy (RERA)
with [23] and [19] at SNR of −2 dB.

TABLE 4. Comparison of Radar Emitter Recognition Accuracy (RERA)
with [28] at SNR of 0 dB.

accuracies for P3 and P4 codes have improved by using our
proposed method, but recognition rates for P1 and Frank
codes have reduced as they got confused with other codes at
low SNR values. The P2 code exhibits uniform recognition
accuracy in both methods. Furthermore, the performance of
Barker code is also explored in this paper.

3) COMPARISON WITH [28]
In [28], two structures are adapted to determine the recogni-
tion accuracies of polyphase coded signals and the compar-
ison is done with structure 2 that contains combined CNN
and LSTM architecture. It has been noticed that adopting our
proposed method, recognition rates for Frank, P1, and P4
codes have improved, however, recognition rates for P2 codes
have decreased in our work. In both techniques, the P3 code
has a 100% recognition accuracy. Moreover, the performance
of Barker codes is not discussed in this work.

The results achieved in this research are comparable to
the above mentioned state-of-the-art methods. Our suggested
approach does not require any complex pre-processing and is
best suited for online recognition of phase-coded signals at
the EW receiver side. However, the proposed work contains
certain inconsistencies that need to be addressed. Frank codes
are confused with Barker codes at low SNR levels. Similarly,
the phase patterns of P1 and P4 codes are very similar, thus
they are mixed up at low SNR resulting in lower recognition
accuracies.

VII. CONCLUSION
This paper proposes a novel emitter recognition approach
based on the STFT and BiLSTM network to enhance the
recognition accuracies of phase-coded waveforms at low
SNR values. The proposed technique operates well in prac-
tice, with 90% overall identification accuracies for six dif-

ferent types of emitter waveforms at the SNR of −2 dB.
The experimental results show that employing the BiLSTM
framework using phase-based feature extraction, recognition
accuracies of polyphase coded signals have improved when
compared to other approaches in the literature. The proposed
research does not involve any complex pre-processing, and
the feature extraction is performed on the noisy and mod-
ulated phase-coded signals obtained at EW receivers. This
technique can be beneficial while performing online recog-
nition of phase-coded waveforms as less processing time is
required. Furthermore, Barker codes have a good recognition
accuracy even at low SNR, but they are rarely discussed in
the literature. In the future, researchers can explore more
advanced deep learning methods to determine an unknown
number of radar signals in a more realistic environment as
well as the combined version of different phase-coded sig-
nals.
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