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ABSTRACT The key objective of this paper is to explore the recent state-of-the-art artificial intelligence (AI)
applications on the broad field of beamforming. Hence, a multitude of Al-oriented beamforming studies
are thoroughly investigated in order to correctly comprehend and profitably interpret the Al contribution
in the beamforming performance. Starting from a brief overview of beamforming, including adaptive
beamforming algorithms and direction of arrival (DOA) estimation methods, our analysis probes further
into the main machine learning (ML) classes, the basic neural network (NN) topologies, and the most
efficient deep learning (DL) schemes. Subsequently, and based on the prior aspects, the paper explores
several concepts regarding the optimal use of ML and NNs either as standalone beamforming and DOA
estimation techniques or in combination with other implementations, such as ultrasound imaging, massive
multiple-input multiple-output structures, and intelligent reflecting surfaces. Finally, particular attention is
drawn on the realization of beamforming or DOA estimation setups via DL topologies. The survey closes
with various important conclusions along with an interesting discussion on potential future aspects and
promising research challenges.

INDEX TERMS Artificial intelligence, beamforming, deep learning, deep neural networks, direction
of arrival estimation, intelligent reflecting surfaces, machine learning, massive MIMO, MIMO, neural
networks.

I. INTRODUCTION

With today’s rapid technological advancements and the
tremendous increase in data volume, the main challenge is to
minimize interference and optimize the capacity of wireless
communication systems. Also, the demand for transmission
with the highest possible quality and coverage is gradually
escalating, thus opting for more efficient antennas in order
to meet all 5G challenges. Lately, beamforming — defined
as a real-time procedure which can create a main lobe
that corresponds to the direction of the desired signal and
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several nulls toward the directions of interference signals —
has gained remarkable recognition in the area of modern
wireless communications and radar systems. In essence,
beamforming has been comprehensively studied during the
last decades by means of deterministic and evolutionary
methods. Despite their advantages in calculating optimum
weights and estimating the direction of arrival (DOA), such
techniques are very difficult to consistently treat changing
environments, where the emitters move and therefore the
weights must continuously be computed. Not to mention
the significant risk of performance degradation due to
mismatches between the expected and the actual signal
steering vectors.
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On the other hand, real-time evaluations of weight
coefficients for large numbers of antenna array elements have
been proven to be computationally expensive. As already
known, a small mismatch between the actual and expected
array responses to the desired incoming signal has a serious
effect on the performance of adaptive and reconfigurable
array algorithms, which aim at reinforcing the reception of
the desired signal [1]. Earlier research focused on one of
the robust adaptive beamforming (RAB) techniques, namely
the array steering vector estimation [2], which manages to
improve the signal to interference-plus-noise ratio (SINR),
yet at a rather high complexity. In this context, massive
multiple-input multiple-output (MIMO) is a modern cellular
network architecture, which is capable of providing spectral
efficiency, when increasing the number of antennas, and
also capable of enhancing system capacity without the
need for small cells. It must be noted that massive MIMO
structures account for radiation pattern, mismatching, and
mutual coupling issues. The latter can be addressed by
placing a dielectric layer superstrate [3] or periodic square
split ring resonator (SRR) components [4] above the antenna
arrays. Due to its flexibility in satisfying many beamforming
requirements, such as SINR enhancement [5] and output
power minimization of the uplink or downlink channel, which
lead to increased antenna apertures [6], the application of
beamforming to massive MIMO has triggered a remarkable
research effort. To this objective, several algorithms have
been launched, the most popular of which is the null steering
beamforming (NSB). Despite its effectiveness, the technique
is proven to be complex thus resulting in a performance
loss. Also, the mean square error (MSE) and the weighted
minimization MSE schemes have been used in MIMO
systems to solve the sum-rate maximization problem (SRM),
but with a high computational complexity [7]. Hence, while
a larger degree of freedom is obtained with a larger number
of antennas, the overall complexity is augmented when
attempting to derive the weights of massive MIMO antenna
array elements and simultaneously performing beamforming.

Being an excellent solution in a variety of challenging
fields, artificial intelligence (AI) has already begun to
be used by researchers as a possible solution to realistic
beamforming problems. Actually, the implementation of
Al techniques, and especially deep learning (DL), in the
antenna array beamforming area is very efficient for changing
environments, where weights must be repeatedly calculated.
Due to their fast response, rapid convergence rates, successful
failure detection, and proactive decision capability, most
adaptive beamforming (ABF) techniques are now based
on DL realizations [8]-[10]. These key aspects along with
the latest and future AI contributions in beamforming are
thoroughly discussed in this paper.

Il. ALGORITHMS APPLIED TO SMART ANTENNAS

Smart antennas are beam-steered array radiators with signal
processing algorithms that can separate signals transmitted
by multiple sources. Among their most significant functions,
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one can discern the ABF techniques [8] for their ability to
achieve the highest SINR. The use of fixed array weights
is assumed to apply to signals with fixed DOA (i.e., fixed
beamforming). On the contrary, the array weights must be
repeatedly calculated in ever-changing environments, where
DOAs of the incoming signals vary with time (i.e., ABF).
The general structure of a beamformer is illustrated in Fig. 1,
where several signals are assumed to be received by the
antenna array from various DOAs.

FIGURE 1. Beamformer receiving samples of signals x; (k), .. ., xy; (k) at
the inputs of the M array elements, due to incoming signals from various
DOAs.

A. ADAPTIVE BEAMFORMING

ABEF algorithms fine tune the feeding weights of the antenna
array. There exist a lot of ABF optimization techniques
based on various concepts, such as the steepest or gradient
descent, the blind adaptive mechanism, the constant module,
or the signal coherence concept. However, convergence and
computational complexity are their chief drawbacks [11].
The most well-known ABF techniques are the least mean
squares (LMS) method and the normalized LMS (NLMS)
algorithm, which are gradient-based approaches to control
the weights and improve the SINR of the desired incoming
signal. Since they may require many iterations prior to reach-
ing a satisfactory convergence, they rather face difficulty in
tracking rapidly changing signals [11], [12]. The constrained
NLMS (CNLMS) method is widely used in sparse array
beamforming and has a higher convergence rate than other
ABF algorithms [13], [14]. The convergence hindrance can
also be overcome through the sample matrix inversion (SMI)
method, which, although better in convergence rate than the
LMS one [15], it may be prone to misleading outcomes
due to potential singularities and the fact that the correlation
matrix may be ill-conditioned [11]. Moreover, several ABF
algorithms have been examined in [15], where it is shown
that the recursive least square (RLS) method can converge
faster (at the expense of additional complexity) than the
LMS scheme. In comparison to the LMS and RLS methods,
the SMI method has higher computational cost due to the
correlation matrix inversion involved in the SMI process,
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especially in cases of large numbers of antenna array
elements.

Regarding performance, two of the most distinct candi-
dates are the minimum variance distortionless
response (MVDR) method and the NSB technique. The for-
mer minimizes the beamformer output power and maintains
the desired incoming signal undistorted, particularly when
the array steering vector of this signal is known. Nonetheless,
the MVDR method suffers from high sidelobe levels, which
affect the overall performance, especially in the case of high
noise presence. To alleviate this shortcoming, an interesting
solution based on the Lagrange multipliers technique has
been presented in [16], whereas [17]-[20] discuss various
ways to increase the beamforming robustness. Conversely,
the NSB technique suppresses the beamformer output due
to interference signals while keeping the desired incoming
signal undistorted at the output of the beamformer. For this
purpose, the main lobe is steered to DOA of the desired signal,
while, at the same time, radiation pattern nulls are placed
toward DOAs of respective interference signals. Therefore,
DOAs of all incoming signals must be known a priori, and
this is a fact that limits the NSB competence [21], [22].

B. DIRECTION OF ARRIVAL ESTIMATION

Known, also, as angle of arrival (AOA) estimation, the
specific scheme is critical for location-based services and
applications of 5G communications. To fulfill this goal,
numerous methods have been explored, including the Bartlett
AOA estimate and the Capon AOA estimate, which do not
require any prior knowledge of specific statistical properties
of the signals. Additionally, special attention has been drawn
to highly accurate schemes, such as the multiple signal
classification (MUSIC) [23] and the estimation of signal
parameter via rotational invariance technique (ESPRIT) [24],
which offer unbiased estimates of DOAs of the incoming
signals. However, they necessitate precise array pattern
modeling and a huge number of samples [25]. Furthermore,
the parameter-based methods involve algorithms such as
the maximum likelihood [26] and the compressed sensing
technique, that is an on-grid estimation approach capable of
achieving a high-resolution DOA [27]. In fact, DL methods
outperform all standard DOA methods in terms of accuracy,
and thus become an essential signal processing alternative to
advanced DOA estimation [28], [29].

lll. BACKGROUND

Al enables man-made systems to “‘think” and “act
rationally, like humans, in order to replace the latter at certain
tasks or procedures. Fig. 2 summarizes the main Al regions.
DL is an important sector of machine learning (ML) that
focuses on the involvement of two or more hidden layers in a
neural network (NN) structure. In essence, DL has overcome
the inherent ML feature engineering problem by mapping
the raw input data into a new representation process known
as “‘representation learning”, i.e. the more data we have,
the better results we obtain. Thus, this section discusses the
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fundamental DL principles, including highlights of the ML
characteristics, representation learning, NN types, and a brief
overview of their applications in the beamforming field.

Artificial Intelligence

Machine Learning

Deep
Learning

FIGURE 2. The key Al regions.

A. MACHINE LEARNING

ML is an essential Al region that allows learning from
data and making proactive decisions. In fact, ML includes a
wide field of concepts [30], and it can be grouped in three
main categories: (i) supervised learning, where input and
output training samples are available for building prediction
models, (ii) unsupervised learning, where no training data
are available, and (iii) reinforcement learning, where analysis
is conducted through encouragement, as in Markov decision
processes and online games [31].

On the other hand, there are three categories of hybrid
learning. The first one is the semi-supervised learning, which
requires unlabeled data in addition to a small amount of
labeled data. The second is the self-supervised learning,
which requires only unlabeled data to make predictions
(the generative adversarial networks fall into this category).
The third category is the multi-instance learning, which is
actually supervised learning but, instead of having instances
individually labeled, the instances are grouped and labeled in
bags.

Although the present survey concentrates on DL appli-
cations in the beamforming field, it should be stressed
that DL is not the only application of ML. Probabilistic
modeling (e.g., naive Bayes) is a type of ML classifier
as well as the logistic regression, both of which are still
being used today. Additionally, linear regression methods,
kernel methods, decision trees, random forests, and gradient
boosting machines are some indicative ML realizations that
continue to offer reliable estimations for several modern
scenarios [32].

B. LITERATURE REVIEW OF MACHINE LEARNING BASED
BEAMFORMING

Even though the majority of recent research is based
primarily on DL, we will share some of the most recent
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applications of ML in the beamforming field. ML plays an
important role in reducing the power and time consumption
in millimeter-wave (mm-wave) communications during the
beam selection and switching (BSS) process, where an ML
algorithm with a single-resolution codebook is selected to
obtain an eigen-beam set [33]. Likewise, in [34], the inter-cell
interference of mm-wave signals, when using large antennas,
is avoided by a data-driven method based on a fuzzy support
vector machine (SVM). Furthermore, AOA estimation with
the lowest possible complexity in intricate environments
has been achieved in [35], where a data-driven approach
employs a MUSIC algorithm in several regression models.
In [36], a linear regression model is used in combination
with ordinary least squares to accurately predict DOAs of
the incoming signals. The support vector regression (SVR)
model proposed in [37] proves its ability to faster obtain a
precise result of DOAs of signals that do not exist in the
learning phase through generalization. An SVM classifier
has been applied in [38] for near-field sound localization in
the presence of noise, thus increasing the accuracy of the
weighted MVDR (WMVDR) used here to preserve the signal
with a specific DOA and distort the rest of the signals from
other directions. Also, in [39], the SVM method is found to
be superior to a WMVDR-based radial basis function neural
network (RBFNN) in a near-field sound localization process.
Another application of SVM [40], requires a two-stage
approach to obtain an accurate real-time AOA estimation in
vehicular communications. In an effort to compensate for the
steering vector mismatching problem caused by the MVDR,
a RAB technique based on an SVM is proposed in [41],
where MVDR is reformulated as an SVR problem. To this
aim, optimal beamforming weights and maximum SINR are
achieved in [42], where a reinforcement learning approach
is used to compute the optimal positions of relays in fading
environments.

As mentioned above, there are numerous contributions of
ML in mm-wave communication systems, particularly the
SVM algorithm, due to its straightforward implementation
and its ability to provide precise results.

C. NEURAL NETWORKS

NNs comprise simple processing interconnected nodes and
three types of layers. In particular, these are (i) the input
layer, which includes the NN feeding data, (ii) the hidden
layers, which are responsible for all computations, and
(iii) the output layer, which produces the final outcome.
In the following, we will refer to some of the most popular
NNs [43].

The feedforward NN (FNN) is the simplest type of NN,
composed of several simple neurons organized in layers,
as described in Fig. 3. Every unit in a layer relates to all
units of the previous layer, while there are not any feedback
connections on the model outputs.

The convolutional NN (CNN) is a significant class of NN,
which employ convolutions instead of the multiply-add type
of neurons (see Fig. 4). For example, the generation of image
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Input
Layer

Output
Layer

Hidden Layers

FIGURE 3. FNN structure with two hidden layers.

features is performed by running a filter over the image,
since it can exploit the correlation among the pixels. Such
NNs are popular for classification tasks and for obtaining
the spatial features of the input layer [44], [45]. Actually,
they have outperformed many traditional NN models at
the enhancement of ultrasound image [46] and cancer
detection [47].

Convolution Fully Connected

Input

1l |||[—=

Pooling

FIGURE 4. CNN structure.

Output

Linear Weights

Radial Basis
Functions

Weights
Input
FIGURE 5. RBFNN structure.

The RBFNN employs a radial basis function, which varies
with distance from a location and acts as an activation
function. As presented in Fig. 5, it comprises an input,

a hidden, and an output layer. Depending on its basis function
and the number of hidden layers, the RBFNN can be deemed
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nonlinear. It can be utilized for time series prediction and
function approximation [48], [49].

Hidden Layers

FIGURE 6. RNN structure with two hidden layers.

The recurrent NN (RNN), displayed in Fig. 6, differs from
FNN in the existence of a feedback loop and the exploitation
of previous input data to influence the next inputs due to its
memory. As a consequence, they are mainly used for temporal
tasks [50]. Due to their key impact in various research fields,
two advanced RNN structures are discussed below, i.e., the
long short-term memory (LSTM) and the gated recurrent
unit (GRU).

The LSTM cell is a special structure that can successfully
manipulate the vanishing and exploding gradient in order to
protect the learning process during backpropagation through
time [51]. It has three gates to control the memory access,
designated as forget, input, and output gates [52]. As shown in
Fig. 7, x(¢) is the input to the LSTM cell, c(7) is the cell state,
f () is the forget gate’s activation, i(¢) is the update gate’s
activation, ¢(t) is the cell input activation, o(¢) is the output
gate’s activation, h(¢) is the hidden state (or cell output), o
is the sigmoid function, and tanh is the hyperbolic tangent
function.

Forget Gate Input Gate Output Gate Ih(t)
ol (X) ®) € C(:)
0 60
(1) &) [ @
6| [0 [ [O
h(t-1)

h(t)

x(t)

FIGURE 7. Structure of the LSTM cell.

The GRU cell is also an improved RNN variant, and it
can also serve in a similar manner as the LSTM cell. The
main difference between the GRU and LSTM structures
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is that the GRU has only two gates (see Fig. 8), namely
the reset and update gates, instead of three as is the case
with the LSTM structure. Hence, the GRU requires fewer
training samples, which translates into reduced memory and
CPU time resources. Generally, the LSTM is proven to
be better in terms of accuracy, while the GRU is faster
and computationally more economical. Fig. 8 illustrates the
detailed structure of the GRU cell, where x(¢) is the input
vector, r(t) is the reset gate vector, z(f) is the update gate
vector, /(1) is the candidate activation vector, A(¢) is the output
vector, o is the sigmoid function, and tanh is the hyperbolic
tangent function.

Reset Gate

Update Gate
h(t-1) m m m 3

N

S @
r(t) z(t) ;(t)

6 0] fm

T

x(t)

FIGURE 8. Structure of the GRU cell.

D. LITERATURE REVIEW OF NEURAL NETWORK BASED
BEAMFORMING

One of the most important NN contributions is the treatment
of the SRM problem, which is critical in massive MIMO
systems [53], [54]. So, the drop algorithm based on NNs
is used in [55] to select users that would be dropped,
therefore leading to SRM. In [56], the sampling function
NN has been proposed to manage the weights calculation
of an adaptive antenna array thus resulting in an improved
performance compared to the conventional RBFNN. Also,
in [57], the non-identical characteristics of the antenna
channel and their drift over time have been addressed
through a direct distribution of a NN. An FNN has been
trained in [58] to evaluate the optimum weights of a
uniform linear array (ULA) and optimize them with a better
performance than an LMS-based beamforming algorithm.
In addition, a NN is employed in [59] for DOA estimation
of signals received by a ULA with the lowest MSE. The
Lagrange programming NN, based on Lagrange multipliers,
is employed in [60] for anti-jamming in real-time. Finally,
to accomplish a secure and realistic transmission system,
a backpropagation NN is utilized in [61]. Note that only a
few indicative contributions of NN in the beamforming field
are reported in this section, as the current trend opts for DL
applications in order to achieve extra accuracy, even if it
comes at the expense of complexity.
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E. REPRESENTATION LEARNING

The efficiency of ML techniques is strongly influenced by
the type of the used data representation. As a result, feature
engineering has become an important part of leveraging the
innovations to compensate for the shortcomings of existing
ML algorithms. Data representations intend to make learning
easier to extract meaningful information from data in order
to construct reliable predictors. There are numerous learning
presentation applications, such as inference techniques,
which involve inductive learning that relies on specific
rules to make the general output decision, and deductive
learning that follows general rules to make the specific
output decision [62]. In this context, transduction learning
methodologies, such as the k-nearest neighbors algorithm,
have accordingly been introduced. Also, multi-task learning
(a supervised learning technique) has been proven to be
instructive when multiple tasks are learned simultaneously
from a single model. In this way, useful relationships included
in related tasks can be utilized, thus resulting in improved
prediction accuracy for specific tasks compared to models
that are trained individually. Apart from active learning,
online learning, ensemble learning, and transfer learning,
distinct parts of the resulting model (or the entire model) may
be employed for relevant tasks, thus reducing complexity by
minimizing data size [63].

One of the key methods of learning presentation is DL,
which relies on the multi-layer structure of a NN to learn
and find the optimal solution. On the other hand, ML needs
algorithms to analyze data, learn from data, and construct
solutions. ML relies on users to generate new features,
whereas DL relies on its techniques. Also, ML is much
simpler than DL, since it does not require a large amount of
data or extremely expensive hardware, while DL has much
higher reliability when compared to ML.

The star of DL has emerged in the early 2010s, although
it has already been known long before. Its important
breakthrough occurred when computing systems included
GPU processing power. Since then, it has undeniably been
proven to be the best choice in several fields and constantly
gains the interest of several others. In fact, DL has managed to
approach the way of analysis of human brain through the use
of data inputs, weights, and bias in diverse scientific areas,
like image classification, speech recognition, handwriting
transcription, autonomous car driving, and improved internet
search results, to name a few [64]. Moreover, its contribution
in medicine has been decisive, and particularly in the early
detection of malignant diseases, by improving the accuracy
of ultrasound imaging.

IV. STATE OF THE ART IN DEEP LEARNING BASED
BEAMFORMING

Essentially, the principal goal of this survey is to demonstrate
the implementation of DL techniques in the wide region of
beamforming, including DOA estimation, massive MIMO-
beamforming, and the impact of different realizations on the
solution of certain problems.
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By applying beamforming, the main lobe of the antenna
array is aligned along DOA of the signal of interest to
ensure a reliable connection with the source of this signal [9].
The DOAs of the desired and undesired signals change
over time, therefore the feeding weights must be calculated
upon every change. This is exactly what makes most of the
evolutionary optimization techniques fail to simultaneously
achieve the required accuracy and provide the required time
response, due to their iterative structure [65]. On the contrary,
a NN-based beamformer provides immediate response as
demanded in 5G and beyond-5G wireless networks, which
are deployed in fast-changing environments. In addition, the
majority of the research does not consider realistic parameters
of the antenna array, like the non-isotropic radiation pattern
of the antenna array elements and the mutual coupling
between them, as discussed in [10]. Such realistic parameters
increase the complexity of the beamforming problem.
However, the DL structure of an NN-based beamformer is
capable of providing the required accuracy, while maintaining
immediate response even when these parameters are taken
into account. Herein, we conduct an overview of the latest DL
applications on the beamforming and DOA estimation fields.

Recently, a combination between a CNN and a bidirec-
tional LSTM (BLSTM) implementation was proposed to
calculate the antenna array weights in the presence of noise
and interference without prior knowledge of DOAs [66].
Compared to the minimum mean square error (MMSE)
beamformer, a CNN performs better with varying numbers
of interference signals, while the LSTM architecture excels
in estimating the desired signal. The combination between
the two architectures appears to be more effective than using
only a CNN, such as in [67] and [68]. Such a CNN examined
in [67] determines the phases required for designing the
antenna array pattern, while a convolutional massive beam-
forming NN (CMBNN) is used for the optimization with
varying numbers of users in [68]. Moreover, in [69], a deep
CNN is proposed for a fast suboptimal solution of a real-time
antenna synthesis problem. This model significantly reduces
the operational time, while maintaining a high accuracy.

In addition, there are various models for DOA estimation
using DNNs. In [70], a multi-layer perceptron (MLP) with
several fully connected (FC) layers is divided in two stages
to separately perform signal detection and DOA estimation
with a higher rate of convergence than previous approaches.
In [71], a DNN outperforms a maximum likelihood estimator
in efficiency when the number of sources is unknown, while
at the same time providing lower complexity. However, in the
case of on-grid estimation, such a DNN performance is
very sensitive, when DOA estimation is conducted at the
boundaries of bins used to divide the AOA space [72].
In this context, [73] converts a traditional DOA estimation
problem to a multilabel classification one, based on a CNN,
to discriminate between various sound sources, as well as to
reduce the array aperture limitation. On the other hand, [74]
faces DOA estimation as a regression problem. Here, a CNN
estimator minimizes the time complexity, while retaining a
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TABLE 1. Primary characteristics of DL applications.

REF  Architecture Array properties  Application
o s
[66] w ([il::[l\(fments) removing
BLSTM Desired signal
(6-layers) estimation
Microstrip
[67] CNN phased antenna Patch antenna
(8-layers) array phases estimation
(8%8 elements)
CMBNN Massive MIMO Antenna array
[68] (3-layers) system (single eights estimation
Y cell- multiuser) weig
[69] CNN 2D planar array ~ ABF, optimum
(8-Layers) (149 elements) currents calculation
MLP ULA . .
(701 (4-FC layers) (10 elements) DOA estimation
MLP ULA L
711 gFC layers) (16 clements) DO estimation
MLP ULA L
(72] (6-FC layers) (5 elements) DOA estimation
Microphone DOA estimation
CNN . .
[73] (7-layers) array (nonlinear mapping
Y (8 receivers) learning)
Uplform DOA estimation
(74] CNN circular array (inverse mapping
(4-layers) (UCA) with 8 .
learning)
elements
Optimal sparse
[75] Deep CNN array DOAs estimation
(10 elements)
FNN ULA
[76] (3- layers) (11 elements) ABF
(77] FNN ULA Optimum weights
(2-layers) (5 elements) calculation

high degree of frequency generalization. Also, deep sparse
arrays have recently been proposed using DL to limit the
hardware cost in radar systems and ensure the validity of the
approach in DOA recovery with performance comparable to
that of the conventional sparse arrays [75].

In [76], an FNN-based beamformer is trained based
on a modified adaptive dispersion invasive weed opti-
mization (i.e., an invasive weed optimization variant) to
maximize the SINR and minimize the sidelobe level with
the fastest response. Also, in [77] an FNN that uses a
Levenberg-Marquardt scheme achieves good performance in
computing the antenna array optimal weights, at the expense
of a rather increased memory consumption. Further details
about the aforementioned general DNN contributions in the
beamforming field are summarized in Table 1.

It should be stressed that 5G systems can localize users
due to active directional antenna arrays. However, most
of the methods rely on channel state information (CSI),
which is not always feasible to obtain. In [78], a new
approach is proposed, which does not require any CSI (only
information about the received signal strength) and is based
on a fully connected network with two hidden layers trained
for fingerprints with better performance than deep CNNs.
The use of a model-driven DL for beamforming can be
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deemed as an advancement, since a signal processing module
is introduced in the NN structure to reduce the overall
complexity [79]. Based on available CSI in [80], a DL
estimation of user allocation achieves the optimal accuracy
by managing resources and thus provides the desired services
to the user equipment. The most recent DNN contributions
in beamforming subdomains are discussed in the following
paragraphs.

A. MASK-BASED BEAMFORMING

In noisy environments with a low SNR, conventional ABF
algorithms cannot enhance the noise-robust automatic speech
recognizer (ASR) in the same way that a DNN-based mask
estimator can, although it is used as a preprocessor for
speech recognition [81]. For more clarification, a deep
FNN combined with an MVDR beamforming algorithm is
proposed in [82], using the ideal ratio mask (IRM), followed
by the ideal binary mask (IBM). As a result, the performance
of the MVDR beamformer is improved, and the noisy speech
is excluded. The performance of the proposed algorithm is
evaluated using the sentence error rate (SER), which seems
to be beneficial in scenarios with low SNR.

The majority of the research in this field focuses on the far-
field speech recognition, which remains a significant process,
since speech signals can be vulnerable to a lot of noise and
reverberation. A deep FNN-based acoustic model composed
of six hidden layers is used in [83] to compute the optimum
weights from the generalized cross-correlation (GCC). The
available AOAs are used here to train this model. Also,
the option of improving the far-field ASR performance is
considered by employing an LSTM-based acoustic model in
the same manner. In [84], a DNN-based beamformer with
spatial attention is developed to evaluate the weights. It is
noted that spatial attention indicates how instructive each
direction is for the recognition of the target speech. In [85],
a FNN is proposed to provide a more accurate estimation of
audio signal DOAs than the least-squares approach in noisy
and reverberant environments using features extracted from
GCC vectors.

The use of DL as an acoustic model associated with the
availability of training data has significantly improved the
ASR performance. Nonetheless, it has a few drawbacks, due
to additive Gaussian noise and reverberation. To mitigate
these issues, a notable progress is made in [86] and [87],
where the same NN structure is used in different ways to
estimate spectral masks and thus provide robust acoustic
beamforming. Specifically, noise estimation is critical in
beamforming, and it can be accomplished by estimating
spectral masks for speech and noise using a data-driven
technique like that described in [86]. This approach, which
uses BLSTM and a simple FNN to estimate the beamformer
coefficients and spectral masks of multi-channels, has proven
to be efficient even when using only pure talk, though it
does not leverage the full multi-channel information. Despite
its efficiency, the data mismatching between training and
testing datasets has an impact on the DNN performance
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when using supervised learning. This mismatching is avoided
using the unsupervised approach of [87]. The coefficients
of the complex Gaussian mixture model are calculated in
an unsupervised way using a combination of a BLSTM
layer and three FNN layers to build the IRM and IBM.
However, [88] proposes an acoustic beamformer based on
supervised DL time-frequency mask estimation model. Time-
frequency masking is a method for separating speech from
noise in order to improve speech quality by adding weights to
the time-frequency feature bins. Since the beamformer in this
model does not require information about steering vectors of
signals, any mismatching issues can be avoided.

In [89], an LSTM adaptive beamformer is trained alongside
a deep LSTM acoustic model to adaptively estimate the
beamforming filter coefficients at each time frame, and
performs filter-and-sum beamforming over the short-time
Fourier transform coefficients. A similar approach is used
for multichannel waveform signals in [90]. The approach
proposed in [86] is also used in [91], where a CNN, an LSTM
architecture, and a DNN are concatenated to estimate frame-
level speech and noise masks, thus improving the far-field
ASR performance.

B. ULTRASOUND BEAMFORMING

The main goal of the rapidly evolving area of ultrasound
imaging is to achieve a real-time detection capability, to avoid
harmful rays, and to offer low-cost setups. Beamforming
plays an important role in this field, and the MVDR method
is the typical choice, yet with a large computational overhead.
So, the standard delay and sum (DAS) beamforming method
is useful to compensate for this overhead as well as to
improve the quality of the reconstructed images, despite some
shortcomings. To alleviate them, [92] proposes three alter-
native DNN architectures, i.e., a fully connected network,
a convolutional autoencoder, and a U-Net-like network (its
architecture is similar to that of a convolutional autoencoder
but with skipped connections from the encoder to decoder
layers, thus achieving better feature preservation in the
decoding process). In this manner, the speckle noise is
suppressed and the required time for image reconstruction
is reduced. For the same purpose, [93] presents a DNN
with four fully connected layers, which can reconstruct
high-quality ultrasound images for a wide range of imaging
systems with a faster response time and less complexity
than conventional beamforming methods. Furthermore, [94]
proposed a fully connected DNN architecture with seven
hidden layers to extend the contrast ratio dynamic range in
the presence of reverberation clutter, thus outperforming DAS
beamforming.

The plane-wave ultrasound imaging technique has become
very important because it can reach high real-time frame
rates up to 18000 frames per second [95]. It must be noted
that a single plane wave is not enough to produce an
image with enhanced quality in acoustic clutter conditions.
However, by using a single plane wave in each simulation,
the generative adversarial networks (GANs) in [96] are able to
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improve the image quality and extract enough data to rebuild
a DAS B-mode image, while also providing segmentation
information. An improved approach of [96] with a simpler
architecture is proposed in [97], where a fully CNN manages
to consume less time in training compared to a GAN, and
thus it becomes a promising alternative to the traditional
DAS beamforming technique for the detection and tracking of
anechoic cysts surrounded by tissue. Similar implementations
have been proposed in [98] and [99] by applying a fully
convolutional encoder-decoder and a fully CNN, respectively,
hence increasing the total accuracy and speed. The aforemen-
tioned concept of plane-wave ultrasound imaging techniques
via DNNSs in comparison to the conventional pipeline process
is summarized in Fig. 9.

Envelope detection,

DASBF — log compression _, Beamformed Image
and filtering Image segmentation
Segmented
Image
DNN DNN-based
Image

FIGURE 9. Two alternative ways for ultrasound image formation:
conventional pipeline process, which uses a DAS beamformer, and DL
process.

Based on the above, we can conclude that DL has
become a qualitative alternative to previously used methods
to improve the quality of reconstructed ultrasound imaging.
It has the ability to predict beamformed signals, while it
can also reduce noise in reconstructed images by improving
the DAS beamformer performance. Moreover, DL has
been proven to be efficient in classification tasks, without
extra computational complexity, primarily when used in
autoencoders. An autoencoder can be trained with noisy
images and outputs noise-free images. In addition, when large
datasets are used, the autoencoder increases the likelihood of
deriving more accurate results. Particularly in the commercial
field, the contrast-to-noise ratio and signal-to-clutter ratio are
greatly improved when using DL to fill gaps created by the
DAS beamformer. Furthermore, when using the coherence
factor at the lowest SNR, DL can improve the performance
of filter-and-sum beamforming methods.

C. INTELLIGENT REFLECTING SURFACES

The intelligent reflecting surface (IRS) is considered to
be one of the most promising components of massive
MIMO technology, and it will play a decisive role in 6G
wireless networks. It is mainly an array of many reflecting
metamaterial elements, most of which can passively radiate
electromagnetic waves, when controlled and placed near the
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transmitter or receiver. Note that some of the elements are
active if connected to the IRS baseband controller in order to
operate as channel sensing devices, and thus should be placed
near the receiver. Furthermore, it is noteworthy to mention
that in majority, due to their own amplitude-phase regulation,
the IRSs have the advantage of beam steering without the use
of phase shifters or other RF components. In fact, MIMO and
IRS technologies are related to each other, except that the
latter can provide spectral and energy efficiency by tuning
the wireless environment to compensate for any hole caused
in the coverage area [100]. Also, IRS-assisted systems may
be more complex due to the large number of communication
links [101]. So far, a lot of research has been conducted to
compare various trends of IRS usage [102], as in the case of
mm-wave communications [103] and others [104].

The beamformer and phase shifter must optimally be
designed in IRS-assisted wireless systems. Indeed, the
joint optimization has been a critical issue due to the
coupling between the transmitting and reflecting antennas
as well as the nonconvex constraints. Most of the research
uses alternating optimization-based frameworks to solve
this problem. Specifically, a point-to-point IRS-assisted
multiple-input single-output (MISO) communication system
has been proposed in [105], using two algorithms, fixed-
point iterations, and manifold optimization techniques. Also,
to avoid the separation of the nonconvex problem into two
sub-problems, several methods which perform simultaneous
optimization have been introduced, so far. Among them, one
can discern the DL-based IRS as an important tool for signal
detection that does not require the use of a pilot signal and has
the lowest bit error rate (BER), thus resulting in a reduction of
overhead [106]. Moreover, we can distinguish beamforming
and channel estimation with a comparatively small number
of active elements and the highest data rates [107], [108],
where most of the elements are passive, and the system
learns to estimate the channel performance via DL only at the
IRS active elements [107], while most traditional estimation
methods would increase training and architecture complexity.
The proposed channel estimation scheme in [109] employs
DL models and a two-stage NN, which has an architecture
less complex than those of conventional compressed sensing
algorithms. It must be noted that conventional compressed
sensing algorithms necessitate the extraction of precise phase
information from measured data and thus they become highly
complex. However, they are prone to failure in cases of
low SNR. The DNN-based method in [110] is designed to
improve the received signal strength in IRS-based indoor
environments. Finally, due to controlling an IRS without
the use of a base station, the deep reinforcement learning
model developed in [111] is able to predict the IRS reflection
matrices with even less training and higher rates than
supervised approaches.

Overall, in IRS-assisted systems, the DL outperforms
compressed sensing techniques, because it does not require
a large number of active elements or prior knowledge of
array statistics. However, it requires a large number of
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training samples. More details on the contribution of DL in

IRS-assisted systems can be found in Table 2.

TABLE 2. Features of DL-based IRS-assisted applications.

REF  Architecture IRSs properties Application
32 active
MLP elements, 64 Signal detection,
[106] reflecting and channel
(5-FC layers)
Y elements, and 2 estimation
channel paths
64 a nfennas, 8 Reflection
[107] MLP active elements, matrices
(4-FC layers) and 10 channel .
paths prediction
64 antennas, 100 Channel
[108] 2-CNNs reflecting estimation
(9-Layers) elements, and 10 .
channel paths (massive MIMO)
128 aqtennas, 32 Channel
[109] MLP reflecting estimation
(5-FC layers) elements, and 3 (THz MIMO)

channel paths
32 antennas, and
MLP 8,32, or 64

[110] RIS configuration

(5-FC layers) reflecting
elements
32 antennas, 4
MLP active elements, .
(1] (4-FC layers) and 1-15 channel RIS configuration
paths

D. ANTENNA BEAMFORMING COMBINED WITH MASSIVE
MIMO

The use of DNN in massive MIMO systems has made a
remarkable progress, such as the deep adversarial reinforce-
ment learning model in [112], which has greatly improved the
performance and capacity of massive MIMO beamforming
by defining the amplitude and phase shift of each antenna
element using a small set of training data.

Due to the large number of antennas and the variable
number of potential users, the training complexity in massive
MIMO beamforming increases, thus limiting the ability
of DNNs to provide optimal performance. In particular,
a CMBNN is proposed in [68] to minimize the training
complexity by combining supervised and unsupervised
learning, thus achieving SRM with high speed and system
efficiency for a variable number of users. Furthermore, the
CNNs have made a serious contribution in massive MIMO.
To perform BSS, a deep CNN is used in [113] to classify
the narrow and strongly focused beams with high reliability
and low complexity. The reliable specification of transceiver
locations is achieved in [114] using two CNNs in less time
and high accuracy when compared to a deterministic method.
Apart from the above topics, CNNs have successfully been
applied for power allocation, uplink beamforming prediction,
and SRM, with performance similar to that of conventional
methods [115]. Calibration state diagnosis of a massive
antenna array is performed in [116], assisted by DL to avoid
possible deviations, and enhance the downlink pilot matrix,
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TABLE 3. Characteristics of DL-based massive MIMO applications.

REF  Architecture

Application

Deep adversarial
[112]  reinforcement learning

Two competing NN (for realistic
radiation pattern production)
Referee network (to evaluate the

created antenna efficiency)
Beams allocation prediction
(massive MIMO with 64 users)
Binary classifier (select the
antenna array from input images)

[113] Deep CNN

[114] Deep CNN Beam classifier (beams
configuration prediction and SNR
maximization)

Deep CNN Beams allocation prediction and

[115] SRM

Selection of antennas that require
calibration and optimization of
downlink pilot matrix (massive
MIMO with 64 or 128 antennas)
SRM with MISO with 2 users

[116] Deep CNN

[117]  Multi-layer perceptron

[118] GAN DOA estimation
Prediction of beamforming
[119] MLP directions in highly mobile mm-

wave systems (mm-Wave MIMO
with 256 antennas)

MLP (autoencoder)
includes digital and
analog beamforming,
and noise layer

Neural hybrid
beamforming
(autoencoder), includes
digital and analog
beamforming, and noise
layer

Complexity reduction of hybrid

[120] precoding in mm-wave MIMO

Complexity reduction of hybrid

[121] precoding in mm-wave MIMO

while the massive MIMO system allows the use of the same
channel for uplink and downlink.

It should be stressed that MISO systems have also been
analyzed. For instance, in [117], a DNN makes a choice
between two popular schemes, i.e., maximum ratio transmis-
sion beamforming and NSB, for each user in two-user MISO
interference channels, in order to achieve the maximum sum
rate.

Moreover, there are numerous applications that use
massive MIMO technology and are installed on wireless
body area networks (WBANS). The use of DL has played an
important role in the reliability of these applications. In this
context, [118] proposes the application of deep adversarial
reinforcement learning to predict the beamforming direction
in mm-wave WBANs with high flexibility, even under
conditions of lack of data. Also, there are DL-based
applications that take into account the user mobility in
massive MIMO networks. A DL model composed of six
fully connected layers is proposed in [119] to support high
mobility in mm-wave MIMO systems with low latency,
reliable coverage, and minimum training overhead, by using
each user’s signature. Due to the availability of small
antennas at the mm-wave 5G WBANS, the application
of DL achieves promising results in terms of reliabil-
ity and flexibility, in contrast to the shortcomings of
conventional methods in exploiting the beamforming benefits
in that field.
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Finally, it is noteworthy to briefly refer to the
DL-oriented hybrid beamforming (HB) system. Such struc-
tures are typically employed in conjunction with multiple
radio frequencies to offer an adjustable trade-off between
design complexity and transmission rate. Thus, they are
considered to be a promising tool for mm-wave massive
MIMO networks. A DNN-based MIMO-HB approach is
proposed in [120] to minimize BER and enhance the
spectrum efficiency of mm-wave massive MIMO networks,
thus demonstrating that hybrid precoding provides better
performance in comparison with conventional schemes. Also,
an autoencoder-based DNN is proposed in [121] for operation
in mm-wave massive MIMO networks in order to unify
various HB schemes in a DNN-based HB scheme, which
is found to outperform traditional methods in terms of
BER. Beam allocation and non-convex SRM are two of
the most challenging topics in mm-wave massive MIMO
analysis. In fact, DL is deemed a promising solution for
these topics, due to its small overheads and its precise results,
when compared to existing methods with iterative structures.
Further details on DL implementations are given in Table 3.

V. CONCLUSION

It becomes apparent that beamforming is deemed as a critical
and promising technological advancement for contemporary
wireless communication systems. Amid the challenges faced
by this real-time procedure, there is a need for rigorous
optimization schemes to accurately solve the beamforming
problem and reduce the computational complexity. Beam-
forming techniques have proven to be capable of properly
adapting the radiation pattern of an antenna array in real time
at a satisfactory convergence rate, and in the presence of
interference signals and steering vector mismatching. Based
on these aspects, a brief overview of the latest research in
Al-based beamforming applications, with an emphasis on
DL realizations, has been presented in this survey. Several
approaches have been mentioned regarding the best use
of DL in beamforming and DOA estimation techniques
in conjunction with other applications including ultrasound
imaging, massive MIMO, and IRSs.

In the era of 5G communication systems, due to high
propagation losses in the mm-wave band, beamforming-
based MIMO systems become constantly more necessary
for high spectral efficiency and coverage. To the best of
our knowledge, there are still challenges in the development
of intuitive learning-based massive MIMO beamforming
architectures. Indeed, as the total number of antenna elements
increases, the required NNs will become more complex,
thus making it more difficult to achieve fast training and
more expensive to implement them, especially in the case of
fast-changing environments. Undoubtedly, the DNN family
can be very efficient with regard to beamforming, and can
easily replace conventional implementations, provided that
all algorithmic properties are meticulously adjusted. There
are many challenges related to DL applications, such as the
features engineering, the existence of hyper parameters, the
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capacity, the construction complexity, and the necessity to
conduct numerous experiments to find a suitable architecture.
However, the key merit is their accuracy in solving complex
problems, acknowledged to be nearly equal to that of human
analysts but with a faster time response. The principal
requisites, nowadays, is: (a) to enhance the evolution level
of NNs in order to obtain better results by the profitable
comprehension of their structure and consistent training, and
(b) to attain a balance of the tradeoff between accuracy and
complexity in order to promptly demonstrate their general
superiority over traditional approaches.
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