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ABSTRACT Landmark detection plays an important role for a variety of image processing and analysis
tasks. Current methods rely on either supervised or semi-supervised learning which often requires large
labeled training datasets. Also, retrospective addition of further target landmarks after completion of training
is difficult in current methods. In this paper we propose a framework that addresses these limitations
and allows for landmark detection based on only few examples and for definition of target landmarks
after completed training without retraining. Our proposed approach relies on self-supervised training on
a within-image template matching task with regularization by data augmentation. The trained network
generalizes to cross-image matching and can thus be extended to example-based landmark detection and
tracking. We extensively evaluate the proposed framework on chest X-ray images and abdominal MRI scans
and demonstrate high accuracy with only few or even only one labeled example. Additionally we apply it to
the task of liver and liver lesion tracking in CINE MRI scans.

INDEX TERMS Landmark detection, magnetic resonance imaging, self-supervised learning, real time
motion tracking, x-ray.

I. INTRODUCTION
Automated analysis of image data plays a central role in
medical imaging [1], [2]. To this end, anatomical target
structures must be reliably recognized in order to enable
subsequent processing steps for a wide variety of diagnostic
tasks. A typical task of automated image analysis is the
detection and tracking of anatomical landmarks within and
between images, i.e. the identification of points in images
that have structurally similar neighborhoods and similar
semantic properties. In applications such as image-guided
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radiotherapy, the anatomically accurate and low-latency
tracking of lesions over time is crucial to administer local-
ized beams for the target lesion. Established methods for
automated landmark detection are mostly based on super-
vised machine learning methods [3]–[5] which rely on
large amounts of manually labeled training data. Although
these methods provide powerful predictive models, their
widespread application to various image data is limited due
to the lack of manually annotated training data. Particularly
with many landmarks per image, the effort required for man-
ual annotations increases considerably. In addition, super-
vised methods require landmarks to be defined beforehand;
adding additional landmarks usually requires re-training of
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the model and, importantly, requires access to the initial
training dataset as well. Contrastive methods [6]–[8] alleviate
these problems but typically violate the real-time constraint
due to their extensive feature comparison and are therefore
not suitable for tasks where real-time tracking is required,
such as image-guided radiotherapy.

In contrast to natural image data, medical images of a
particular modality and body region exhibit a high degree
of regularity based on a common anatomical structure.
We attempt to leverage this regularity to learn a global posi-
tional embedding of local image patches in a self-supervised
way using targeted data augmentation on a within-image tem-
plate matching task. This allows to implement a simple yet
effective one-shot landmark detection method that requires
only a single annotated example per landmark. Additionally,
the framework can be extended to an arbitrary number of
landmarks without any additional re-training of the model.

In this work, we propose a framework for real-time land-
mark detection and tracking which is trained self-supervised
on minimally labeled data. In contrast to self-supervised
methods [9], [10] that rely on similarity measures of image
patches (e.g. through contrastive learning), we propose a
local-to-global positional embedding which allows for com-
putationally efficient predictions that enable its application in
fields where real-time interaction is required. The proposed
framework is demonstrated and investigated for automatic
real-time liver lesion tracking in time-resolved abdominal
magnetic resonance imaging (MRI) and real-time automated
liver tracking for image-guided radiotherapy onmagnetic res-
onance linear accelerator (MR-LINAC) data, both of which
are subject to respiratory motion. Furthermore we prove
the practicability of our method for automated detection of
anatomical landmarks in conventional chest X-rays.

A. RELATED WORK
Numerous studies have been published on landmark detection
and tracking using a variety of methods and applications [11],
[12]. Early work focused on conventional image processing
techniques based on hand-crafted features, e.g., for facial
feature recognition [13]. More recent papers demonstrate the
use of machine learningmethods such as regression trees [14]
or SVMs [15] and latelymostly Deep learning-basedmethods
using convolutional neural networks in various flavors, e.g.
multi-task learning [16], reinforcement learning [17], [18],
fully convolutional networks [19], regression networks [20],
[21], siamese networks [22], [23] or transformers [24], [25].

While state-of-the-art supervised landmark detection
frameworks provide highly accurate predictions, they still
rely on large amounts of labeled training data.

Data efficient landmark detection using only a few labeled
samples (few- or one-shot learning) has long been an area
of scientific interest [26]–[29]: Common approaches for
few-shot learning in this context typically rely on semi-
supervised [30], [31] or self-supervised learning frameworks
consisting of random walk based methods [32], [33], cross-
input consistency [34] or neural rendering [35]. Recently,

single-shot learning for anatomical landmarks has been intro-
duced by Yan et al. [9] which uses contrastive learning to
learn local and global embeddings on radiological images for
cross-image landmark detection.

II. METHODS
A. CONTRIBUTIONS
We introduce a framework for landmark detection and track-
ing that

1) does not require labeled data during training and only
requires a single labeled example at inference

2) allows for definition of target landmarks at inference
timewithout re-training andwithout access to the initial
training data.

3) directly returns the position of the object combined
with to track to enable real-time detection

To this end, we implement a two-step procedure. In the
first step, a (siamese-like) neural network [36] is trained
on a within-image template matching task [37], [38] using
self-supervision and targeted data augmentation. This is
in contrast to the existing supervised template matching
based tracking methods, which leverage existing positional
labels [22], [36]. In the second step, after training, landmarks
are identified in a target image by providing a single labeled
example patch containing the target landmarks as input to
the trained model. This step does not require re-training of
the network. We implicitly make the assumption that train-
ing data as well as labeled examples are drawn from the
same distribution of images that contain a specific object or
structure.

B. SELF-SUPERVISED TEMPLATE MATCHING
The template matching task consists of estimating the center
position of extracted image patches within source images.
Themotivation for using this task is that it allows to implicitly
learn the distribution of object characteristics within the train-
ing data. This in turn should enable subsequent identification
of specific landmarks.

In detail, squared image patches PI of predefined
size are uniformly drawn from the respective source
images I.
Both, patch and source image are then fed to a template

matching neural network f θ (with weights θ ) to output an
estimate (x̂, ŷ) of the patch center coordinates. We further
assume an aleatoric heteroscedastic Gaussian distribution of
the samples.

Formally, we thus model this problem as the task to learn
the conditional distribution of the center coordinates given
the source image and the extracted patch under the assumed
Gaussian distribution:

P(C|PI, I) = N2(µ, 6), (1)

where µ = (x, y) are the patch center coordinates and 6 =
diag(σx , σy) describes the variance.
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FIGURE 1. The proposed landmark detection and tracking framework
consists of a Template Matching Network that combines two
encoders (ConvNet) whose outputs are fed into a shared multi-layer
perceptron (MLP). One encoder is used to process the full source image
(global information) whereas the second encoder processes the extracted
(during training augmented) patch (local information). A) During training,
the patch is drawn from the same image. B) When performing inference,
the patch is manually chosen from an initial key image, extracted and i)
tracked in the target image (time series of subsequent images) of the
same subject (within-subject tracking), or ii) the same anatomical
landmark is identified across the target subjects (cross-subject tracking).

The sampling loss is then given by the negative
log-likelihood for x and y, respectively:

L(x, y, x̂, ŷ, σ̂x , σ̂y) =
1
σ̂ 2
x
(x̂ − x)2 + ln(σ̂x)

+
1
σ̂ 2
y
(ŷ− y)2 + ln(σ̂y) (2)

Here, (x̂, ŷ, σ̂x , σ̂y) = f θ (PI , I ) is the network output where
x̂, ŷ are the estimated patch center positions and σ̂x , σ̂y denote
the estimated standard deviation or uncertainty of the given
predictions.

The template matching network (TMN) architecture
(Fig. 1 A) consists of two separate feature encoders (one
for the source image and one for the extracted patch; no
weight sharing), each resulting in its own feature vector.
These encoders are based on the VGG16 architecture [39] and
are pretrained on imageNET [40]. The stacked feature vectors
are then fed into three fully connected layers with four linear
outputs (x̂, ŷ) and (σ̂x , σ̂y).

C. CROSS-IMAGE MATCHING AND LANDMARK TRACKING
Beyond identifying similar patches within the same image,
our goal was to achieve generalization for cross-image
landmark detection, i.e. i) tracking a landmark for a given sub-
ject over time (series of time-resolved images) or ii) match-
ing/detecting landmarks between different subjects. In the
following, we refer to these two cases as i) within-subject
tracking and ii) cross-subject detection, respectively. Under
the assumption that all training images contain the same or
similar objects, we hypothesize that this generalization can be
achieved by regularization through data augmentation. Thus,

FIGURE 2. Label-free evaluation: Cyclic evaluation routine for
cross-image matching. First, a patch is extracted from the source key
image (1). The corresponding image patch position is then estimated by
the template matching network (TMN) in the intermediate target image
(2). In a backward pass, a patch around the predicted coordinates is
extracted from the intermediate target image (3) and fed into the TMN to
estimate the corresponding position in the original source key image (4).
This estimated position is then compared to the initial patch position to
compute a cyclic error (5).

we apply domain-specific data augmentation to the whole
images (Rotation: -10◦ to 10◦, affine scaling: 0.8 to 1.2 and
random resized crops) as well as to the extracted image
patches (Rotation: -5◦ to 5◦, affine scaling: 0.9 to 1.3 and
gamma contrast variation: (0.5, 2)) [41]. It is important to
mention, that the patch center, which represents the target
coordinate, is fixed during the augmentation steps. Thus,
no translation is used.

The described within-image template matching task can be
extended to a cross-imagematching task (cross-subject detec-
tion and within-subject tracking), where - given an extracted
patch from a source key image - the goal is to estimate
the semantically corresponding location (coordinates) of this
patch in a target image (Fig. 1 B).

Cross-image matching can be naturally extended to
example-based landmark detection by feeding both the target
image and an extracted patch of the source image containing
the desired landmark as its center point to the trained net-
work. The example patch is drawn from an image where the
landmark position is known, e.g after manual labeling.

For some databases, we may have access to more (>1)
labeled landmarks in the dataset. Thus, to leverage the avail-
ability of larger labeled datasets for cross-subject landmark
detection, we extend the described procedure to allow for
multiple example patches as follows.

GivenN example patches, the estimated landmark position
(x̂, ŷ) within the target image is obtained based on these
examples by uncertainty-weighted averaging over the single
coordinate estimates based on each example patch:

x̂ =

∑N
i=1 x̂i ·

1
σ̂xi∑N

i=1
1
σ̂xi

, (3)

where x̂i is the estimated landmark position based on the ith

example patch with corresponding estimated uncertainty σ̂xi .
ŷ is computed in the same fashion.

D. LABEL-FREE EVALUATION
When applying the trained model to cross-image match-
ing, no direct ground truth is available, in contrast to the
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initial self-supervised within-image template matching task.
This poses a challenge when it comes to the evaluation of
algorithm performance for the cross-image matching task.
We therefore use a process of label-free evaluation that uses
a cyclic estimation of corresponding landmarks between two
images [42](Fig. 2). This cyclic evaluation is performed in a
two-step procedure: In the forward pass, source patches are
extracted for every second pixel within a source key image.
For each of these patches, corresponding center coordinates
are estimated on N target images using the trained model.
In the backward pass, patches are sampled at the estimated
coordinates of the target images and used as input to the
trained model to estimate the corresponding center positions
in the original source key image. The absolute cyclic error
E(x,y),i at a given coordinate (x, y) within the source image
can be computed for each of the N target images allowing for
label-free estimation of model accuracy via

E(x,y),i = |f θ (PTi (f
θ (PS(x, y),Ti)),S)− (x, y)|, i ≤ N

(4)

where S is the source image, Ti the ith target image, f θ (·) the
trained model output (estimated coordinates), PS the patch
extracted from the source image at position (x, y) and PTi the
patch extracted from the ith target image at the estimated coor-
dinates in the forward pass. The mean and standard deviation
of these errors over all N target images can subsequently be
computed for each pixel position in the source image (Fig. 2).

III. EXPERIMENTS
For the purpose of evaluation, we applied the proposed
framework in use cases from two medical imaging domains
as depicted in Fig. 3. Landmark tracking (MR-LINAC and
abdominal MRI) and cross-image matching (chest X-ray) are
investigated.

MR-LINAC imaging was performed on a 1.5T MR-
LINAC scanner (Philips Healthcare, Best, the Netherlands)
in patients undergoing radiotherapy treatment. Images were
acquired with a balanced fast field echo sequence yielding
time-resolved images of the upper abdomen. The database
includes 230 studies of 50 patients (20 female, 66 ±
11.52 years, matrix size = 352 × 352; acquisition time/
image = 0.5s) with three sequences in axial, coronal and
sagittal orientation each, resulting in a total of 165,264 single
image slices. Patient data were acquired in the context of
a clinical phase II trial (NCT04172753). Data is used for
within-subject liver tracking under respiratory motion.

The abdominal MRI data was acquired on a 3T PET/MR
(Siemens Biograph mMR, Siemens Healthcare, Erlangen,
Germany) in patients with suspected liver or lung metastases
for the purpose of respiratory motion correction. In this work,
the data is used to track liver lesions under respiratory motion
within subjects. Imaging was performed with a spoiled gra-
dient echo sequence (TE/TR = 1.8ms/3.6ms; flip angle =
15◦; bandwidth = 670Hz/pixel; resolution = 2 × 2mm2;
matrix size = 192 × 176; acquisition time/image = 0.4s)

FIGURE 3. Sample data with corresponding ground truth annotations of
the landmark to track. The top row visualizes a full respiratory cycle
during radiotherapy. The landmark defines the liver dome to track. The
central row denotes abdominal MRI at end-expiration, mid-expiration
and end-inspiration. Several lesions are visible within the liver of which
three example annotated lesions are highlighted by white arrows. The
bottom row visualizes three different chest X-ray images with
corresponding ground truth annotation as described in III-C .

yielding 2D sagittal motion-resolved MR images of the body
trunk [43]. 36 patients (60±9 years, 20 female) were acquired
resulting in 12214 individual slices. The study was approved
by the local ethics committee and all patients providedwritten
consent.

The chest X-ray dataset reflects a cross-subject landmark
detection task based on Chexpert [44] and contains 224,316
chest X-ray from 65,240 patients (60 ± 17.8 years, 40.6%
female). Images were acquired with varying matrix size
(resampled to 224 × 224) with and without pathological
findings.

All images were zero-padded with patch size
2 on each side

to ensure that patches could also be sampled from the image
margins. Experiments were performed using different patch
sizes (32, 40, 50, 60, 70 and 80 pixels) of extracted squared
image patches in order to assess the effect of patch size
on model performance. For all databases a 60-20-20 train-
test-val split with a patient-leave-out approach was used, i.e.
unique patients were assigned to each set. A subsequent test
dataset was kept separate for all three tasks for final evalua-
tion of the following experiments: Templatematching (III-A),
cross-image matching (III-B) and example-based landmark
detection (III-C).

The proposed template matching network was trained for
1000 epochs with a batch size of 192 using the Adam opti-
mizer [45] (β1 = 0.9, β2 = 0.999) and an initial learning rate
of 1e-4 that is scaled by 0.85 every 80 epochs on a NVIDIA
RTX3090 GPU using PyTorch 1.8 [46].
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A. PIXEL-WISE TEMPLATE MATCHING
To assess the performance of the training and hence the tem-
plate matching ability, we compute and report the mean, and
standard deviation of the euclidean template matching errors
for every pixel in all test images, paired with corresponding
uncertainty.

B. PIXEL-WISE CROSS-IMAGE MATCHING
For within-subject tracking (MR-LINAC and abdominalMRI
datasets), the cycle errors were computed for every second
pixel on 10 image pairs from the test dataset, each pair
consisting of the slice of the end-inspiration phase as target
image and the slice containing the end-expiration phase as
source key image. For cross-subject detection on chest X-ray
images, cyclic errors were computed using 10 randomly cho-
sen intermediate target images.

Mean and standard deviation of euclidean cyclic errors
were calculated based on all pixels on the corresponding test
datasets.

C. EXAMPLE-BASED LANDMARK MATCHING
To evaluate the performance of the proposed framework for
identification of predefined landmarks, ground truth data for
specific landmarks were generated by an experienced radiol-
ogist (S.G., >10 years of experience) for all three datasets.
We compute and report the mean, standard deviation, as well
as the maximum of the euclidean error between prediction
and labeled ground truth over all test subjects and landmarks.

1) WITHIN-SUBJECT MOTION TRACKING
For liver tracking (MR-LINAC), the liver dome was anno-
tated on all slices for 5 subjects for one respiratory cycle in
the sagittal and coronal orientation.

For the task of lesion tracking (abdominalMRI), 10 lesions
were manually annotated in all slices.

For both tasks, the source slice depicts the state of maximal
end-expiration.

2) CROSS-SUBJECT ANATOMICAL LANDMARK DETECTION
On the chest X-ray data, 9 landmarks were manually labeled
on 100 images representing the left and right pleural recesses,
the left and right diaphragmal domes, the left and right pul-
monary apeces, the left and right sternoclavicular joints as
well as the carina of the trachea (Fig. 3).

To differentiate between single-shot and few-shot applica-
tion, up to 50 of these labeled images were used as examples
and 50 were used as target images for evaluating the accu-
racy of example-based landmark detection. Mean euclidean
errors, as well as minimal andmaximal mean euclidean errors
between prediction and ground truth for landmark detec-
tion were computed based on all landmarks in the 50 target
images.

To assess the performance for the generation of ground
truth data based on a single example, we also evalu-
ate the cross-subject landmark detection capability on the

model trained on the MR-LINAC dataset. Good perfor-
mance on this task would allow for efficient creation
of large, annotated datasets based on only few labeled
samples.

D. COMPARISONS TO BASELINE MODELS
1) COMPARISON TO A SUPERVISED NETWORK BASELINE
(SUPERVISED BASELINE)
In order to provide a baseline comparison to fully super-
vised landmark detection, we used a ResNet-50 [47] CNN
pretrained on imageNET with 18 outputs for the chest X-ray
images (x and y coordinates for 9 target landmarks) to esti-
mate the coordinates for all landmarks in a single prediction.
The same labeled dataset that was used for example-based
landmark detection (III-C2) was also used as training data for
the supervised network. The network was trained for 20,000
steps using the Adam optimizer with a batch size of 50 and
an initial learning rate of 1e-4.

2) COMPARISON TO A PATCH-WISE FEATURE MATCHING
BASELINE (SimCLR PATCH)
We trained SimCLR [8] (ResNet-50 backbone) to pro-
duce a 1024-dimensional feature vector from squared
32 × 32 patches on the chest X-ray dataset for cross-subject
detection.

The affinity matrix A between an initially selected key
patch p0 and all patches pij within the next subject is con-
structed via

At+1t (i, j) = 〈hθp(p0), h
θ
p(pij)〉, (5)

where hθp(p) is the `2 normalized feature vector of the respec-
tive patch. Patch coordinate estimation is subsequently per-
formed by choosing the patch with maximum affinity to the
input patch.

For evaluation, the same labeled dataset as in III-C2 was
used.

We trained the patch-wise feature matching baseline for
1000 epochs using proposed SimCLR parameters. Horizontal
flips were removed from the data augmentation pipeline.

3) COMPARISON TO A SUPERVISED NETWORK BASELINE
PRETRAINED WITH SimCLR (SimCLR PRETRAINED)
In a pre-training setup, we trained SimCLR (ResNet-50 back-
bone) to produce a 1024-dimensional feature vector from the
full image on the chest X-ray dataset for cross-subject detec-
tion. Finetuning and inference was subsequently performed
in the same setting as in (III-D1)

SimCLR was trained for 1000 epochs using the pro-
posed SimCLR parameters, again without horizontal
flips.

For all baseline comparisons, we recorded the
mean euclidean landmark estimation error,
as well as the inference time. In addition, we track the
results against an increasing number of available training
examples.
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E. ABLATION STUDIES
1) DATASET SIZE
The influence of the available example patches (i.e the
number of available labels) on the performance is assessed
by computing the mean euclidean landmark errors for
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50] available example
patches in each predefined landmark on the chest X-ray data.
Squared 32 × 32 patches were used.

2) ENCODER
To study the impact of the encoder, we evaluate the mean
euclidean landmark matching error for different encoders
(VGG16 [39], ResNet50 [47], DenseNet121 [48] and
ConvNext-Small [49]). Three fully connected layers were
used for each architecture.

The training was conducted as described in III. For
ConvNext-Small a batch size of 92 was used.

3) SHARED MULTI LAYER PERCEPTRON
To quantify the influence of the subsequent MLP we train
the Resnet50 encoder with one to four fully connected layers,
each consisting of 4096 neurons with ReLU and Dropout in
between.

4) DISTRIBUTION
We investigate the impact that the choice of probability dis-
tributions has on training and the associated mean euclidean
landmark matching error by comparing the Normal distribu-
tion (`2 loss) to the Laplace distribution (`1 loss).

IV. RESULTS
A. PIXEL-WISE TEMPLATE MATCHING
Results of pixel-wise template matching are depicted in the
left column of Table 1. All results were averaged over all
pixels and test subjects and obtained with a patch size of
80 × 80. In general, lower estimation errors were observed
with increasing patch size for all three tasks (Fig. 5 left).
Qualitative evaluation shows that higher errors and especially
higher uncertainties typically occur in the background region
(Fig. 4 left / central columns).

B. PIXEL-WISE CROSS-IMAGE MATCHING
For the task of cross-image matching we observed similar
results as for the within-image templatematching task. Corre-
sponding results are depicted in the central column of Table 1
and were obtained with a patch size of 80 × 80. Again, the
estimation error generally decreased with increasing patch
size (Fig. 5 center), and similar to the template matching
task, lower errors were observed in recurrent structures of the
abdominal organs and chest regions, whereas higher errors
occurred in the periphery and image background (Fig. 4 right
column).

C. EXAMPLE-BASED LANDMARK MATCHING
Overall, we observed high accuracy for example-based
landmark detection on all tasks using a patch size of

FIGURE 4. Color-coded mean euclidean pixel-wise template matching
error (left column, III-A), corresponding estimated uncertainty (central
column, III-A) and mean euclidean pixel-wise cross-image matching error
(right column, III-B) for each pixel in three representative examples from
the MR-LINAC (top row), the abdominal MRI (central row) and the chest
X-ray (bottom row) for a patch size of 80. For MR-LINAC and abdominal
MRI, a subsequent frame from the same subject was used, whereas the
chest X-ray from a different subject was used.

TABLE 1. Evaluation of the proposed Template Matching Network:
Mean ± standard deviation of euclidean errors (in pixels) for pixel-wise
template matching (III-A), cross-image matching (III-B) and
example-based landmark matching (III-C).

50× 50 pixels. Quantitative results for liver dome tracking on
MR-LINAC data, liver lesion tracking on the abdominal MRI
dataset and estimation of the 9 predefined anatomical land-
mark positions on chest X-ray images based on one labeled
example are depicted in Table 1 (right column). Maximal
euclidean errors amounted to 3.5, 3.1 and 13.5 pixels for
abdominal MRI, MR-LINAC and chest X-ray, respectively,
with maximal motion-induced euclidean displacements of
8.9 and 10.1 pixels on abdominal MRI and MR-LINAC.
Generally, smaller patch sizes yielded better results (Fig. 5
right). Qualitative evaluation is depicted in Figure 7.
Cross-subject landmark detection between different sub-

jects within the MR-LINAC dataset resulted in a mean
euclidean tracking error of 4.5 pixels. Qualitative evalua-
tion can be found in Fig. 7 (bottom) and visualizes that
our method is capable of tracking the liver dome between
different subjects.

D. BASELINE COMPARISONS
1) COMPARISON TO A SUPERVISED NETWORK BASELINE
(SUPERVISED BASELINE)
The fully supervised landmark detection network yielded a
markedly higher landmark estimation error using only few
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FIGURE 5. Dependency of the mean euclidean errors on various patch sizes in (left) template matching (pixel-wise template matching, III-A), (central)
cross-image matching (cyclic error; within-subject tracking for MR-LINAC and abdominal MRI, cross-subject detection for chest X-ray, III-B) and (right)
selected example-based landmarks (within-subject motion tracking for MR-LINAC and abdominal MRI, cross-subject anatomical landmark detection for
chest X-ray. III-C).

examples and failed to reach the same accuracy as our pro-
posed framework even using 50 labeled training examples
(mean euclidean landmark matching error of 8.5 pixels) as
shown in Fig. 6 (red).

2) COMPARISON TO A PATCH-WISE FEATURE MATCHING
BASELINE (SimCLR PATCH)
Patch-wise feature matching remarkably outperformed the
supervised baseline, even with only 5 samples (mean
euclidean landmark matching error of 6.6 pixels). Further
increase in the number of available examples did not improve
performance much. Quantitative evaluation of patch-wise
feature comparison is depicted in Fig. 6 (orange).

3) COMPARISON TO A SUPERVISED NETWORK BASELINE
PRETRAINED WITH SimCLR (SimCLR PRETRAINED)
In contrast to patch-wise feature comparison, fine-tuning of
the SimCLR network benefits from each additional training
example. Compared to the supervised baseline without any
pretraining, the mean euclidean error is reduced by 30%
yielding a mean euclidean landmark matching error of 6.3
(Fig. 6, green).

Comparison of our template matching network (patch size
32 × 32) and all baselines is depicted in Table 2. Both,
best results (top, few-shot) and results for only one labeled
example (bottom, single-shot) are evaluated in terms of mean
euclidean landmark matching error and inference time. For
the best scores, 30 labeled example patches were used for
patch-wise feature matching, 20 for our framework, and
50 for the two supervised baselines.

E. ABLATION STUDIES
1) DATASET SIZE
Regarding the impact of the number of landmark exam-
ple patches on mean euclidean landmark matching error,
we observed that the landmark estimation errors decreased
rapidly from 1 to 20 examples, reaching optimal accuracy

TABLE 2. Comparison of Template Matching Network (TMN) to baseline
methods for example-based landmark matching (III-C) in the chest X-ray
dataset. Inference time on GPU (CPU) (in ms) are reported. Top: Best
euclidean landmark matching errors reported as mean ± standard
deviation (in pixels). Bottom: Comparison for one labeled example.

at already 20 examples. No further performance gain was
observed using 30, 40 or 50 examples (Fig. 6, blue).

2) ENCODER
Quantitative Analysis of using different encoders is depicted
in Table 2 (top) for 20 example images and a patch size of
32 × 32. Corresponding qualitative analysis is visualized in
Fig. 7 (bottom)

No relevant differences between the encoders could be
observed, however modern architectures seem to yield
slightly superior results compared to VGG-16. All architec-
tures are real-time capable, also on CPU.

3) SHARED MULTI LAYER PERCEPTRON
Results are depicted in Table 2 (bottom) for 20 example
images and a patch size of 32× 32. A single linear layer was
not enough to reliably track landmarks. Increasing the layers
gradually increases the performance, reaching its optimum at
3 layers.

4) DISTRIBUTION
When comparing the impact of the distribution (Normal vs
Laplace, Table. 3 bottom) we could not observe any relevant
performance differences.
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FIGURE 6. Dependency of the average euclidean landmark matching
(cross-subject) error on the number of available labeled examples in the
9 chest X-ray landmarks (III-C2) for the proposed template matching
network (TMN) (blue), a supervised baseline (red), the patch-wise feature
matching baseline (orange) and the supervised baseline pre-trained with
SimCLR (green).

TABLE 3. Euclidean landmark matching errors for ablation studies of the
template matching network (TMN) in the example-based landmark
matching (III-C) of the chest X-ray dataset. Mean ± standard deviation of
euclidean errors (in pixels) as well as inference times (in ms) on GPU are
reported for different encoder architectures (top) and varying numbers of
fully connected layers (bottom).

V. DISCUSSION
In this work we introduced a framework for real-time capable
landmark detection and tracking on medical images that can
be trained on a fully self-supervised basis. Given one or
more example images defining the landmarks of interest,
our proposed algorithm is able to identify these landmarks
on unseen test images. We showed that this approach yields
good performance in within-subject (e.g. time series) as well
cross-subject landmark detection. In contrast to supervised
approaches [50], our proposed framework does not require
re-training of the model for detection of specific landmarks
but instead relies on the presentation of examples contain-
ing target landmarks. Importantly, and in contrast to other
self-supervised frameworks [9], [32], [51], due to its high
inference speed, it allows for application in real-time critical
areas, such as image guided radiotherapy systems where it
could potentially allow for tracking of target structures and
thus adjustment of treatment parameters.

Evaluation of the template matching capability revealed
that our framework successfully learned to map example
patches to coordinates. The higher error in background
regions indicates that it does not implement a pure template
matching strategy but actually learns relevant and recurrent
anatomical structures. This is supported by the predicted
uncertainty, especially within the MR-LINAC dataset (Fig. 4,
top row, central image). Targeted regions of interest (e.g.
liver) have a significantly decreased uncertainty compared to
background regions or anatomical structures that do not occur
regularly within the database (e.g. pelvic region).

Of course, the focus of our framework is not on identifying
structures within the same image from which the patch was
selected, but across other images (between subjects or in
time-series). Evaluation of the pixel-wise tracking capability
across different subjects (cross-subject detection) or across
different time steps (within-subject tracking) revealed similar
results compared to the template matching task effectively
showing the ability of our framework to generalize. The
error typically increases within background regions or non-
recurring structures.

Evaluation of tracking performance of individual anatom-
ical landmarks (9 landmarks for cross-subject chest X-ray
images, one landmark for cross-subject liver dome detection,
one landmark for within-subject liver dome tracking, mul-
tiple landmarks for within-subject lesion tracking) yielded
satisfactory results. Overall, motion tracking performance of
the within-subject tasks was slightly superior compared to
cross-subject performance due to the higher level of similar-
ity. The tracking accuracy is in the lower millimeter range
(even maximal displacement errors < 1cm) in contrast to
a motion displacement of up to several centimeters (IV-C)
which would render acceptable results for any prospective
motion tracking or correction strategies.

The patch size is a crucial parameter depending on the
underlying task at hand. In general, smaller patch sizes
(around 32-50 pixels) tend to yield superior performance for
the task of anatomical landmark detection (cross-subject) and
tracking (within-subject) compared to larger patches (Fig. 5
right). Contrary to that, when inspecting all pixels within an
image, larger patches resulted in better performance due to
better background region recognition.

In contrast to motion tracking, where typically only one
labeled example patch can be leveraged, multiple patches can
be used for cross-subject landmark detection. The use of up
to 20 example patches yields a steady improvement in per-
formance. Using additional examples does not improve the
result any further on the chest X-ray dataset. We hypothesize
that the reason for this pattern resides in the averaging of the
individual predictions pairedwith label noise. The occurrence
of this behavior in the patch-wise feature comparison baseline
experiment supports this hypothesis.

A single labeled example outperformed all supervised and
self-supervised baselines.

The central concept of our proposed approach is the
extension of a within-image template matching task to

VOLUME 10, 2022 81199



M. Frueh et al.: Real Time Landmark Detection for Within- and Cross Subject Tracking

FIGURE 7. Qualitative evaluation of example-based landmark matching (III-C) for (A) within-subject motion tracking and (B) cross-subject anatomical
landmark detection. A) Visualized within-subject motion tracking of the liver dome on MR-LINAC data (top) and a liver lesion within the abdominal MRI
dataset under respiratory motion (bottom). The red dots indicate the predicted liver dome or tumor lesion center whereas the green ones visualize the
ground truth. The red line depicts the displacement of the liver/lesion over time with respect to motion. A complete respiratory cycle of approximately 3s
is visualized. B) Example-based cross-subject landmark detection on chest X-ray images (top) with 20 labeled example images and MR-LINAC
data (bottom) of one labeled example image. The red dots indicate the predicted landmark whereas the green dots visualize the corresponding ground
truth annotation. For the chest X-ray images the predictions are depicted for VGG (red), ResNet (orange), DenseNet (blue) and ConvNext (black).

cross-image matching. This generalization is induced by
regularization through data augmentation. Thus, the model
focuses on features that are present across all images within
the given domain. This becomes evident by our observa-
tion that the template matching and cross-image matching
tasks yield better performance on foreground regions com-
pared to background regions. Possible applications of our
proposed framework include areas where limited amounts
of training data are available or where the set of target
landmarks needs to be adapted after training without the
ability to re-train the model. The proposed framework can

potentially be extended to further tasks beyond landmark
detection, such as object detection or segmentation and may
allow for efficient processing of these tasks based on only few
examples.

We acknowledge the following limitations: Coordinate
estimation is task specific and might not work well if the
image content or its resolution varies substantially. Thus,
while being efficient for motion tracking, the performance
of cross-subject anatomical landmark detection might suffer
from higher variance. Determining the correct patch size
depends on the overall goal and image size, thus inductive
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bias or costly hyperparameter tuning may be required to
determine a good patch size.

A natural extension of our work is application on 3D image
data which will be part of future work.

In conclusion, we were able to demonstrate a self-
supervised framework for both, cross- and within subject
landmark detection and tracking that is capable of running
in real-time.
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