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ABSTRACT Accurate traffic speed forecasting not only can help traffic management departments make
better judgments and improve the efficacy of road monitoring but also can help drivers plan their driving
routes and arrive safely and smoothly at their destination. This paper focuses on the lack of traffic speed
data and proposes a method for traffic speed forecasting based on the multitemporal traffic flow volume
of the previous and later moment states. First, according to traffic flow volume data, the different traffic
patterns of previous and later moment states were extracted. Second, the performance of five forecasting
models, namely, long short-termmemory (LSTM), backpropagation (BP), classification and regression trees,
k-nearest neighbor, and support vector regression, were compared. Finally, the model with the best prediction
results was used to conduct sensitivity analysis experiments for different traffic patterns. Through a real-data
case study, we found that the LSTM model has the highest prediction accuracy compared to other models
in both time and space. This traffic pattern ‘‘previous = 3 and later = 3’’ can forecast traffic speed more
accurately, and its forecasting ability is robust across a range of scenarios.

INDEX TERMS Traffic speed forecasting, traffic patterns, deep learning, traffic flow theory.

I. INTRODUCTION
Traffic speed forecasting is a critical component of the intel-
ligent transportation system, which can dynamically capture
the development trend of the traffic flow status [1]. Accurate
traffic speed forecasting can be beneficial for both road traffic
management and individual travelers. For example, a road
traffic management department may identify and predict con-
gestion sites according to traffic speed forecasting results,
as well as analyze the causes of traffic congestion and propose
solutions to relieve congestion [2]. Moreover, individual trav-
elers can plan their travel times and trips using the forecasting
results, which are available on various navigation apps, such
as Waze and Google Maps [3].

Many existing road infrastructure have not been equipped
with traffic flow monitoring equipment. To adapt with the
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intelligent upgrading of urban transportation, some cities
choose to use floating car data or increase traffic flow data
monitoring equipment to sense the state of traffic opera-
tions [4]. However, the flow of speed integration monitoring
equipment is more costly. Most cities choose only the flow
detection function, the cost of relatively low-cost camera
equipment.Whether it is floating car data or camera detection
data, the core component is flow detection, resulting in the
lack of speed data. Therefore, predicting speed based on
traffic volume is valuable work. According to the basic dia-
gram of traffic flow, there is a complex nonlinear relationship
between traffic flow volume and speed [5]. We posit that
speed and volume exist interactively, and the speed of the
current moment is correlated with previous and later moment
states. Thus, we proposed a novel method to carry out traffic
speed prediction based on the flow volume of previous and
later moment states. The main contributions of this study
could be enlisted as follows:
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1) We propose a method for short-term traffic speed fore-
casting based on the multitemporal traffic flow volume of the
previous and later moment states. This method can real-time
and accurately reflect the road operation state without traffic
speed data.

2) We build an LSTM short-term traffic forecasting model
that can accurately capture recent spatio-temporal features.
We also conduct extensive experiments on actual traffic data.
The results show that the LSTM model outperforms four
baseline methods and achieves greatest result.

3) We determine the best traffic flow pattern for the short-
term traffic speed forecasting model, based on the LSTM
model parameter sensitivity analysis experiments.

The remainder of this work is structured as follows:
Section 2 summarizes related research. The proposed method
of developing the traffic feature pattern and related prediction
methods is described in section 3. In section 4, the proposed
method is evaluated and the optimal traffic pattern for pre-
vious and later moment states is determined with real-world
traffic flow data. Finally, the main contributions of the paper
are presented and discussed in section 5.

II. RELATED WORKS
We reviewed existing studies on traffic forecasting and high-
light recent traffic speed forecasting research development.

Since the first highway traffic volume forecasting model
was established in 1979, researchers from several disciplines
have focused their attention and efforts on traffic forecasting
[6]. With the development of a new generation of intelli-
gent systems, new methods for addressing traffic forecasting
problems have been developed. These approaches are broadly
classified into two types: classical statistical approaches and
data-driven methods [7], [8].

Classical statistical methods have a clear physical mean-
ing and are easily explained. Academic researchers have
developed a variety of such methods, ranging from linear
regression [9] and support vector machine [10], [11] to the
Autoregressive Integrated Moving Average (ARIMA) model
[12]–[14]. Williams conducted a representative study on
applying the ARIMA model, which considered the effect
of seasons on traffic forecasts. He established ARIMA
models with explanatory variables and a seasonal autore-
gressive integrated moving average (SARIMA) model as
well as a SARIMA model with explanatory variables, and
compared the performance of different methods for traffic
prediction [15].

However, most traditional statistical approaches are inca-
pable of considering aspects such as individual randomness
and nonlinearity. These traditional approaches frequently use
the mean feature of the data as the model’s input, neglect-
ing the extreme data of the individual, and the resulting
model lacks generalization ability [16]. Because of dif-
ferences in the driving behavior of individual vehicles at
the micro-level, the traffic flow volume and speed at the
medium and macro levels are also different in actual traffic

flow. Therefore, these statistical approaches are ineffective
in describing the operational condition of real-world traffic
flow [17], [18]. Deep learning technology has grown sig-
nificantly in recent years, providing a new way to describe
complicated, nonlinear data correlations for intelligent traffic
management. They are now used extensively in a variety
of areas [19]–[23]. A data-driven model is a type of model
that represents complicated, nonlinear data relationships. The
structures constructed using the data-driven model are trained
by establishing the accuracy of the predicted target. The basic
parameters of the model are constantly iterated and updated
during the training process to reach convergence and ulti-
mately address the traffic prediction problems [24]. Rather
than using statistical methods to determine the functional
relationship between independent variables and variables,
Moreover, statistical models require strict assumptions and
physical derivation processes, but data-driven models have
powerful data learning capabilities and do not require asmany
model assumptions [25]. When dealing with complicated
and extreme data, data-driven models outperform traditional
statistical models [26].

In recent years, transportation researchers have begun to
use deep learning methods in their studies. Ma et al. first
introduced long short-term memory (LSTM) into the field
of traffic research, and they used microwave sensor data to
conduct traffic speed prediction research [26]. Zhang et al.
proposed a new convolutional LSTM neural network struc-
ture in this context, which represents actual traffic condi-
tions by constructing multiple features and considering the
relationship between adjacent lanes, upstream and down-
stream, to achieve a multilane short-term traffic forecast [27].
Ma et al. used a specific convolutional neural network (CNN)
to extract inter-and intraday traffic flow patterns. Then,
to learn the intraday temporal evolution of traffic flow, the
extracted features were fed into LSTM units [20]. Meng et al.
combined the dynamic time planning algorithm into an
LSTM neural network model, fine-tuned the time-series
features, and tested the approach in the traffic speed pre-
diction problem at different time intervals [24]. Based on
the nonstationary spatiotemporal pattern of the road traffic,
Cheng et al. developed a dynamic spatiotemporal k-nearest-
n model for short-term traffic forecasting. The model was
validated by data from Beijing’s urban roads and California’s
highways [25].

In addition to the influence of the day of the week, other
environmental factors such as weather, holidays, seasons,
and important events may have a significant impact on traf-
fic flow patterns [28]–[30]. Dunne et al. designed a neural
wavelet predictive model that captures the effects of rainfall
to forecast hourly traffic flow using the stationary wavelet
transform (SWT) [31]. The results of the experiments show
that using rainfall data as an independent factor, it is pos-
sible to reliably predict future traffic flow at different sites.
Similarly, it was demonstrated that the neural wavelet model
has a greater prediction performance than the traditional
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artificial neural network model. Jia et al. proposed utilizing
the deep belief network and LSTM to forecast urban road
traffic flow in the event of rainfall [32]. When the extra
rainfall factor was considered, the experimental results show
that the deep learning predictionmodel outperforms the exist-
ing prediction model. Furthermore, LSTMs outperform deep
belief networks in extracting traffic flow data time-series
patterns. Existing traffic prediction algorithms are mainly
useful for predicting traffic flow and speed along the entire
road segment.

A more detailed lane-level traffic speed prediction was
performed in a recent study. Gu et al. chose a road segment
with a strong association with the road section to be pre-
dicted for data extraction and built a two-layer deep learn-
ing framework by combining the advantages of LSTM and
GRU [19]. Ke et al. converted traffic speed and volume data
into spatiotemporal multichannel matrices before training a
two-stream multichannel CNN model to predict lane-level
traffic speeds [33]. It reflected not only the relationship
between individual lanes but also the correlation between the
spatiotemporal characteristics of the input data. Inspired by
this past work, we have proposed a new short-term, high-
precision traffic speed prediction method based on traffic
flow patterns.

We obtained specific traffic pattern data and selected five
methods, namely LSTM, backpropagation (BP) network,
classification and regression trees (CART), k-nearest neigh-
bor (KNN), and support vector regression (SVR), to carry out
the traffic speed prediction study. The biggest challenge of
the daily traffic speed forecasting problem in this research
is comparing the accuracy and robustness of the prediction
results of these five algorithms. The next research work will
be carried out based on the algorithm with the best prediction
results.

In this study, focusing on the complex correlation between
traffic flow volume and speed, we proposed a novel traffic
speed prediction method that extracts time-series patterns
from traffic flow data of previous and later moment states.
Another challenge of neighbor traffic speed prediction is to
determine the best traffic pattern. Existing short-term traffic
speed forecasting studies have focused on the traffic flow
patterns of previous states, but have not modeled the traffic
flow patterns of later states. As a result, large errors in short-
term traffic forecasts can result. It is particularly important
to determine the best traffic pattern of previous and later
moment states to improve the accuracy of the prediction
results.

Following are the three challenges that we attempted to
resolve in this study:

1. How to compare the traffic speed forecasting effect of
all methods.

2. How to prove that the traffic speed in the current state is
related to the traffic flow volume in both previous and later
moment states.

3. How to determine the best traffic pattern for previous
and later moment states.

III. METHODOLOGY
A. OVERVIEW
The proposed method in this study has two major compo-
nents: (1) traffic flow pattern extraction and (2) an introduc-
tion to LSTM, BP, CART, KNN, and SVR.We next introduce
these two components.

B. TRAFFIC FLOW PATTERN EXTRACTION
The traffic flow volume and speed data are collected at a given
time interval (t), such as 2minutes, 5minutes, and 15minutes.
For a day, there are in total T (T = 60∗24/t) time intervals.
Longer time intervals weaken the essential traffic character-
istics within the traffic flow. To accurately characterize the
operational features of traffic flow and improve the forecast
effect of traffic speed, we chose 2minutes as the time interval,
which means that the value of T is 720 at one day.

According to the traffic flow basic diagram, a strong rela-
tionship exists between traffic flow and speed, and this rela-
tionship is not a simple linear one. For example, the same
flow value corresponds to different speed values, and the
same speed value also corresponds to different flow values.
Therefore, it is unreasonable to only use current traffic flow
data to predict the speed, and a specific method is needed to
extract the traffic pattern. Hence, we attempted to construct
a traffic flow pattern using the traffic flow volume data of
previous and later moment states. We simulated and fore-
casted the current traffic speed to determine the relationship
between traffic flow and speed. The detailed process is shown
in Fig. 1. We could obtain time-series data of traffic flow
and speed as the training data with the loop detector. Assume
the current state is M, n represents the time step of previous
states, and m represents the time step of later moment states.
First, we extracted the continuous time-series data of the
current states M and the n and m states. Second, we gradually
constructed M+ 1,M+ 2 . . . ,M+ K state traffic flow, and
speed pattern vectors by the sliding window method. Finally,
the traffic flow matrix and speed matrix were formed. In this
study, we used the flow matrix as the input of the prediction
algorithm and the speed matrix as the prediction target and
applied different datasets to compare the performance of all
algorithms. On this basis, the speed prediction study under
different traffic patterns was carried out by varying the values
of n and m.

C. LSTM
Ma et al. proposed the LSTM model as a special recurrent
neural network model. It can address the gradient disap-
pearance and gradient explosion problems caused by the
difficulties in finding the weight matrix [34]. As shown in
Fig. 2, LSTM networks incorporate a new structure known as
memory cells.

Each memory cell is made of four main components: an
input gate, a forget gate, an output gate, and a neuron with
self-repetition. The input gate (ft) determines the unit that
needs to be updated, as shown in (1). Through the sigmoid
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FIGURE 1. Research framework.

FIGURE 2. LSTM networks.

neural layer of the forget gate, the information in the united
state at the previous moment is discarded or retained and
updated, as shown in (2) and (3). Then, combine the input
gate and the forget gate, as shown in (4). Finally, the output
threshold layer decides how much information to pass to the
next time unit and output it, as shown in (5), where the hidden
state information is obtained as shown in (6).

ft = σg
(
Wf xt + Uf ht−1 + bf

)
(1)

it = σg (Wixt + Utht−1 + bi) (2)

st = tanh(Wc · [Wcxt + Ucht−1]+ bc (3)

ct = ft · ct−1 + it · st (4)

ot = σg (Woxt + Uoht−1 + bo) (5)

ht = ot · tanh(ct ) (6)

where Wf , bf ,Wi, bi,Wc, bc,Wo, and bo are the weights and
offsets of each threshold layer. σ , and tanh are the activation
functions.

D. BP NEURAL NETWORK
The BP neural network consists of an input layer, hidden
layer, and output layer. The hidden interlayer can be extended
to multiple layers. Each neuron between adjacent layers is
fully connected, and there is no connection between each neu-
ron in each layer [35]. The main advantage of the BP neural
network is its strong nonlinear mapping ability. In theory,
a BP neural network with three or more layers can predict
a nonlinear function with arbitrary precision so long as the
number of neurons in the hidden layer is sufficient.

The BP neural network model can be described as follows:
zj = f

(
m∑
i=1

Wijxi+bj

)

yk = f

 n∑
j=1

Wjkzj+bk

 (7)

where xi is the input layer; zj is the hidden layer, and yk is
the output layer. Wij and Wjk are the weights; Wij represents
the weight between the i neuron in the input layer and the
j neuron in the hidden layer, and Wjk represents the weight
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between the j neuron in the hidden layer and the k neuron in
the output layer; f is the excitation function; bj and bk are the
biases. The excitation function expression is as follows:

Sigmoid (x) =
1

1+ e−x
(8)

Because the neural network model has numerous weights
and biases, algorithms are required to modify these weights.
We used the BP algorithm to train the neural network based
on the model. Forward propagation of the input signal and BP
of the output error were also used in the training of the BP
neural network. The input samples are transported from the
input layer to the output layer after being processed by the
neurons in the hidden layer during the forward propagation
process. The error BP procedure is transmitted if the error
between the measured output and the expected output of
the output layer does not fulfill the requirements. The error
information is passed back to each layer’s neurons along the
original connection path during BP, and the network changes
the connection weights of neurons using the gradient descent
method. Minimize the network’s real output until it matches
the desired result to achieve an ideal network [36].

E. CLASSIFICATION AND REGRESSION TREE
CART uses a binary discretization methodology to discretize
continuous data, providing the model to be used for both clas-
sification and regression tasks [37]. The CARTmodel utilizes
Gini impurity as a decision-making index for choosing node
feature variables, which solves the problem that information
gain favors attributes with higher values.

Suppose the datasetD = {(x1, y1) , (x2, y2) , . . . ,(xN , yN )},
where a feature variable Xj is in X ⊆ Rm, j = 1, 2, . . . ,m has
q values; then, the Gini impurity is defined as follows:

Gini
(
Xj
)
=

∑q

i=1
pi(1− pi) (9)

where pi is the probability that the characteristic variable
value is i.
The CART model generates decision rules that do not

conflict or have less disagreement with the decision space
because it learns from the data of the training attribute space.
As a result, there is more than one reasonable decision tree,
and comparing the relative quality of multiple decision tree
models based only on their degree of fit to the training set
is impossible. Additionally, because a single decision tree
selects feature variables only once at each node and there is
no iterative feedback, it is simple to obtain the local optimal
solution.

F. K-NEAREST NEIGHBOR
KNN is a distance-based nonparametric algorithm [38]. For
an input (x0) in the test set, the core idea of KNN is to
establish a vector space model in the training set, and find the
K points closest to the distance based on the metric, which is
represented by the set RK :

RK = {(x1, y1) , (x2, y2) , . . . , (xK , yK )}T (10)

Then, the output of x can be expressed as the average of K
output values:

ŷ =
1
k

∑
xk∈RK

yk (11)

KNN has a variety of distance metric functions; the most
used is Euclidean distance, for which the calculation method
is as follows:

dist (x0, xk) =

√√√√ S∑
s=1

(
x(s)0 − x

(s)
k

)2
(12)

For high-dimensional input, the Gaussian kernel function
is often used to assign weights to Knearest est neighbors. The
calculation method is as follows:

WK (x0, xk) =
1
K
exp

{
−
‖xk − x0‖2

2K

}
(13)

During training, the fitting ability of the KNN algorithm
can be improved by adjusting the K value.

G. SUPPORT VECTOR REGRESSION
SVR is an application of support vector machines to regres-
sion problems. The core idea of SVR is to find a hyperplane
that maximizes the interval between classes, and the principle
of SVR is similar [39]. In SVR, the mapping from X to Y is
represented as follows:

Ŷ = ∅ (X) = wTX + b (14)

where represents the weight of the input. b is the offset.
For the samples (xi, yi) in the training set, use ξi to rep-

resent the deviation between Ŷi and Yi, and ε define as the
maximum value of the deviation; then, the deviation function
is expressed as follows:

Lossε (ξ) =

{
0, |ξ | < ε

|ξ | − ε, other
(15)

To min bias, the following optimization problem is estab-
lished to solve ω and b:

Min
1
2
‖ω‖2 + C

Nin∑
i=1

(
ξi + ξ

∗
i
)

(16)

s.t.


yi − ωxi − b ≤ ε + ξi
ωxi − b− yi ≤ ξi
ξi, ξ

∗
i ≥ 0

(17)

where C is a regularization constant to avoid overfitting
problems.

IV. DATA COLLECTION AND CASE STUDY
To evaluate the performance of the proposed prediction
method, we conducted a real-data-based case study and com-
pared the various scenarios to ensure robustness. To deter-
mine the best traffic pattern, based on the best prediction
method, we changed the time step of previous and later
moment states to compare the prediction results of different
traffic patterns.
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FIGURE 3. Distribution of five detectors on the third ring expressway.

A. OVERVIEW
The datasets used in this study are sampled from the road
traffic management system. In this research, data are taken
fromfive loop detectors on the Third Ring expressway: detec-
tor 1 (Li Ze Bridge), detector 2 (Feng Yi Bridge), detector 3
(Zhao Gong Kou Bridge), detector 4 (Fang Zhuang Bridge),
and detector 5 (An Zhen Bridge). Traffic data were obtained
from June 1 to 15, 2009. Each data detection point has 6 lanes
with a speed limit of 80 km/h. The data includes time, traffic
flow, lane number, traffic speed, and large vehicle scale.
As shown in Fig. 3.We uploaded the dataset used in this study
to GitHub (https://github.com/gao0628/Dataset).

Some abnormalities found in the dataset can be attributed
to issues with the loop detectors or transmission interruptions
between the local controller and the data center. Abnormal
data may have a negative influence on the forecasting models
and should be repaired before forecasting. The process of data
cleaning is as follows:

1.Abnormal data identification: Simultaneously identify
and estimate abnormal traffic volume and speed. For exam-
ple, at a certain moment, the vehicle speed is an abnormal
value, and the speed and traffic flow data at this moment need
to be re-estimated. The abnormal data judgment rules are as
follows: (i) The speed of the vehicle exceeds 80 km/h, and
80 km/h is the speed limit value of the road; and (ii) data
exceptions due to interruptions in transmission between the
loop detector and the local controller and data center.We used
wavelet analysis to identify the location and extent of outliers
[40]. By calculating the mean and variance of the detail
coefficients in the wavelet analysis algorithm, we substituted
the results into (18) to determine the location of abnormal
data:

Thr (j, z) = µj ± zσj (18)

where Thr (j, z) is the boundary of abnormal data; µj is the
average value of the detail coefficients at the j level (j= 1); σj

is the standard deviation of the detail coefficient at the j level
(j = 1); and z is the value under the 95% confidence interval,
where z = 1.96.

Here, five points around the abnormal point are determined
as abnormal data [41]. Next, it is necessary to reestimate the
abnormal data.

2. Data reconstruction: The Lagrange interpolation poly-
nomial is a simple numerical estimation method that does
not require the determination of the functional relation-
ship between independent and dependent variables [42].
Therefore, we used Lagrange interpolation polynomial to
reconstruct abnormal data. The abnormal data reconstruction
process is shown in (19):

ln (x) =
n∑

k=0

lk (x) f (k) (19)

where ln (x) is the Lagrangian polynomial interpolation, f (k)
is the interpolated function, and lk (x) is the nth degree poly-
nomial, and its formula is as follows:

lk (x) =
n∏
j=0
j6=k

x − xj
xk − xj

(20)

where j, k are known interpolation nodes.
3. Data denoising: After data reconstruction, there are

some estimation errors. We assumed the errors are white
noise and used signal filtering technology to filter and denoise
the white noise. The Kalman filter is applied in various
research fields because of its excellent filtering function [43].
Therefore, we chose the Kalman filter for data denoising.
The Kalman filter has two main parts: the time update equa-
tion and the measurement update equation. The time update
equation is responsible for the timely forward estimation of
the current state variables and error covariance estimates.
The measurement update equation is responsible for feed-
back; that is, it first combines the prior estimate with the
newmeasurement variable to construct an improved posterior
estimate. Fig. 4 shows the overall steps of the Kalman filter
algorithm. Where ‘‘^’’ is the estimated value; ‘‘−’’ is the
prior value; y(t) is the vector of the state system; y (t) is the
vector of the observation system; P (t) is the estimated error
difference covariance; K (t) is the Kalman gain; and ∅,T ,H
are coefficient matrices.

After completing the data identification and reconstruction
algorithm, the data processing result shown in Fig. 5 can be
obtained.

B. FORECASTING WITH THE DIFFERENT METHODS
As described in the previous section and shown in Fig. 1,
this simulation was carried out for many existing methods to
determine the optimal performance of the forecasting model.
These methods included CART, SVR, KNN, BP neural net-
work, and LSTM. All models in this study were built with
TensorFlow, Keras, and Pandas package with Python. For
CART, its core idea is to find the best node, the best branch,
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FIGURE 4. Kalman filter algorithm data processing.

FIGURE 5. Results of original and smoothed data for traffic flow and
speed.

and the key parameters to prevent the decision tree from
overfitting. SVM uses the radial basis function (RBF) as
the kernel function, and other parameters are determined
by cross-validation, including penalty factor C, the nuclear
parameter γ , and the upper error limit ε, For KNN, the
Euclidean distance function is used as the distance between
the calculated samples, and the parameter K value is also
determined by cross-validation. For the BP neural network
and LSTM, the number of hidden layer nodes, the maxi-
mum number of iterations, and the learning rate are used.
All models use parameters that were obtained by trial and
error through multiple experiments, which are widely used
for problem solving, parameter tuning, or knowledge acqui-
sition. In the experiment, the parameter setting of all models
are shown in table 1.

Forecasting results contain T data points throughout the
day. For each data point, we used APE to evaluate the fore-
casting accuracy, expressed as follows:

APE (t) =
y (t)− ŷ (t)

y (t)
× 100% (21)

where y (t) is the true value of the traffic speed in the t-th
time interval, ŷ(t) is the forecasted value of traffic speed
in the t-th time interval, and APE (t) denotes the absolute
percentage error for traffic speed in the t-th time interval. For

TABLE 1. Model parameters.

the forecasting results of the whole day, the mean absolute
percentage error (MAPE) is used to assess the performance,
expressed as follows:

MAPE =
1
T

T∑
t=1

|APE (t)| (22)

The pattern to mine traffic patterns of previous and later
moment states, that is, the value of n and m, is an important
parameter that can influence the forecasting results. We chose
the pattern of ‘‘n= 3 andm= 3’’ to compare the performance
of all forecasting models. After determining the optimal fore-
casting model, we analyzed the results to determine the best
traffic flow pattern (as discussed in the following sections).
The forecasting results for a weekday (June 5) and a weekend
day (June 7) are shown in Fig. 6. Fig. 6(a) shows that the
MAPE of LSTM is about (3.83%), which is much lower than
the results provided by BP (6.12%), CART (7.43%), KNN
(15.67%), and SVR (16.06%). Fig. 6(b) shows that theMAPE
of LSTM is about (2.05%), which is much lower than the
results provided by BP (4.12%), CART (4.40%), and KNN
(13.08%), and SVR (15.31%). However, from the APE of all
methods, it can be seen that in some cases, simple machine
learning methods can produce better forecasting results than
deep learning methods. For example, the APE of CART may
be lower than that of BP and LSTM in some cases. Therefore,
it is necessary to compare the performance of forecasting
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FIGURE 6. Forecasting results and real data on (a) June 5 (weekday); and
(b) June 7 (weekend).

models in time and space dimensions to evaluate the perfor-
mance of the model.

To further evaluate the performance of LSTMagainst exist-
ing methods, as shown in table 2, we presented forecasting
performance across different days on detector 1 among all
models. From the observation, it can be found that the average
MAPE of the LSTMmodel is 3.29%, which is lower than the
other models. It indicates that the LSTM model outperforms
the other models and the fluctuation of MAPE is between 1%
and 6% from June 1 to 15. This is due to LSTM can capture
long-term memory features as the model input features to
make the LSTM have a better prediction effect. In addition,
a phenomenon worth considering is that the forecasting result
of CART, SVR, and KNN is better than BP in some days.
For example, CART’s MAPE is 3.68% and BP is 5.67%
on June 7. However, their forecasting accuracy is not too
stable.

To verify the robust performance of LSTM, as shown in
table 3, we presented forecasting performance across differ-
ent detectors on June 1 among all models. From the average
MAPE of all models, we observed that the average MAPE of
the LSTM is better than that of other methods, and the mini-
mum MAPE is 1.32% at detector 2. It shows that the LSTM
model has good stability. Therefore, we chose the LSTM
model to determine the best traffic pattern.

C. DETERMINE THE BEST TRAFFIC PATTERN
To investigate the influence of the traffic pattern on the
forecasting model, we compared the forecasting results with
different flow features. The size of the traffic pattern should
be moderate. If fewer data are input, there is less histori-
cal information for forecasting, making its prediction result
MAPE poor. Moreover, the MAPEs are generally smaller for
more data, which is expected because such forecasting tasks
become relatively easier. Ma et al. explored the impact of
different time intervals on the forecasting model and found
that 15–20 minutes is the optimal time interval [20]. There-
fore, we set the maximum interval to 20 minutes; that is,
the maximum traffic pattern is ‘‘n = 5 and m = 5.’’ On
this basis, we carried out a random combination experiment
of previous and later moment flow characteristics, with a
total of 36 combination modes. We input 36 flow patterns
to the LSTM forecasting model, and the speed model results
are shown in Fig. 7. Fig. 7 shows the contour map of the
flow patterns around Detector 1 and June 1, and the colors
represent MAPE under different traffic patterns. Fig. 7 shows
that the MAPE is smaller for this pattern ‘‘n = 2–5 and m =
2–5.’’ However, the LSTM prediction results of ‘‘n = 0 and
m = 0–5’’ or ‘‘n = 0–5 and m = 0’’ are generally poor,
because only relying on the traffic flow of previous or later
moment states cannot effectively characterize the current
speed operation state. To predict the speed state more accu-
rately, it is necessary to construct traffic patterns in conjunc-
tion with the flow of previous and later moment states.

To determine the optimal traffic pattern, we compared the
traffic patterns of previous and later moment states from
June 1 to 15, and the predicted results are shown in Fig. 8.
Figure 8 shows that the prediction accuracy of this pattern
of ‘‘n = 0 and m = 0–5’’ or ‘‘n = 0–5 and m = 0’’ is poor
on all days, and the prediction results are also unstable. This
result also verifies our previous conjecture that the previous
or later moment states’ flow pattern alone cannot effectively
predict the current speed operation state. We also see that the
size of the ‘‘previous and later moment states’’ time step is
not related to the predictive effect of the model. For example,
‘‘n = 5 and m = 5’’ has a higher MAPE than ‘‘n = 5 and
m = 4’’ and ‘‘n = 4 and m = 5,’’ which is expected because
the size of ’ previous and later moment states is large, and
may cross the peak of various traffic flows, resulting in a
certain deviation between the predicted results and the actual
values. By analyzing the average MAPE of all days, it is
finally determined that the best traffic pattern is ‘‘n = 3
and m = 3.’’
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TABLE 2. Performance comparison of different models on Detector 1, MAPE from June 1 to 15.

TABLE 3. Performance comparison of different models on June 1 MAPE from Detector 1 to 5.

D. ROBUSTNESS OF THE BEST TRAFFIC PATTERN
To further illustrate the performance of the best traffic pat-
tern, we conducted several robust analyses across different
contexts. We evaluated the spatiotemporal robustness of the
best traffic pattern.

The forecasting results using the LSTM algorithm for
detector 1 across 15 target days for the best traffic pattern
‘‘n= 3 andm= 3’’ are shown in Fig. 9. It can be observed that
the prediction accuracy of all days is relatively robust, and
most of the APEs are lower than 15%. The previous analyses
focused on the data from one loop detector on the Third Ring
Expressway. To show the robustness across different spatial
contexts, the best traffic pattern was also applied with data
from five additional detectors on the Third Ring Expressway.
The APE distribution for the five additional detectors on
June 1 is presented in Fig. 10. As can be seen from Fig. 10,
the prediction accuracy of all detection points is relatively

good. However, the APE of detector 5 is larger than that of
other detector points during the peak period. This is mainly
because the point of detector 5 is distributed in the North
Third Ring Road, and a large number of Expressway inlet
and outlet ramps are located around this point. During peak
hours, vehicles in this area often change lanes to complete
driving tasks, resulting in unstable traffic flow. Therefore, the
accuracy of the prediction model is low in terms of APE.
In addition, there is no need to pay special attention to the
low accuracy of the prediction model caused by complex road
conditions, because the prediction results are also acceptable
at these detection points.

In addition, we summarized the MAPE of June 1 to 15 and
detectors 1 to 5, as shown in Fig. 11. The MAPE of all
detectors and all days in Fig. 11 is lower than 9%, which
further illustrates the robust performance of the best traffic
pattern in time and space dimensions. Similarly, we can also
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FIGURE 7. MAPE for different combinations of traffic flow patterns
(n represents the time step of previous states and m represents the time
step of later moment states).

FIGURE 8. MAPE of different combinations of traffic flow patterns in
15 days (3/3 represents this pattern ‘‘n = 3 and m = 3’’).

FIGURE 9. APE distribution across different days. (Detector 1, June 1-15,
APE within 2 minutes.)

see that the MAPE of detector 5 is relatively large on all
days, which further verifies our previous conjecture that the

FIGURE 10. APE distribution across different detectors. (June 1,
Detector 1-5, APE within 2 minutes.)

FIGURE 11. MAPE on different days and different detectors.

complex geometric conditions around the region also have a
certain impact on the prediction results.

V. CONCLUSION
The running status of expressways or highways can be rep-
resented by traffic speed. We proposed a speed prediction
methodology based on the traffic flow of previous and later
moment states based on the relationship between flow and
speed in traffic flow theory. First, we revised the dataset on
the Beijing Third Ring Expressway. Second, we compared
both traditional machine learning methods and deep learning
methods in terms of prediction performance in the dimension
of spatiotemporal features and concluded that the LSTM
method had the best effect. Finally, we studied the time step
of previous and later moment states and discovered that the
pattern ‘‘n = 3 and m = 3’’ had the best speed prediction
effect, with robust forecast accuracy in diverse time and
space.

The method proposed in this study can quickly sense the
operational status of the road network by relying only on
traffic flow data. It helps travelers plan their travel routes
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and helps road management personnel identify congestion
points and formulate congestion mitigation strategies. For
example, the Electronic Toll Collection (ETC) system on the
highway can acquire traffic flow data but not vehicle running
speed information, and flow data alone cannot adequately
reflect the highway’s operating status. Based on the flow data
from the ETC system, we can forecast the speed and further
assess the highway’s operating status.

Other limitations of the proposed method exist, and it
can be improved in the following ways. First, the traffic
flow collected by some neighboring detectors is correlated.
Therefore, one of our future study areas may be to extend
the proposed method to forecast traffic speed for multiple
detectors at once or even a large-scale network. Second, the
performance of traffic speed forecasting could be enhanced
by further assessing the road conditions and traffic conditions
at the detection location, such as the detector’s upstream
and downstream road conditions, road speed limit, and other
parameters. Third, we can optimize the extraction method of
the previous and later moment states traffic flow information
to raise prediction performance. Fourth, only the flow char-
acteristic factor is currently considered; if more factors such
as external factors (e.g., the environment and weather) are
incorporated, the results may improve.
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