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ABSTRACT Link prediction provides insight into the evolutionary mechanisms of complex networks
by predicting missing edges. Existing research has proposed many similarity algorithms based on local
information, and some link prediction algorithms typically perform better in different networks. It is
generally believed that a megamerger is beneficial. In the perspective of link prediction, merging the good-
performing algorithms brings higher prediction accuracy. And the more times the experiment is executed,
the higher the accuracy of link prediction. Therefore, this research proposes a new link prediction algorithm
based on the theory of megamerger in management and the concept of partnership, and uses ten actual
complex networks for experiments to test the above two hypotheses. The experimental results show that
megamerger is not applicable to the link prediction algorithm. In addition, there is no positive correlation
between the increasing the quantity of experiments and improving the accuracy of the experiments, so the
above two hypotheses are rejected. Hence, this research presumes that megamerger of the comprehensive
information of the network, such as the resource flow between nodes, the degree of common neighbor nodes,
and partnership of nodes, does not improve the accuracy of link prediction. For a refined network with a small
number of nodes and a short average path length, it is recommended that the quantity of experiments be set
to only ten can achieve the required accuracy of link prediction.

INDEX TERMS Link prediction, megamerger, complex network.

I. INTRODUCTION
In recent years, with the rapid development of network sci-
ence, link prediction has been closely related to the structure
and evolution of the network [1]. According to different
research objects, the nodes of a complex network can be
people, knowledge, proteins, or industries. The edges of the
network represent the flow of information, technology, mate-
rial, and resources. Link prediction is a prediction method
that uses already existing nodes and edges to predict future
links of a complex network. [2]. The higher the accuracy of
link prediction, the clearer the guidance for the future devel-
opment of the network, providing a theoretical and practical
basis for the accuracy and science of decision making.
Megamerger [3] and partnership [4] are common the-
ories in management. They are essential in inter-firm
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cooperation [5]. The introduction of megamerger and part-
nership in management science to the study of link prediction
is one of the innovations of this research. From conceptual
fit, relationships between nodes are linked through edges,
and the connected edges of different network nodes can all
be regarded as a broad partnership, although they represent
different meanings. From the perspective of the network
structure, two nodes that do not have an edge between them,
but have a common partner, are obviously more likely to
generate links in the future than nodes that do not have a
common partner.

The incomplete or partially observable nature of complex
network structures makes theoretical, and engineering studies
of real networks face serious challenges [6]. Link prediction
research has a wide range of practical applications as well
as significant theoretical research implications, especially in
promoting and contributing to the theoretical aspects of some
related fields. Describing the similarity of nodes in a network
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is one of the essential theoretical problems in link prediction
[7]. There are many ways to measure similarity. Only by
quickly and accurately evaluating whether a certain definition
of similarity can describe the relationship between nodes of a
given network can we further study the influence of network
features on the selection of similarity indicators [8].

Research based on similarity link prediction can promote
and reference link prediction itself and the establishment and
improvement of the theoretical basis of complex network
research. The study of link prediction based on similarity can
be divided into two aspects: on the one hand, node similar-
ity. Paths between nodes provide basic similarity features,
and link prediction similarity is calculated based on factor
information on relative paths [9]. From a statistical point of
view, the importance of a node is the probability of attracting
other nodes to connect with it, and the derivative value of
a node pair is the probability of mutual attraction between
nodes [10].

On the other hand, network structure similarity. Accord-
ing to the structure of the network, a similarity score is
performed based on its topological characteristics, and the
structural characteristics of the network are investigated by
the clustering coefficient [11]. Link prediction can predict the
undiscovered edges in complex networks to find the central
node in the network and thus detect the community struc-
ture in complex networks [12]. New community detection
metric is proposed based on the principle that internal links
are more predictable than external links [13]. Community
structures are also effective for link prediction [14]. Link
prediction is applied to the management field, and link pre-
diction algorithms for tree-like networks [15] and long-circle-
like networks are studied [16].The set of structural features is
extracted from the network, and node pairs are represented
as vectors. The connection probability of node pairs is mea-
sured according to the distance between them and the local
mean vectors of positive and negative nearest neighbors [17].
The similarity-based link prediction algorithm extracts the
influencing factors of the topology of the target node pair.
Still, it ignores the information about the influencing factors
between the target node pair and its partners.

In this research, ten real networks are used to test two
hypotheses: the first is that megamerger is better based on
the link prediction perspective. The second hypothesis is that
the more times the experiments, the greater the experimental
accuracy. A new link prediction algorithm is constructed
based on the theory of megamerger and the principle of part-
nership to verify whether the accuracy of the new algorithm
is higher than the classical link prediction algorithms. The
sensitivity of the link prediction algorithm to the quantity of
experiments and the proportion of the test set is analyzed,
leading to recommendations for the general practicability of
link prediction experiments. This research may provide new
ideas for applying link prediction algorithms in conjunction
with management science. Based on the experimental results,
the recommended number of experiments for link prediction
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experiments is proposed to guide the application of link pre-
diction experiments in practice.

II. LINK PREDICTION ALGORITHM

A. THE BASIC PARAMETERS

1) THE BASIC COMPONENTS OF A COMPLEX NETWORK

An undirected, unweighted complex network G= (V, B),
where V represents the set of points and B represents the
set of edges. Let G contain n nodes and m edges, thus V =
i, v2, v, B = (b1, by, --by). The degree of node
k (v;) is defined as the number of other nodes connected to
nodev;,i € {1,2,...,n}.

2) MEGAMERGER AND PARTNERSHIP BETWEEN NODES
Megamerger refers to the cooperative relationship between
enterprises, industries, or people, which belongs to the con-
cept of management [18]. A megamerger is an acquisition or
merger of two existing companies. Once completed, the two
companies will likely maintain a significant market share in
their respective industries. The concept of megamerger has
been introduced in other research areas in recent years [19].
Megamerger is a way that the companies, banks, or other
institutions to achieve more significant benefit [20]. Partner-
ship is commonly applied in enterprises [21]. Partnership is a
strategic cooperative relationship established on the premise
of obtaining common interests and goals [22]. In a complex
network, the connection between nodes represents the trans-
fer of energy, information, materials, or knowledge within the
network, and the cooperative partnership within the network
is established between nodes through the edge. Conversely,
network links can be predicted by the common partnership
between network nodes. In this research, we study whether
there is a megamerger of link prediction algorithms based on
the idea of management science? That is, does the new algo-
rithm constructed after the combination of several algorithms
with high prediction accuracy still have good accuracy per-
formance? Does its accuracy surpass the classical algorithm
before megamerger?

To better describe the relationship of nodes in complex
networks, partner relationships between nodes of complex
networks are defined in this research. The meaning of coop-
erative partnership varies in different complex networks. For
example, a partnership in industrial networks is a supply
relationship established between supply chains and manu-
facturers. In the sales network, partnership is the buying
and selling relationship. In the social network, partnership
is follows or establishes friendships on social media. In the
knowledge network, partnership is the co-writing of papers
between scholars. The context of this research is a macro-
scopic complex network, which can be an industrial network,
sales network, social network, knowledge network, and so
forth.

Definition 1: The meaning of megamerger in this research
is that the new algorithm obtained by the combination of two
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link prediction algorithms with high prediction accuracy has
higher accuracy.

Definition 2: Partnership is a personalized business rela-
tionship based on mutual trust, benefit, and risk-sharing, and
win-win cooperation between enterprises, industries, or peo-
ple. After establishing partnership, the performance of enter-
prises, industries, or people has been improved.

Definition 3: The node v, is connected to both v, and vy,
and a cooperative relationship exists between nodes, promot-
ing the development of vy and vy, which is defined by v, as a
common partner of v, and vy, denoted as My,. The number of
partners of v, and vy is Sy, = Y M,,.

Definition 4: Partnership between nodes in a complex
network is defined as the existence of at least one partner
between nodes, that is, nodes with common partners consti-
tute a partnership. If at least one partner M, exists between v,
and vy, vy and vy, form a partnership. The set of all partners of
node vy is T (vy), and the set of all partners of node vy is T (vy).
Partnership not only represents the topological relationship
between nodes but also describes the internal cooperative
relationship between nodes.

3) AVERAGE PATH LENGTH L

The average path length represents the intermediate links
required for the association between nodes. The larger L
is, the more intermediate links are needed to establish the
connection between nodes. The formula for calculating the
average path length L of the network is shown in formula (1).

2 .

L= prpa— Zi#jd (vi,vj), iLje{l,2,....n} (D)
where n is the total number of nodes in the network, and
d (v,-, vj) is the number of edges on the shortest path of v; and
vj. The shortest path between two nodes is determined by the
traversal algorithm in Ref. [23].

4) CLUSTERING COEFFICIENT

Suppose node v; is joined to k; nodes to form B; edges, which
has at most k; (k; — 1) / 2 edges. The clustering coefficient
refers to the ratio of the actual number of connected edges
B; of node v; to the sum of the possible number of edges. Its
calculation is shown in formula (2).

2B;

G k®-D ?

B. LINK PREDICTION ALGORITHM BASED ON
MEGAMERGER AND COMMON PARTNERSHIP

1) THE BASIC ASSUMPTIONS

The algorithm design is based on an undirected and power-
less complex network. Assuming that any two nodes in the
network have at least one partner, the possibility of future
connection of two nodes is predicted only based on the points
and edges of the complex network, without considering the
problem of finite rationality of nodes as persons or the exis-
tence of human decisions. The greater the degree of common
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partners, the smaller the similarity of the two nodes. The more
similar the prediction nodes are, the higher their scores.

2) ALGORITHM DESIGN

Undirected and powerless complex network G= (V, B), the
network has N(N-1)/2 node pairs in total. The purpose of
link prediction is to explore the possibility of a link between
two nodes that have not yet been connected, which is rep-
resented by the score (hereinafter referred to as §). After
scoring all pairs of unlinked edges the nodes are ranked in
order of their scores, and the two nodes ranked first are
considered to have a higher probability of being linked in the
future.

Newman [24] firstly studied the role of triadic closure in
the field of a complex network. In this research, we refer
to Newman’s ideas to understand common neighbor nodes
from a management perspective. Nodes v, and vy are not
directly connected, and their common partner is My,. The
smaller k (Myy) is, the fewer connected edges of My, are,
which means that their partnership is relatively concentrated.
Therefore, the partner has the greater linking ability; that is to
say, the nodes v, and vy connected to M, are more likely to
be linked. For example, in a research collaboration network,
a famous scholar M,y in a popular research field publishes
many papers, and it is improbable that any of its partners v,
and v, will collaborate to publish papers. Conversely, it is
more likely that v, and vy, partners of Mxy in a cold research
field, will collaborate because it is highly likely that v, and
vy are teachers or classmates of M,y. In social networks, for
example, it is improbable that fans of famous blogger M,,’s
fans v, and vy are less likely to follow each other. It is more
likely that fans of unfamous blogger A/fxy will follow each
other, as it is very reasonable that they will be introduced to
follow M, v by their friends.

The computer scientist David Liben-Nowell [25] cited
Newman’s paper and proposed the well-known common
neighbor index (hereinafter referred to as CN). Zhou et al.
[26] compared nine well-known local similarity link predic-
tion indexes on six real networks. The results showed that
the simplest approach, the common neighbor algorithm, had
the best overall performance, followed by the Adamic-Adar
index (hereinafter referred to as AA) [27]. Based on the
network resource allocation process, a new similarity mea-
sure was proposed by them and demonstrated to have higher
prediction accuracy than ordinary neighborhoods, which was
the RA index. According to the characteristics of partner-
ship, and megamerger theory in management, a new link
prediction algorithm based on megamerger is proposed (here-
inafter referred to as MA). MA integrates the information
on resource flows between nodes, the degree of common
neighbors, and partnership between nodes. The future link
probability score by MA of nodes v, and v, with a common
partner My is shown in (3).

1 1

MA
55" = Lostyeroonen ki) T og (k)
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where Sﬁ”yA represents the MA similarity score of nodes v,
and vy that share a common partner M,y; k(Myy) is the degree
of node M,y, and obviously, k(v;) > 2.

IIl. LINK PREDICTION EXPERIMENTS

A. HYPOTHESIS FORMULATION

The most straightforward design idea of the link prediction
algorithm that can be analyzed through existing studies is
based on the similarity of two nodes because the properties
of two nodes are easily available in the network. However,
link prediction only based on node information cannot fully
consider the local characteristics of the network, which will
lead to the loss of information in the process of link pre-
diction. It is urgent to propose a link prediction algorithm
that comprehensively integrates the information on resource
flows between nodes, the degree of common neighbors, and
partnership between nodes. In the case of link prediction,
it is conjectured that megamerger is better. Therefore, a new
link prediction algorithm based on megamerger and common
partnership is designed to verify the first hypothesis. That is,
whether there is a megamerger of link prediction algorithms
based on the idea of management science?

In the case of the quantity of experiments, it is conjectured
that more times of experiments bring higher accuracy of link
prediction. Few scholars have analyzed the impact of the
number of link prediction experiments and the proportion of
the test set on the accuracy of the experiments, which results
in poor generalizability or inefficiency of the experimental
conclusions. Sensitivity analysis experiments of the ten link
prediction algorithms to the proportion of the test set and
quantity of experiments are conducted using ten real network
datasets to test the second hypothesis. The purpose of this
research is to test these two conjectures. (1) Hypothesis 1:
megamerger is better. (2) Hypothesis 2: more times experi-
ments bring higher accuracy.

B. DATA ACQUISITION AND NETWORK CONSTRUCTION

The experimental data in this research come from ten real
complex networks. Nematode neural network (C. elegans)
[27], in which points are nematode neurons and edges are
synapses. Political blogs is a network of hyperlinks to polit-
ical blogs in the United States [28]. Yeast protein interac-
tion network, in which nodes are proteins and edges are
protein interactions [29]. Router network, nodes of the net-
work are routers, and the edge is the data exchange between
routers [30]. USAIr is an air network in the United States,
with airports as nodes and routes as sides [31]. Jazz is a
collaborative network of jazz musicians, and a network of
partnership between jazz musicians [32]. FWFW is a food
chain network of 128 species in the rainy season in Florida
Bay, with the sides of the network indicating predation rela-
tionships [33]. FWMW is a mangrove estuarine wet season
food chain network containing 97 species of organisms [34].
NS is a collaborative network of scientists, where the nodes
of the network represent scientists and the edges represent
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TABLE 1. Network characteristics of experimental data.

Data Set Number Number Average Average Aggregation
of of Edges Degree Shortest Coefficient
Nodes Path
C. elegans 297 2,148 14.47 2.46 0.308
Political "y 5y 19021 2736 274 036
blogs
Yeast 2,617 11,855 9.85 5.1 0.388
Router 5,022 6,258 2.49 6.45 0.033
USAir 332 2,126 12.81 2.74 0.749
Jazz 198 2,742 27.7 2.235 0.618
FWFW 128 2,075 32.422 1.776 0.335
FWMW 97 1446 29.814 1.693 0.468
NS 379 914 4.82 6.04 0.798
Metabolic 453 2,052 8.94 2.664 0.647

collaborative relationships between scientists [35]. Metabolic
is the network of C. elegans’ metabolic [36]. Table 1 shows
the statistical characteristics of experimental data.

C. EVALUATION METRIC

There are three main ways to verify the accuracy of link
prediction algorithms: AUC (Area Under Curve), precision,
and ranking score. AUC focuses on the overall performance
of the algorithm, precision focuses on whether the nodes in
front of the prediction score are predicted accurately, and
ranking score focuses on the prediction score ranking. In this
research, a more comprehensive AUC index is more suitable
to verify the accuracy of the algorithm. The reference [15]
gave a detailed procedure for calculating AUC. AUC is
the area under the Receiver Operating Characteristic curve
(ROC), which can be simply understood as an edge chosen
randomly in the test set [37]. Its score value is higher than
that of a non-existent edge randomly selected. Its calculation
formula is shown in (4). Where n denotes the number of
extraction experiments, n’ indicates that the fraction of the
test set is bigger than the fraction of non-existent edges, and
n" indicates that the fraction of the test set is equal to the
fraction of nonexistent edges.

/ 4
avc =" 4+ 0.5n @
n

D. EXPERIMENT DESIGN
Data set S is randomly divided into training set X and testing
set C, test set ratio B = }% ,where XN C = ¢#,X U
C = S. Only the information in the training set can be used
to estimate the unknown edges. The experimental steps are
shown in Figure 1.

Stepl: network input and construction: construct the adja-
cency matrix based on the network data set. Step2: data set
division: randomly divide the test set and train set according
to the ratio of the test set. Step3: calculate the AUC of ten
link prediction algorithms. Verify hypothesis 1. Step4: sen-
sitivity analysis of test set ratio: the quantity of experiments
is unchanged, and step1-3 are repeated with different test set
ratios. Step5: quantity of experiments in terms of sensitivity
analysis: the proportion of the test set is kept constant, and
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FIGURE 1. Experimental procedure.

TABLE 2. Classical link prediction algorithm.

Classical Link Prediction Caleulation Formula

Algorithm
CN[25] SN = |t(wy) nt(vy)|
AA
AA[27] Spa = o
RA[26] SRA = k_
T(v ynz(v
Salton [38] sa = %
) 0 1(v,)
3 gla _ |T
Jaccard [39] xy |T(Ux) n T(vy)|
2x|t(v) nt(ny)|
Serensen [40] 5%9 - kx:_—ky
HPI [41] supr [T 0 ()]
min{k,, k,}
HDI [42] SJIc.’yDI |T(Ux) n T( )|
max{kx, ky}
LHN [43] v — [r(w) n1(v,)]
WU

stepl-3 is repeated under the different quantities of experi-
ments. Test hypothesis 2.

E. EXPERIMENTAL RESULTS AND DISCUSSION

1) HYPOTHESIS 1: MEGAMERGER IS BETTER

The classical link prediction algorithm formulas are shown in
Table 2.

The higher the AUC value is, the better the prediction
effect is. Set quantity of experiments N=100 and the test
set ratio f=0.1 to carry out link prediction experiments on
ten real networks, and the AUC values of prediction accuracy
obtained are shown in Table 3.

Among the ten networks, MA has the highest AUC in 3 net-
works, which are Router, FWMW, and Metabolic. The AUC
value of MA is only 0.031% higher than AA in Router. The

VOLUME 10, 2022

TABLE 3. AUC values of link prediction algorithm for ten real networks.

Salt - Jace - Sorem oy oppp WHOoy AA RA MA
on ard sen N

c 079 079 0791 080 078 072 084 086 087 086
elegans 87 22 7 54 14 49 81 57 03 97
Political 087 087 0876 08 087 076 092 092 092 092
blogs 95 77 9 58 38 32 38 75 87 86
Router 065 065 0650 065 065 065 065 065 065  0.65
! 03 08 3 06 08 09 14 14 12 16
Yeast 091 091 0915 091 091 091 091 091 091 091
49 53 2 41 52 11 63 68 7 68

Usir 092 091 0915 08 090 077 095 096 097 095
63 52 4 32 91 74 49 65 25 52

096 096 0962 094 095 090 095 096 097 097

Jazz 67 20 3 82 31 28 65 36 24 17
052 052 0527 053 052 040 060 061 061 0.6l

FWFW 91 78 8 07 34 03 96 12 57 44
0.61 062 0625 056 063 040 070 071 071 071

FWMW 89 54 2 92 68 90 66 08 33 36
. 099 099 0992 099 099 099 099 099 099 099

NS 25 25 3 24 24 20 24 27 26 26
_ 0381 077 0777 091 076 074 092 095 096  0.96
Metabolic 45 82 5 48 53 12 41 63 09 11

accuracy of the MA improved the most in the FWMW net-
work, by 0.042% over RA, and megamerger is not reflected
in the link prediction algorithm. The lowest MA accuracy
improvement in the Metabolic network, with an improvement
of only 0.021% compared to RA. All ten link prediction
algorithms have the highest prediction accuracy in the NS
network, with an average AUC of 99.24%, as the NS network
has the smallest number of edges and the largest aggregation
coefficient. The AUC of ten link prediction algorithms in the
Router network is generally low. Router contains 5,022 nodes
but only 6,258 links. The average degree of Router is the
smallest among the ten networks at only 2.49, and the average
shortest path is 6.45. The Router network has 12,607,731
node pairs, but its edge connection rate is only 0.05%.

Focus on the analysis of CN, AA, RA, and MA that per-
form well in Table 3, and reserve only two decimal values of
AUC, as shown in Table 4. Router, with the highest number
of nodes, and NS, with the lowest number of nodes, are
the two datasets with the lowest AUC values for MA. The
AUC of MA are 0.65 and 0.71, respectively, indicating that
MA accuracy is low in networks with a large and small
number of nodes. MA has no obvious advantages, and the
principle of megamerger cannot be realized in link prediction
algorithm; that is to say, megamerger is not always better.
In the other eight networks, although the AUC values of the
four algorithms are different, there is no significant advantage
or disadvantage. Therefore, the first question proposed in
this research can be answered, that is, the megamerger is
not stronger. In link prediction, the megamerger of several
algorithms with better prediction accuracy to form a new link
prediction algorithm cannot surpass the prediction accuracy
of the traditional algorithm. Hence, the first hypothesis is
false.

2) HYPOTHESIS 2: MORE TIMES EXPERIMENTS BRING
HIGHER ACCURACY

To verify the second hypothesis, sensitivity analysis experi-
ments of ten link prediction algorithms were carried out on
test set ratio B8 and quantity of experiments N.
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TABLE 4. AUC values of for link prediction algorithm that perform well.

Data set Name CN AA RA MA
C. elegans 0.85 0.87 0.87 0.87
Political blogs 0.92 0.93 0.93 0.93
Router 0.65 0.65 0.65 0.65
Yeast 0.92 0.92 0.92 0.92
USAir 0.95 0.97 0.97 0.96
Jazz 0.96 0.96 0.97 0.97
FWFW 0.61 0.61 0.62 0.61
FWMW 0.71 0.71 0.71 0.71
NS 0.99 0.99 0.99 0.99
Metabolic 0.92 0.96 0.96 0.96

TABLE 5. Applicability of data sets to different proportions of test sets.

B 01 02 03 04 05 06 07 08 09
C.elegans v N N N v J N N x

Pglli;igcsal Y L Y AV AN
Router N X X X X X X X X
Yeast N N N N J J N X X
USAir N N N N N
Jazz S
FWFW NN N AN NN NN A
FWMW v N v N NN NN A
NS NN N A x x x X
Metabolic N v v v N N N X X

a: SENSITIVITY ANALYSIS OF TEST SET RATIO

Quantity of experiments N = 20, test set ratio § = 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and the link prediction
experiment was carried out on ten data sets respectively.
It was found that not all data sets were suitable for each 8
value. The applicability of the data sets is shown in Table 5.
Where / means the dataset is applicable and x indicates that
the data set is unsuitable. The reason why the data set is not
applicable is that the continuity of the training set cannot be
guaranteed under those test set ratios.

According to Table 5, all ten datasets can meet the appli-
cability at 8 =0.1. The Political blogs dataset is applica-
ble at 8 ={0.1,0.2, ---, 0.9} because its number of edges
is the largest among the ten networks so that it can meet
the proportional allocation of various test sets. A combined
analysis of Table 5 and Table 1 shows that Political blogs,
Jazz, FWFW, and FWMW rank in the top four of the ten
datasets in terms of average degree, much larger than the
other datasets. Political blogs, Jazz, FWFW, and FWMW are
applicable to all nine values of 8. The Router is applicable
only at § =0.1. The Router network has the largest node
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FIGURE 2. Sensitivity of ten link prediction algorithms’ accuracy to 8 in
ten real network datasets.

number, the biggest average shortest path length, the smallest
average degree, and aggregation coefficient, and the highest
sensitivity to 8. Correspondingly, the FWMW network has
the least number of nodes and the smallest average shortest
path length, which is effective at 8 = {0.1,0.2, ---, 0.9}.
C. elegans is not applicable only when 8 =0.9 and can be
predicted under other 8 values, indicating its low sensitivity
to 8. When B =0.9, only Political blogs, Jazz, FWFW,
and FWMW are applicable, so setting the test set ratio to
0.9 in link prediction experiments is not recommended. The
sensitivity of ten link prediction algorithms’ accuracy to g8 in
ten real network datasets is shown in Figure 2.
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As shown from Figure (a), when 8 <0.4, the AUC value of
the C. elegans network is large, and the prediction accuracy
is good, and in this range, the LHN algorithm performs
significantly lower. When 8 >0.4, the AUC tends to decline
significantly, with the maximum decreasing rate as high as
37%., and the accuracy of each algorithm in this range does
not vary to a great extent. Figure (b) shows that the AUC
of the Political blogs network is generally good by all link
prediction algorithms when 8 <0.6, but the AUC of the LHN
algorithm is still the lowest. When  >0.6, the maximum
accuracy drop is 42%. Figure (d) shows that the accuracies
of different link prediction algorithms in the Yeast network
are not significantly different, but the accuracy of MA when
B =0.1 is 22% higher than that of 8 =0.7. According to
the analysis of Figure (e), (f), (g), (h), and (j), the accuracy
of the LHN algorithm is the lowest in all these ten datasets,
and the AUC distribution trend of the ten link prediction
algorithms does not change significantly with the change of
B. In the Jazz dataset, the AUC of MA is 74% higher when
B =0.1 than when B8 =0.9. As shown in Fig. (i), there is no
significant fluctuation in the prediction accuracy of the ten
link prediction algorithms for the NS network. When 8 =0.1,
the accuracy of all ten link prediction algorithms is maximum,
the AUC values all reach above 99%, and the prediction
accuracy of all ten link prediction algorithms for NS is very
high. NS networks have the lowest number of edges and the
largest aggregation coefficient, and the experimental results
show that the link prediction algorithms have higher predic-
tion accuracy on such characteristic networks. The combined
analysis shows that the ten link prediction algorithms with
B =0.1 have the highest prediction accuracy for ten networks.

b: QUANTITY OF EXPERIMENTS IN TERMS OF SENSITIVITY
ANALYSIS

According to the above analysis, when g =0.1, all the ten
data sets can meet the applicability, and the accuracy of each
algorithm is the highest. Therefore, the test sets ratio was set
to 0.1 during the sensitivity analysis of the quantity of exper-
iments. Set experiment times N = 10, 20, 30, 40, 50, 100,
200, 500, 1,000, 2,000, 10,000 and carry out link prediction
experiments on ten data sets respectively. The sensitivity of
each network to N is shown in Figure 3.

According to the Figures (a), (b), (e), (), (g), (h), (j) in
Fig. 3, C. elegans, Political blogs, USAir, Jazz, FWFW,
FWMVW, and Metabolic networks are not sensitive to the
change of N. The accuracy of each algorithm does not fluc-
tuate with the change of the quantity of experiments. LHN
algorithm generally performs poorly in ten data sets. The
AUC of MA decreases clearly when the USAir network
conducts 100 times experiments but performs well when N
is set to other values. For N = 10, the three networks C.
elegans, Jazz, and FWMW have the highest accuracy of the
ten link prediction algorithms. C. elegans dataset has the
highest accuracy at ten times, and the quantity of experiments
should not exceed 50. When the quantity of experiments
is greater than ten, AUC is relatively balanced. The AUC
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FIGURE 3. Sensitivity of ten link prediction algorithms’ accuracy to N in
ten real network datasets.

value reaches its peak when the quantity of experiments of
the Political blogs data set is about 30. When the quantity
of experiments is greater than 30, the prediction accuracy
decreases obviously, and the quantity of experiments should
not exceed 30. When conducting link prediction experiments
on data like Political blogs database with a moderate number
of nodes, a large number of sides, and large average degree,
the quantity of experiments should be set to 30, and too many
or too few experiments should not achieve good prediction
results.

Figures (c), (d), and (i) appear that Router, Yeast, and NS
networks have high sensitivity to N, but the sensitivity is only
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about 1%. For the Router network, the AUC performs best
when N = 20, whereas the AUC values of all algorithms are
generally low when N = 30. As to the Yeast, the AUC shows
the best performance when N = 30, whereas AUC values
of all algorithms are generally low when N = 10. When
N =500, 1,000, 2,000, 10,000, the lines in Figure (i) almost
overlap and the values are extremely similar. When N =
10,000, the computation time increases, but the algorithms
have the lowest accuracy, indicating that for NS, networks
N = 30 is sufficient to meet the experimental accuracy
requirements.

A comprehensive analysis of Figure 3 shows no signifi-
cant linear enhancement relationship between the quantity of
experiments and the accuracy of link prediction algorithms
when ten link prediction algorithms have experimented on
ten real data sets. The prediction accuracy of the ten link
prediction algorithms is highest when times of experiments
of Political blogs with the highest number of edges are taken
as 30 in the ten real network datasets. For the Router network
with the largest number of nodes, the maximum accuracy of
link prediction can be achieved by taking 20 experiments,
which improves the efficiency of link prediction experiments.
There is no need to increase the number of experiments
to 100 or even 10,000, which vastly reduces the computa-
tional speed. The number of experiments for the FWMW
network with the smallest number of nodes is taken as 10,
and the number of experiments for the NS network with
the smallest number of edges is taken as 30. Based on
the experimental results, it is clear that more times exper-
iments do not lead to higher link prediction accuracy for
either large or small networks. Therefore, hypothesis 2 is
rejected.

F. SUGGESTIONS OF LINK PREDICTION EXPERIMENTS

In previous studies, the quantity of link prediction experi-
ments is usually taken to be 100 times, or larger [15], [44],
which is that the scholars are guided by the inherent thought
hypothesis 2. This research verifies that hypothesis 2 is wrong
through experiments. According to the analysis in the pre-
vious section, the relationship between the characteristics of
the data set, the test set ratio, and the quantity of experiments
are summarized. Thus, the link prediction experiment sugges-
tions are given as shown in Table 6.

According to the experimental results, the suggested the
quantity of experiments for different types of networks is
given, which is helpful to improve the experimental efficiency
of link prediction, especially for huge networks with a large
number of nodes and edges. The conclusions of this study can
distinctly reduce the experimental time and have some recom-
mended significance for guiding the experimental design of
link prediction.

1) For refined networks with fewer nodes and shorter aver-
age path length, good prediction results can be achieved with-
out many experiments, so it is suggested to set the experiment
number to about ten times. 2) For a large network with many
nodes and a large average path length, the larger quantity of
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TABLE 6. Suggestions for link prediction experiments.

Data set Data Set Features The Qui}ntity of  Test Sets
Name Experiments Ratio
Small network, the
C. elegans number of nodes is 10 01

small, the average

shortest path is short.
Medium network, the
number of nodes is
Political moderate, the number

blogs of edges is large, the
average degree is
large.
Large network, more
nodes, larger average
path length, average
degree and
aggregation
coefficient.
Medium and large
network.
Small network, with
smaller average path
length. The
aggregation coefficient 40 0.1
is large and has the
characteristics of small
world network.
Small networks, with
the large average
Jazz degree and 10 0.1
aggregation
coefficient.
Small networks, with
the largest average
degree among ten data
sets.
Small networks, with
the minimum number
of nodes and average 10 0.1
shortest path in ten
data sets.
Small networks, with
the minimum number
of edges and the
maximum aggregation
coefficient in ten data
sets.
Small networks, with
the second largest
aggregation coefficient
among ten data sets.

30 0.1

Router 20 0.1

Yeast 30 0.1

USAir

FWFW 40 0.1

FWMW

NS 30 0.1

Metabolic 50 0.1

experiments, the longer the experiment time will inevitably
be. However, it is found through experiments that the quantity
of experiments has no significant impact on the prediction
accuracy. Therefore, it is suggested to set the quantity of
experiments as 20-40 times to meet the accuracy requirement
and effectively improve the experimental efficiency. 3) For
networks with not a large number of nodes, the quantity of
experiments can be set to about 40-50 times because such
networks will not occupy a long experiment time even if they
have a large quantity of experiments, and the accuracy is also
good within 40-50 times of experiments. 4) When doing the
link prediction experiment, the test set ratio is recommended
to be 0.1.
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IV. CONCLUSION AND DISCUSSION

The purpose of this research is to test two hypotheses: first,
megamerger is better. That is to say, link prediction algo-
rithms with high prediction accuracy combine to produce
a new link prediction algorithm with higher accuracy. The
other hypothesis is that the higher quantity of experiments,
the higher the prediction accuracy. This research is a new
attempt to apply management theory to complex network link
prediction by experimentally verifying that people’s inherent
thinking is not always true. The recommended number of
experiments for link prediction experiments is given accord-
ing to the experimental results, which may be beneficial for
scholars to conduct link prediction experiments scientifically
and efficiently.

The experimental results showed that megamerger was
inappropriate for the link prediction algorithms, and MA
has no significant advantage over the classical link predic-
tion algorithm. Although MA integrated the information on
resource flows between nodes, the degree of common neigh-
bors, and partnership between nodes, the AUC of MA was
always basically equal to the original link prediction algo-
rithm. The first hypothesis was rejected. Therefore, we infer
that the more information about the network used in the link
prediction algorithm doesn’t deserve more accuracy.

Promising experimental results were achieved with a
smaller quantity of experiments. Using ten real network
datasets, a sensitivity analysis of the quantity of experiments
done on the ten link prediction algorithms found that the
AUC obtained from 10,000 times of experiments was not the
highest but rather the highest link prediction accuracy of each
algorithm when the quantity of experiments was set to 10-40,
so the second hypothesis was rejected. This result is quite
different from the usual practice of setting the quantity of
experiments to 100 in previous studies. Hence, we suggest
that ten times of experiments can meet the accuracy require-
ment for a refined network with a small number of nodes and
a short average path length. For huge networks with a larger
number of nodes and a larger average path length, 20-40 times
of experiments are sufficient to obtain good link prediction
accuracy, significantly reducing the prediction time and thus
improving prediction efficiency.

In addition, only link prediction algorithms based on local
similarity are investigated in this study, and megamerger
of other types of link prediction algorithms will be further
explored in future research. Experiments related to other
network structures with special structures such as tree-like
networks are also the subject of subsequent research.
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