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ABSTRACT Automatic modulation classification (AMC) is a significant part of cognitive communication
systems. In early researches, likelihood-based (LB) and feature-based (FB) solutions were proposed for
the AMC problem. With the developments in the data-driven approaches, a third method based on deep
learning (DL) has recently gained prominence among AMC researchers. It is shown that convolutional
neural network based classifiers are very efficient in the AMC for both single input single output (SISO)
and multiple-input multiple-output (MIMO) systems. However, for most of the works in MIMO-AMC, the
channel considered is full rank. This work addresses the problem of AMC over rank deficient channels
such as a keyhole channel using a DL-based classifier. The classifier utilizes a CNN, which does not employ
pooling layers or dropouts in the convolutional layers. To further improve the classification accuracy, decision
cooperation as well as feature fusion is employed. In addition to the keyhole effect, this work investigates
the effect of antenna correlation on DL-based AMC. A comparative study of the proposed method and the
existing FB AMC method for the MIMO keyhole channel is also presented.

INDEX TERMS Automatic modulation classification (AMC), deep learning, convolutional neural network
(CNN), keyhole channel, multiple input multiple output systems (MIMO), correlated MIMO channels,
feature fusion, decision cooperation.

I. INTRODUCTION
Automatic modulation classification (AMC) is an integral
part of cognitive-communication receivers. Traditionally
AMC was a key technology for military communication [1]
applications such as electronic warfare, intruder signal detec-
tion, and surveillance. With the introduction of 5G and
beyond, the communication systems need to handle numer-
ous devices in the network to process various information
sources. Integrating a large number of devices into the com-
munication networks demands increased cognition in the
system. Hence, the realization of an intelligent communica-
tion system that will automatically adjust the parameters to
adapt as per the requirement of the situation is much needed.
In these types of cognitive radio applications, a known pool
of modulations can be used at the transmitter, and a particular
modulation is dynamically selected according to the data rate
and channel conditions. This is typically achieved by adding
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overhead pilot symbols at each frame of the signal. However,
as the number of digital devices added to the network is
increasing exponentially, adding overhead symbols affects
the efficiency of the system. AMC-based intelligent receivers
may be employed in these cases to alleviate the problem.

The research in AMC started by applying the likelihood-
based (LB) methods to solve the problem. The LB approach
is optimum in the sense that it maximizes the likelihood
of the received data with respect to the modulation type.
Important LB methods include the average likelihood ratio
test (ALRT), the generalized likelihood ratio test (GLRT),
and the hybrid likelihood ratio test (HLRT) [2]–[4]. The
poor performances under model mismatch and the high
computational complexity of LB methods paved the way
for the feature-based (FB) methods. Higher-order moments,
higher-order cumulants (HOC), cyclic cumulants, etc
[5]–[8] were used as features to classify the unknown sig-
nal at the receiver. Another technique, which is gaining
popularity among AMC researchers, is deep learning (DL)
based classifiers [9]. DL networks like convolutional neural
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FIGURE 1. Spatial keyhole channel.

networks (CNN), recurrent neural networks (RNN), etc., are
being employed for feature extraction and classification of
modulated signals.

The enormous success of DL algorithms in the field of
image processing, computer vision, speech processing, etc.
prompted the researchers to utilize the same in wireless com-
munication applications. A data-driven DL based approach
for designing a communication system is proposed in
[10], [11]. A newway of communication system design based
on auto encoders is presented in [12]. These works have
demonstrated that the entire transmitter-receiver implementa-
tions for a given channel can be learned by the DL algorithms
and are competent with the state-of-the-art systems.

A comprehensive survey of different AMC research works
based on the DL is presented in [9]. The initial works mostly
discussed the AMC for single input single output systems
(SISO) [12]–[15]. The results presented in these works estab-
lished the improvement of classification accuracy over tradi-
tional methods. A few of these works [16]–[18] are based on
the publicly available datasets RadioML 2016.10B [13] and
RadioML 2018.01A [14]. Many others employed datasets
generated by themselves according to the selected channel
conditions [15], [19].

A. MOTIVATION
Since many of the recently deployed communication systems
employ the multiple-input multiple-output (MIMO) technol-
ogy for better channel utilization, the AMC for MIMO sys-
tems has become popular. There exist a number of works in
the literature employing both the LB and the FB methods

for the AMC of MIMO signals. In [20], Choqueuse et al.
have introduced an LB AMC algorithm for MIMO signals
under uncorrelated Rayleigh channel assumptions. A fea-
ture fusion-based method was introduced in [21] for the
classification considering a known MIMO channel matrix.
In this work, Hassan et al. have proposed an FB technique
that employed an artificial neural network (ANN) as the clas-
sifier. The results for the classification are presented for both
known channel state information (CSI) and unknown CSI
for a correlated MIMO channel. Another FB classification
method for MIMO systems under frequency selective fading
channels is presented in [22], which utilized the peaks in
the cross-correlation function for differentiating the mod-
ulation formats. Zhu and Nandi [23] have employed the
expectation-maximization algorithm to estimate the MIMO
channel matrix, and then an LB-based method is employed
formodulation classification. Classification ofMIMO signals
under the Rayleigh fading channel using a CNNwas proposed
in [24]. They have employed a zero-forcing equalizer for CSI
estimation and used the estimated signals to train the CNN.
The performance of the classifier under imperfect CSI was
also studied in the same work. A CNN-based cooperative
AMC method for the MIMO signals under Rayleigh fading
channel is proposed in [25]. In both of these works, the CNN
structure contained one dimensional convolutional layers.

In the majority of researches existing in the literature, the
MIMO channel models assume a rich scattering environment.
However, it is shown that for some MIMO environments, the
capacity of the channel will be low even though the signals are
uncorrelated [26]–[28].The AMC for MIMO signals under
such poor scattering environment (rank deficient channels) is
addressed in [29] using an FB approach. This method is able
to discriminate only lower order PSK constellations under
unknown CSI. To the best of our knowledge, the investigation
of DL-based AMC under a rank deficient channel is not car-
ried out in the literature. In this work, we propose to evaluate
the efficacy of DL-based classifiers under a correlatedMIMO
keyhole channel.

The contribution of this paper can be summarised as
follows:

1) A CNN-based classifier for the AMC ofMIMO signals
under correlated keyhole channel is proposed. A deci-
sion cooperative mechanism as well as feature fusion
method is employed to improve the classification accu-
racy. The classification performance of the proposed
CNN-classifier is comparedwith the traditionalmethod
employing HOC.

2) Two CNNmodels for SISO AMC and one CNNmodel
for MIMO AMC were selected from the DL-AMC
literature and adapted to the current problem. The net-
works were trained and tested on the MIMO signals
over keyhole channels and their performance was com-
pared with the proposed classifier.

The rest of the paper is organized as follows. In Section II,
the MIMO system model is discussed. The HOC based
AMC for MIMO signals over keyhole channel which we
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FIGURE 2. The general representation of a DL-based AMC system.

have selected as our baseline work is outlined in Section III.
A general overview of the DL-based AMC is presented in
Section IV. Section V explains the CNN architecture pro-
posed in this work. This section also explains the cooperative
decision fusion mechanism as well as feature fusion method
used to improve the classification accuracy. The simulation
results are given in Section VI. Finally, a conclusion is drawn
in Section VII.

II. SYSTEM MODEL
We consider a time invariant, block fading MIMO channel
withNT transmitting andNR receiving antennas. Hence at any
instance k , the output signal Y(k) cane be given by,

Y (k) = HX(k)+W (k) (1)

where H is the complex MIMO channel matrix of size NR ×
NT , and W (k) is the NR × 1 zero mean circularly symmetric
complex Gaussian noise vector.

A. MIMO KEYHOLE CHANNEL
A spatially correlated MIMO channel [26], [30] can be mod-
elled by the matrix

H = θ1/2R HRθ
1/2
T (2)

where θR and θT represent the receiver and the transmitter
correlationmatrix andHR is the uncorrelatedMIMO channel.
The spatially correlated channel considered here is modelled
by the Kronecker model [31]. The elements of the correlation
matrix θ are given by,

[θ ]i,j =

{
ρj−i, i ≤ j
[θ ]∗j,i, i > j

(3)

where ρ is the complex antenna correlation coefficient of
the neighboring antennas. The two correlation matrices, θR,

as well as θT , are generated using the receiver antenna corre-
lation ρr and ρt respectively according to (3).

A keyhole channel can occur because of a rich scattering
environment separated by large distance or rich scattering
environments connected by a rank-1 propagation path. Rich
scattering environments connected by diffraction over edges
also create a keyhole channel [26], [28]. This can be explained
using Fig. 1 where a screen with a small keyhole is punched
through it separating the transmitter and receiver antennas.
Hence the channel model described by equation (2), cannot
model the keyhole channel. The exact model that represents
a MIMO correlated keyhole channel can be expressed as,

H = θ1/2R βαTθ
1/2
T (4)

where β and α are independent Rayleigh vectors of size
NR × 1 and NT × 1 respectively.

III. THE HOC-BASED AMC OF MIMO SIGNALS OVER
KEYHOLE CHANNEL (BASELINE WORK)
In [29], an HOC-based algorithm is proposed for the clas-
sification of lower-order PSK signals over the MIMO key-
hole channel. The modulation pool considered was {BPSK,
QPSK, OQPSK}. The direct modulation recognition (DMR)
algorithm proposed in this work does not require CSI at the
receiver for classification. The authors cleverly employed the
ratio of 4th and 6th order cumulants to cancel out the channel
effects. The discriminative features were ratios of HOC as
given in (5-6).

f̂1 =

∑Nr
i=1 Ĉ6,3(1y(k))∑Nr
i=1 Ĉ6,3(y(k))

(5)

f̂2 =

∑Nr
i=1 Ĉ4,2(1ŷ(k))∑Nr
i=1 Ĉ4,2(y(k))

(6)

where 1ŷ(k) = ŷ(k) − y(k − 1) is the backward difference
of the received signal and Ĉm,nis the estimate of the cumu-
lant value of signal. For an in depth understanding of these
features one can refer [29].

IV. DL-BASED AMC CLASSIFIERS
A schematic representation of DL-based AMC is depicted in
Fig. 2. The existing works on the DL-based AMC employ
networks like the CNN, the recurrent neural networks (RNN),
the ResNet, the convolutional long short term deep neural
network (CLDNN), etc., as the core of the classifier. Different
types of data representations were proposed for the training
and testing of these networks. The three important data rep-
resentations are in-phase and quadrature (IQ), magnitude and
phase (Polar), and the constellation image representations.
At the receiver, the complex baseband signal is converted into
one of these representations and stored with corresponding
labels in the dataset. In a supervised DL-based AMC, these
labels include both the modulation type and the SNR associ-
ated with the signal.
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FIGURE 3. Structure of DDrCNN.

A. IMPORTANT CNN ARCHITECTURES FOR DL-AMC
In this section, some of the CNN architectures used in
DL-based AMC are discussed. Out of these, the first two
CNN architectures (Maxpooling and Dropout CNN) are well
discussed by the DL-based AMC community in the SISO
scenario. The third network architecture is the pioneering
work on the DL-based AMC for MIMO signals. A compar-
ison of the performances of the networks under the keyhole
scenario is presented in the result section. These architectures
are outlined below.

1) MAXPOOLING CNN
The first CNN architecture chosen for comparison is from
the work of O’shea et al. [12]. The paper proposes to use two
convolutional layers followed by a max-pooling layer along
with four dense layers. The activation function used in each
of the first five layers was the rectified linear unit (ReLU),
and a softmax activation was used in the output dense layer.

2) DROPOUT CNN (DrCNN)
The second architecture is taken from [15] which uses a
dropout layer instead of max pooling after each convolu-
tional layer. This network uses a parametric rectified linear
unit (PReLU) as the activation function except for the output

layer, where a softmax activation is applied. PReLu is a
generalization of ReLU with a slope for negative values.

3) 1DCNN
A one-dimensional CNN architecture was employed by [24].
They applied batch normalization (BN) and dropout after
each convolutional and dense layer for regularization. The
activation function used is softmax for the dense output layer
and ReLU for all other layers. We refer to this CNN architec-
ture as 1DCNN in the subsequent sections.

V. PROPOSED DL-AMC FOR MIMO SIGNALS OVER
KEYHOLE CHANNEL
A CNN is utilized as the DL network in the proposed clas-
sifier. Further, the classification accuracy of the network is
improved by adding a cooperative mechanism at the output of
the CNN. Details of the employed CNN and the cooperative
mechanism are explained in the subsequent sections.

A. DENSE LAYER DROPOUT CNN (DDrCNN)
ARCHITECTURE
Generally, the CNNs employed in the AMC problems include
two or three convolutional layers and a few dense layers [12],
[15], [25]. Since AMC classifiers are to be deployed in envi-
ronments with limited computational capabilities, the size of
the DL classifier should be small. In this work, a modified
version of the CNN architecture mentioned in the authors
previous work [32] is utilized as the DL network.

We observe that by removing pooling layers and dropouts
from the convolutional layers, the CNN is able to achieve
better classification performance in the case of AMC [32].
Inmost of the DL-AMCmethods, the network is able to attain
significantly better results than the FB-based methods with
fewer number of symbols at the receiver. Since the number of
symbols in the received signal is less, the size of the CNN
is manageable though we remove the pooling layers. The
removal of pooling layers and dropout allows the CNN to
keep the richness of the features and help to achieve better
classification results. In order to standardize the inputs to each
layer, batch normalization is employed.

The architecture ofDDrCNNproposed to employ forAMC
under the MIMO keyhole channel is presented in Fig. 3.
Three convolution layers function as the feature extraction
unit. The first layer contains 128 filters of kernel size (2,8)
with rectified linear unit (ReLU) as the activation function.
The second and third convolutional layers consist of 64 and
32 filters with kernel size (1,8), respectively. Two hidden
layers with 256 and 128 filters are employed with ReLU as
the activation function in the dense layers. BN and dropout
are added after each of the hidden layers. The output layer is
a softmax layer.

The network is trained using the corresponding dataset for
the non-cooperative and cooperative cases. The loss func-
tion selected is the categorical cross entropy defined for the
ground truth of the class symbols represented in one-hot
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encoding (yi) and its prediction (ŷi) as,

Loss = −
1
N

N∑
i=1

yi · log(ŷi) (7)

where N is the number of samples considered in one training
batch.

The adaptive learning rate optimizer (Adam) is used as the
learning rate optimizer to minimize the loss function. The
learning rate value employed for the training of DDrCNN
is 0.001.

Algorithm 1 Cooperative AMC for a Pool of
Modulation,M
Input: Output from each of the NR antennas

Y j, j = 1→ NR
Output: Selected modulation type m̂n ∈M
I. Input Y j (in the IQ format) to the trained CNN.
II. Obtain the softmax probability of each class for these
signals at each antenna, to make the probability vector
at jth antenna,
Pj = [P(m1/Y j,P(m2/Y j, . . . .P(m|M|/Y j))]
III. Find the average probability vector at the receiver,
P = 1

NR

∑NR
1 Pj

IV. Select modulation type, m̂n = argmax
n∈[1,|M|]

(P(n))

B. COOPERATIVE RULES EMPLOYED FOR THE
PERFORMANCE IMPROVEMENT
The literature shows that when there are multiple antennas at
the receiver, one can cooperatively combine the predictions
at each of them to improve the overall classification perfor-
mance of the AMC system [25], [30], [33]. The schematic
representation of cooperative AMC using decision fusion is
shown in Fig. 4. The CNN is trained with the output from
each of the receiving antennas with proper labels. At the time
of evaluation, the decisions from the receiving antennas are
combined together to predict the correct modulation format.
In [25], the authors have shown that direct averaging based
cooperation outperforms direct voting method in terms of
classification accuracy. Hence in this work, we employ the
averaging-based cooperation for combining the results from
each antenna. During testing, the output from each of the
receiving antennas is given to the trained CNN, and the soft-
max output probabilities are recorded. Now, these probability
vectors are averaged over all available receiver antennas,
and the symbol with maximum probability after averaging is
considered as the chosen modulation format. The process of
decision fusion is elaborated in Algorithm 1.

C. AMC USING FEATURE FUSION
In order to remove the decision cooperation at the output of
the CNN, a feature-fusion method is proposed in this section.
The features obtained from the trained DDrCNN considered

in the previous section are fused together to form a new
input signal for a neural network classifier. At lower SNR
levels, the performance of this classifier appears to be better
than the cooperative decision fusion mechanism applied in
the previous section. A schematic diagram of the process is
shown in Fig. 5.
The ANN classifier selected for the classification purpose

consists of two fully connected layers. The final dense layer
of DDrCNN has a size of 128. Hence the input data shape
to the ANN classifier shall be NR times 128. The two hidden
layers of the ANN classifier consist of 128 and 64 neurons
respectively. BN and dropouts are added after each hidden
layers. A softmax output layer is employed to select the
output class. We use the categorical cross entropy as the
loss function and adam as the optimizer with a learning rate
of 0.01.

VI. RESULTS AND DISCUSSIONS
In this work, along with the proposed CNN-based classi-
fier, the other three CNN-based DL classifiers described in
Section IVwere also tested for their AMCperformance on the
MIMO signals over a keyhole channel. The process of data
generation and implementation details are presented first,
which is followed by the classification results.

FIGURE 4. Schematic diagram of the AMC system employing decision
cooperation.

A. THE DATA GENERATION AND IMPLEMENTATION
DETAILS
The dataset used for training and testing the classifier is
generated using Matlab. For this work, we have created two
different datasets as per the model described in Section II.
The first dataset consist of 3 lower order modulation types
namely BPSK, QPSK and OQPSK. The second one is a
larger dataset containing 5 modulation schemes viz. BPSK,
QPSK, OQPSK, 8-PSK and 16-QAM. The process of data
generation is shown in Fig. 6. Initially, we generate a random
sequence of length N, which is then modulated to produce
the complex modulated vector X of the same size. The vector
X is normalized to unit power and reshaped into Nt × N/Nt ,
whereNt is the number of transmitting antennas of theMIMO
system. The signal is then passed through the Rayleigh fading
channel and received at each of the receiving antennas. The
complex baseband signal received at a particular antenna j
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FIGURE 5. Schematic diagram of the AMC system employing feature
fusion.

can be expressed as yj = [y1(j)y2(j) . . . yN/Nt (j)]
T , where

j ∈ [1,Nr ]. In the case of cooperative AMC, the real part and
imaginary part of yj are extracted and stored as a sample (size
2×N/Nt ) in the dataset. In order to test the non-cooperative
AMC, the real part and the imaginary part of the signals at
each of the antennas are combined together to form a sample
(size 2Nr × N/Nt ) of the dataset.

FIGURE 6. The process of data generation.

Both the CNN and the ANN were implemented using
Keras and trained on Google Colab Pro using Tesla

P100 GPU. For the comparison of the classification perfor-
mance of different CNN architectures, we have employed a
dataset that contains 10000 samples per SNR per modulation
type for training and 2000 samples per SNR per modulation
type each for validation and testing. The percentage of correct
classification (PCC) is considered as the metric to evaluate
the classifier’s effectiveness. The networks were trained for
200 epochs, an early stopping callback of patience 50 is used.
We set the batch size to 500 during training. After training, the
test dataset is fed to the network, and the PCC is evaluated for
each SNR.

TABLE 1. Comparison of the number of trainable parameters and training
time of the networks under consideration.

The following experiments were performed.

B. CLASSIFICATION PERFORMANCE OF DDrCNN AND
COMPETING NETWORKS ON THE KEYHOLE DATASET
The DL-AMC methods are evaluated for both non-
cooperative and cooperative cases, and the results are dis-
cussed in this section. In the cooperative case, the classifiers
are tested under correlated keyhole channel also.

FIGURE 7. PCC for DL-based non-cooperative AMC over uncorrelated
MIMO keyhole channel for the 3-modulation pool.

1) NON-COOPERATIVE AMC UNDER UNCORRELATED
KEYHOLE CHANNEL
In the non-cooperative scenario, we fed the signals at receiv-
ing antenna to the CNN as a single frame of data (IQ format).
In this case, each of the samples in the dataset is of size
(2Nr ×N/Nt ), where N is the number of modulated symbols.
We have chosen the MIMO configuration 2×4 and the input
symbol size to be 256. Hence for the non-cooperative case,
the input to the CNN will be 8× 128 data frame.
The classifiers were tested for two different sets of mod-

ulation pools. For the 3-modulation pool, the classification
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FIGURE 8. PCC for DL-based non-cooperative AMC over uncorrelated
MIMO keyhole channel for the 5-modulation pool.

result is plotted in Fig. 7. It is observed that the classification
accuracy attains a maximum of around 97% at 5 dB SNR. For
the 5-modulation pool, the performance deteriorated consid-
erably and never achieved more than 92% PCC even at high
SNRs, as shown in Fig. 8. In the case of the 5-modulation
pool, among the four classifiers, the DDrCNN-based classi-
fier performed better with achieving more than 90% accuracy
at high SNRs, while Maxpooling CNN was able to achieve
only below 80% accuracy.

FIGURE 9. PCC for DL-based cooperative AMC (decision fusion) over
MIMO keyhole channel for the 3-modulation pool.

2) COOPERATIVE AMC UNDER UNCORRELATED KEYHOLE
CHANNEL
The recognition performances of DL-classifiers under coop-
eration for 3-modulations pool and 5-modulation pool are
presented inf Fig. 9 and Fig. 10 respectively. From the figures,
one can observe that there is considerable improvement in
performance in the case of the 5-modulation pool. In the case
of the 3-modulation pool, the improvement is in the order of
1% at higher SNRs.While all the classifiers perform similarly
for the 3-modulation pool, DDrCNN outperforms others in
the case of the 5-modulation pool. However, in terms of the
number of parameters in the network, Maxpooling CNN is

FIGURE 10. PCC for DL-based cooperative AMC (decision fusion) over
MIMO keyhole channel for the 5-modulation pool.

the lightest among all (Table 1). A plot showing the PCC for
each of the constituent modulation scheme is given in Fig. 11.

FIGURE 11. PCC of each modulation schemes with respect to SNRs.

FIGURE 12. PCC for DL-based cooperative AMC over correlated keyhole
channel.

3) COOPERATIVE AMC UNDER CORRELATED KEYHOLE
CHANNEL
The performance of DL-based AMC classifiers over cor-
related keyhole channels is elaborated in this section.
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The classification results for the 5-modulation pool under
cooperative AMC are presented. For testing the PCC of the
classifier under various correlation factors, datasets with dif-
ferent antenna correlations (ρ = 0.2, 0.5, 0.7, 0.9) at the
transmitter and receiver are generated. These datasets were
tested using each of the classifiers trained with uncorrelated
data, and the result is plotted in Fig. 12. It can be observed that
even in correlated keyhole channels, the proposed classifier is
able to achieve decent classification performance.

C. AMC OF MIMO SIGNALS OVER KEYHOLE CHANNEL
EMPLOYING FEATURE FUSION METHOD
1) DATASET GENERATION FOR TRAINING THE ANN
CLASSIFIER
The features from the final layer of DDrCNN are fused
together to form a signal in the training dataset. The dataset
consisting of 5 modulation schemes mentioned in the
section VI-A is fed to the trained DDrCNN and extracted the
features from the final dense layer. The features generated
from all the receiving antennas are combined together to
form the training dataset for the ANN classifier. Each of the
training signals in the dataset is of the size 1 × 4NR. The
number of signals in the training dataset is same as that used
in the previous problem.

FIGURE 13. Comparson of PCC of feature fusion method vs decision
fusion method for MIMO signals over uncorrelated keyhole channel.

Fig. 13 shows that the performance of AMC based on
feature fusion on the MIMO signals over an uncorrelated
keyhole channel is better at lower SNRs when compared to
the decision fusion cooperation employed in the previous
section. This performance improvement at lower SNR comes
at the cost of having an additional ANN at the receiver.

D. COMPARISON WITH TRADITIONAL FB-AMC METHOD
Since the HOC based AMC of MIMO signals over a keyhole
channel was proposed to classify lower-order PSKs (BPSK,
QPSK, and OQPSK), the classification result of DDrCNN
for the same modulation pool is used for the comparison. For
the training of the ANN using the features mentioned in the
equations (5) and (6), we have created a dataset consisting
of 10K feature vectors per SNR per modulation type. In the

baseline work, the authors considered 4000 symbols at the
receiver for the classification purpose. However, for a fair
comparison, we have considered only 128 symbols while
generating the dataset. A minimum distance classifier is used
in the baseline work for discriminating the extracted features
is replaced by an ANN classifier in this comparison.

From the classification performance plotted in Fig. 14, it is
easily observable that the CNN-based classifier outperforms
the HOC-based ANN classifier employing the DMR tech-
nique in aMIMO keyhole channel. The proposed CNN-based
method achieved 99% classification above 5 dB SNR while
the baseline method was only able to achieve a maximum of
90% classification around 10 dB SNR.

FIGURE 14. Comparison of AMC performance of DDrCNN based
DL-classifier with the baseline HOC-based ANN AMC over MIMO keyhole
channel for 3-modulation pool.

VII. CONCLUSION
This work investigated the performance of the DL-based
AMC over a rank deficient MIMO channel. A coopera-
tive decision fusion mechanism as well as a feature fusion
method was employed at the receiver to enhance the classi-
fication performance. In the case of the 5-modulation pool,
the DDrCNN-based classifier achieved better accuracy than
the classifiers based on the competing CNN architectures.
In comparison with the baseline HOC-based method, the
DL-based method achieved better classification performance
and was able to classify the higher order constellations like
8-PSK and 16-QAM. The performance of the DL classifier
over correlated channels is also evaluated, and the classifica-
tion is found to be satisfactory.
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