
Received 3 July 2022, accepted 18 July 2022, date of publication 1 August 2022, date of current version 4 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3195217

Optimized Implementation of SM4 on AVR
Microcontrollers, RISC-V Processors,
and ARM Processors
HYEOKDONG KWON 1, HYUNJUN KIM1, (Member, IEEE), SIWOO EUM 2, MINJOO SIM2,
HYUNJI KIM1, WAI-KONG LEE 3, (Member, IEEE), ZHI HU4, AND HWAJEONG SEO 2
1Department of Information Computer Engineering, Hansung University, Seoul 02876, South Korea
2Division of IT Convergence Engineering, Hansung University, Seoul 02876, South Korea
3Department of Computer Engineering, Gachon University, Seongnam-si 13120, South Korea
4School of Mathematics and Statistics, Central South University, Changsha 410017, China

Corresponding author: Hwajeong Seo (hwajeong84@gmail.com)

This work was supported in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP) funded by
the Korean Government (MSIT) through the Development of Lightweight BIoT Technology for Highly Constrained Devices under Grant
2022-0-00627 (30%), in part by the Institute for Information & Communications Technology Promotion (IITP) funded by the Korean
Government (MSIT) through the Research on Blockchain Security Technology for IoT Services under Grant 2018-0-00264 (30%), and in
part by the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT) under Grant
NRF-2020R1F1A1048478 (30%). The work of Zhi Hu was supported in part by the National Natural Science Foundation of China under
Grant 61972420 and Grant 61602526, and in part by the Hunan Provincial Natural Science Foundation of China under Grant 2020JJ3050
and Grant 2019JJ50827. The work of Hwajeong Seo was supported by Hansung University.

ABSTRACT At 2003, the SM4 block cipher was introduced that is a Chinese domestic cryptographic.
It is mandated in the Chinese National Standard for Wireless LAN Wired Authentication and Privacy
Infrastructure (WAPI), because the algorithm was developed for use in wireless sensor networks to provide
safety network environment. The SM4 block cipher uses a 128-bit block size and a 32-bit round key.
It consists of 32 rounds and one reverse translation R. In this paper, we present the optimized implementation
of the SM4 block cipher on 8-bit AVR microcontrollers, which are widely used in wireless sensor devices;
the optimized implementation of the SM4 block cipher on 32-bit RISC-V processors, which are open-
source-based computer architectures, and the optimized implementation of SM4 on 64-bit ARM processors
with parallel computation, which are widely used in smartphones and tablets. In the AVR microcontroller,
three versions are implemented for various purposes, including speed-optimization, memory-optimization,
and code size-optimization. As a result, the speed-optimization, memory-optimization, and code size-
optimization versions achieved 205.2 cycles per byte, 213.3 cycles per byte, and 207.4 cycles per byte,
respectively. This is faster than the reference implementation written in C language (1670.7 cycles per byte).
The implementation on 32-bit RISC-V processors achieved 128.8 cycles per byte. This is faster than the
reference implementation written in C language (345.7 cycles per byte). The implementation on 64-bit
ARM processors achieved 8.62 cycles per byte. This is faster than the reference implementation written
in C language (120.07 cycles per byte).

INDEX TERMS 8-bit AVR microcontrollers, 32-bit RISC-V processors, 64-bit ARM processors, software
implementation, SM4 block cipher.

I. INTRODUCTION
Numerous sensor nodes are used to collect the data in
wireless sensor networks. Tiny sensor nodes have limited

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

computation resources, such as computing power, memory
space, and battery life. However, most cryptographic algo-
rithms are based on complex mathematical problems, so it is
difficult to operate cryptographic algorithms on IoT devices.
Thus, a Lightweight block cipher algorithms has been pro-
posed to operate cryptographic algorithms on insufficient

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 80225

https://orcid.org/0000-0002-9173-512X
https://orcid.org/0000-0002-9583-5427
https://orcid.org/0000-0003-4659-8979
https://orcid.org/0000-0003-0069-9061


H. Kwon et al.: Optimized Implementation of SM4

environment. Lightweight cryptography algorithms require
less resources than ordinary cryptographic algorithms. The
SM4 block cipher is a one of lightweight block cipher family,
which is the Chinese National Standard for wireless LAN
Wired Authentication and Privacy Infrastructure (WAPI) [1].
The SM4 block cipher, which first appeared in 2003, and now
used as a standard block cipher in China. SM4 is very suitable
for hardware implementation, so there are many research
results of hardware implementation of SM4. For instance, [2]
shows the optimized field-programmable gate array design
for SM4, and it uses 7% less resources than the pipelined
implementation.We focused on software implementation, not
hardware implementation.

In this paper, we propose optimized implementations of
the SM4 block cipher in terms of software implementation.
We targeted three platforms that low-end 8-bit AVR micro-
controllers, 32-bit RISC-V processors and high-end 64-bit
ARM processors. The main contributions of this work are
summarized below.

A. CONTRIBUTIONS
• Optimized implementations of the SM4 block cipher
on 8-bit AVRmicrocontrollers. SM4 block cipher uses
a 128-bit block size. However, AVR microcontrollers
has only 70-bit wise general purpose registers. There-
fore, an effective register scheduling plan should be
considered. We make register allocation plan so that
it is an efficient implementation of SM4 block cipher.
Furthermore, SM4 block cipher requires the 32-bit wise
rotation operation, whereas AVR microcontrollers only
can perform 8-bit wise operations. We propose how
to efficiently implement 32-bit rotation through 8-bit
instructions on AVR microcontrollers.

• Optimized implementations of the SM4 block cipher
on 32-bit RISC-V processors. RISC-V is a brand new
open-source based computer architecture, which is sup-
ports new kinds of instruction sets. In this paper, present
the first optimized implementation of SM4 on 32-bit
RISC-V processors. The focus of optimized implemen-
tation is to implement S-Box operation by using RISC-V
instructions.

• Parallel implementations of the SM4 block cipher on
64-bit ARM processors. 64-bit ARM processors has
vector registers and vector instructions that can process
on data in parallel (Single Instruction Multiple Data,
SIMD). In this paper, we propose SM4 block cipher
model that encrypts 12 plaintexts in parallel approach.
It can be implement through vector instructions of
ARMv8 processor. Also, ARMv8 processor has 32 vec-
tor registers, so focus on plaintext register and S-Box
register configuration.

II. BACKGROUND
A. SM4 BLOCK CIPHER
SM4 block cipher is a Chinese domestic cryptographic sys-
tem that was first published in 2003. It was established as

TABLE 1. Parameters for the SM4 block cipher.

FIGURE 1. Encryption flow of the SM4 block cipher and the round
function structure. Left: encryption tasks, Right: round function structures.

a cryptographic standard by the Office of State Commercial
CryptographyAdministration (OSCCA) [3]. SM4 parameters
are listed in Table 1. Also, left part of Figure 1 presents
encryption tasks and internal structure of SM4 block cipher.

SM4 block cipher consists of five computation compo-
nents; round function (F), permutations (T and T’), nonlinear
transformation (tau), linear transformations (L) and (L’),
and S-Box (S).

1) ROUND FUNCTION (F)
128-bit Plaintext of SM4 block cipher is splitted into four
32-bit units, which named X. Round function F needs five
arguments that plaintext fragments (X0, X1, X2, and X3), and
round key. F is defined by the following equation.

F(X0,X1,X2,X3, rk) = X0 ⊕ T(X1 ⊕ X2 ⊕3 ⊕, rk)

The right side of Figure 1 shows Round function
F structure.

2) PERMUTATIONS T AND T’

Permutation functions T and T’ require 32-bit input values,
and return 32-bit output values. These two functions has
reversible feature, and consisted with tau and L.

3) NONLINEAR TRANSFORMATION tau

Nonlinear transformation (tau) takes four S-Boxes, which
requires 32-bit inputs and makes 32-bit outputs. It can be
performed parallel-way. Also, input values do not affect
each other. Nonlinear transformation tau can be represented
as follows, where A and B are a 32-bit input value and a
32-bit output value, respectively. The type of ai and bi is an
8-bit-wise string.

A = (a0, a1, a2, a3);

tau(A) = (S(a0), S(a1), S(a2), S(a3));

(b0, b1, b2, b3) = tau(A);

B = (b0, b1, b2, b3);

4) LINEAR TRANSFORMATIONS L, AND L’

Linear transformations (L, and L’) perform 32-bit wise rota-
tion operations. Its input values are output of Nonlinear trans-
formation tau. L, and L’ are defined as follows, where B is

80226 VOLUME 10, 2022



H. Kwon et al.: Optimized Implementation of SM4

a 32-bit input value, and ROTL represents rotation to the left.

L(B) = B⊕ (ROTL(B, 2))⊕ (ROTL(B, 10))

⊕(ROTL(B, 18))⊕ (ROTL(B, 24))

L’(B) = B⊕ (ROTL(B, 13))⊕ (ROTL(B, 23))

5) S-BOX S

The S-Box (S) transforms an 8-bit input value to an 8-bit
output value with the S-Box table. Input values are from the
nonlinear transformation (tau).

B. TARGET PROCESSOR: 8-BIT LOW-END AVR
MICROCONTROLLER
An AVR microcontroller has the 8-bit-based Harvard archi-
tecture, which is widely used for wireless sensor networks.
It has 32 8-bit general-purpose registers and 133 instructions.
Most of the instructions take less than four clock cycles [4].
We evaluated the performance on an ATmega128, which is an
8-bit AVR microcontroller. It has 128KB of programmable
flash memory, 4KB internal SRAM, 4KB EEPROM, and
64KB optional external memory space [5]. AVR registers are
denoted as R0 to R31. Some registers have the following
special features:

• ZERO register: R1 is the zero register, which always
represents 0 value. However, it can be used freely for
general purposes. This R1 register should be zeroed at
the end of the operation.

• Callee saved registers: R2–R17 and R28–R29 are
callee saved registers (i.e. non-volatile registers). These
registers save important values (i.e. long-lived values
and data from a callee). These must be preserved in the
stack before they are used.

• Pointer address registers: R26–R31 can be used as a
pointer address by combining two registers. When these
are used for the pointer address, they are written as
X (R26–R27), Y (R28–R29), Z (R30–R31) notation.
R28–R29 are also callee saved registers.

C. TARGET PROCESSOR: 32-BIT RISC-V PROCESSORS
RISC-V is a new computer CPU structure that has been under
development at UC Berkeley since 2010. It is not intended
just for academic or research purposes, but for industrial com-
mercialization. The main feature of the RISC-V processor is
that the basic instruction set is provided by the consortium,
but there are no restrictions on the extended instructions that
users can add. Therefore, when utilizing this, it is possible
to increase the speed of the target application service by
customizing the RISC-V processor. In this paper, the 32-bit
structure RV32I used for performance comparison provides
32-bit registers 32 (x0–x31) [6].

D. TARGET PROCESSOR: 64-BIT HIGH-END ARM
PROCESSORS
ARMv8-A is the next-generation ARM architecture of
ARMv7, simply called ARMv8. It has two architectures,

namely, 32-bit AArch32 and 64-bit AArch64. In this paper,
we targeted the AArch64 architecture, which we simply refer
to A64. A64 has 32 64-bit general-purpose scalar registers,
which can handle 32-bit, and 64-bit data. In addition, there
are 32 128-bit vector registers, which can be utilized for
the parallel implementation with SIMD [7]. We used vector
registers for parallel implementation the SM4 block cipher.

E. RELATED WORKS
In this section, we introduce optimized implementations of
block ciphers on embedded processors. In [8], a revised
version of CHAM was optimized on 8-bit AVR microcon-
trollers. In [8], they suggested optimized 8-bit-wise rota-
tion and 32-bit-wise rotation. This implementation utilized
a pre-calculation technique with a counter mode of opera-
tion. In [9], parallel implementations were presented. In [10],
an optimized ARIA block cipher was presented. They opti-
mized primitive operations, including rotation operation,
a substitute-layer, and a diffusion-layer on a low-end AVR
microcontroller. In [11], they proposed a compact imple-
mentation of PRESENT block cipher, which was intro-
duced at CHES’07 [12]. It optimally implemented the
PRESENT through a pre-computation technique. In [13],
a compact implementation of an Advanced Encryption Stan-
dard (AES) block cipher on Intel processors was presented
(i.e. FACE). This implementation applied a pre-computation
technique that pre-calculates repetitive values and reuse
them. At ICISC’19, they proposed optimized implementa-
tion of FACE on an AVR microcontroller [14]. It extended
the pre-computation to round 3. This implementation is
also secure against Correlation Power Analysis (CPA).
SIMON [15] is a block cipher announced by the US National
Security Agency in 2015, and there are results of optimized
implementation of SIMON with pre-computation counter
mode applied on AVR microcontrollers [16]. Lightweight
block cipher PIPO [17] is a block cipher announced in Korea
in 2020, and an optimal implementation with side-channel
attack resistance was proposed in 2021 [18].

Research on optimized implementation for RISC-V as
well as AVR microcontrollers is active. In [19], and [20]
multiplication primitive optimized technique was pre-
sented. The proposed technique optimizes polynomial-
multiplication, allowing multiplication to be calculated at
a high speed. In [21], the optimal implementation of the
block cipher CHAM on RISC-V is the result of a high-speed
operation using a technique that omits block movement in
the internal operation of CHAM. There are also research
results that implemented various cryptography using the
assembly instructions of RISC-V. [22] used RV32I instruc-
tion set to implement optimized table-based AES, bitsliced
AES, ChaCha stream cipher, and Keccak-f[1600] permuta-
tion inside SHA3.

ARM processors are much more powerful than AVRs and
RISC-Vs, and are often used in high-end mobile devices
such as smartphones. ARIA [23] block cipher was estab-
lished as a Korean standard in 2004 and an international

VOLUME 10, 2022 80227



H. Kwon et al.: Optimized Implementation of SM4

standard in 2010. In 2021, optimized implementation of
ARIA on ARMCortex-M3 was proposed [24]. Also, Format-
Preserving Encryption, which is often used in IoT devices,
was implemented on AVR and ARM processor [25]. The
implementation was targeted for ARMv8, a 64-bit ARM
processor. In [26], which optimally implemented the block
cipher PIPO on the ARM processor, applied the parallel
optimal implementation technique using the vector register
of the ARM processor. FrodoKEM [27] is one of the NIST
Post Quantum Cryptography Standardization Round 3 Alter-
nate Candidate, and the optimized implementation on ARM
processor has been proposed [28]. The proposed technique
uses the vector register of ARMv8 to parallelize the multipli-
cation process of FrodoKEM and greatly optimizes the time
required for multiplication.

Although it is not an optimized implementation, there is
also a study of side-channel attacks on SM4 block cipher.
In [29] tried collision-based attack, however it has more
efficiently attack then [30]. The main ideas of [29], first they
combined the look-up tables T-boxes. Second, to remove
the effect of dual cipher, it shuffled the order of data in
the T-boxes. Third, it made suitable collision function for
attack to white-box SM4 implementation.

III. OPTIMIZED IMPLEMENTATION OF THE SM4 BLOCK
CIPHER
This section presents the optimized implementation of SM4
block cipher on 8-bit AVR microcontrollers, 32-bit RISC-V
processors, and 64-bit ARM processors. Optimal perfor-
mance is achieved through efficient register scheduling plan
and instruction techniques.

A. 8-BIT LOW-END AVR MICROCONTROLLERS
1) INSTRUCTION SET
8-bit AVR microcontrollers has powerful instruction sets.
In general, AVR instructions take one or two clock cycles.
Table 2 lists AVR instructions used to implement optimized
SM4 block cipher.

2) REGISTER UTILIZATION
AVR microcontroller has 8-bit general purpose registers, but
only 32 are provided. So it must be need to efficient register
scheduling plan, because SM4 takes many operation process
steps.

• X blocks. In Section II-A, the SM4 block cipher stores
128-bit plaintext into four 32-bit X . However, 8-bit AVR
microcontrollers have 8-bit-wise registers that can only
represent 8-bit data. Four registers are required to handle
one 32-bit X . As a result, there are four X that each
handle a quarter of plaintext. A total of 16 registers are
required to store the whole plaintext.

• Round key, and T input/output. Each F requires a
32-bit round key. Four 8-bit registers are used to save
the round key. The round key is used as the input value
of T by performing the XOR operation with X blocks.

TABLE 2. Summarized instruction set of AVR microcontrollers for
optimized SM4 block cipher. Rd: destination register, Rr: source register.

Therefore, round key registers are also used to store
parameters or the results of T.

• Nonlinear operation. Nonlinear transformation (tau)
performs the rotation operation. Eight registers are
required for the result and intermediate values of rota-
tion. Four out of eight registers store the tau output
result.

• Address pointer. To load a value into a register on AVR
microcontrollers, it must be accessed through an address
pointer. In this case, there are 3 kinds of values for the
function call, namely, plaintext, round key, and S-Box
values. We allocate an X pointer for loading plaintext,
and storing ciphertext, a Y pointer for round key, and a
Z pointer for S-Box values. In particular, the X pointer
address (R26 and R27) is not needed to during round
functions. These registers are used to store temporary
values. The R30 register is always fixed to 0 value,
because it stores the lower address of S-Box. This can
be used as a temporary ZERO register.

• Loop index. Using the CPI instruction, it is possible to
compare a register value with a constant value. To imple-
ment the loop statement, only one register is needed to
store loop index. This register is shared with the tem-
porary value register. It must to preserve an index value
on the stack and can be implemented through PUSH and
POP instructions.

Figure 2 shows all of register allocation plan. Each rectan-
gle represents single 8-bit register and two-colored registers
mean multiple purposes registers.

3) OPTIMIZED IMPLEMENTATION OF 32-BIT WISE
ROTATION
SM4 block cipher uses 32-bit wise operation, but AVRmicro-
controllers has only 8-bit registers that can be performed 8-bit
wise operation. But, 32-bit wise rotation can be implemented
with some instructions that are LSL, ROL, ADC, MOV,
and MOVW. Table 3 shows implementation codes for each
rotation. The operation speed can be increased by different
input and output registers for 8, 16 and 24 rotation operation.
It reduces the time it takes for instructions to store values
in temporary registers and return them. Figure 3 shows this
difference. Figure 3 shows only the case of 8 rotations, but
the other cases are the same.

80228 VOLUME 10, 2022



H. Kwon et al.: Optimized Implementation of SM4

FIGURE 2. Register allocation of AVR for the SM4.

TABLE 3. Optimized 32-bit wise rotation operation on 8-bit
environments, where i and j represent specific registers.

FIGURE 3. Difference in rotation operation according to the use of
temporary registers. (A): using temporary register, the input and output
registers are the same, and 5 MOV instructions are used. (B): temporary
register not used, input and output registers are different, and 4 MOV
instruments are used.

4) EFFICIENT S-BOX IMPLEMENTATION
In this work, there are three optimization approaches to AVR
microcontrollers (speed-optimization, memory-optimization,
and code size-optimization). In terms of speed-optimization,
storing the S-Box in RAM is effective. The LD instruction
loads the S-Box value with two clock cycles, which can
get the S-Box value quickly. On the other hand, from the
memory-optimization perspective, the S-Box can be saved
to flash memory. In Section II-B, it was confirmed that the
AVR microcontroller has larger flash memory than RAM.
Therefore, the memory-optimized implementation can be
useful in situations in which there is the lack of RAM.
The memory-optimization can be implemented with the
LPM instruction, which takes three clock cycles. Thus, the
memory-optimization implementation takes a longer exe-
cution time than the speed-optimization implementation.
For the code size-optimization approach, we utilized a
looped implementation, which sacrificed the performance but
achieved the optimal code size.

FIGURE 4. The process of rotation operation on RISC-V. (A): Original
value, (B): SLLI(n) applied to (A), (C): SRLI(32-n) applied to (B), (D): result
value of (B) or (C).

B. 32-BIT RISC-V PROCESSORS
A 32-bit RISC-V processor supports 32-bit wise instructions.
This is useful to perform the 32-bit wise operations of SM4.
For the optimal implementation in RISC-V, we propose rota-
tion optimization and efficient S-Box implementation.

1) OPTIMIZED ROTATION IMPLEMENTATION
Rotation operation is not supported in RISC-V. Therefore,
rotation is implemented using the SLLI, SRLI, and OR
instructions. ROL(n) can be implemented by OR the value
of SLLI(n) and SRLI(32 − n). This process can be seen in
Figure 4.

2) EFFICIENT S-BOX IMPLEMENTATION
RISC-V uses 32-bit registers. However, in the S-Box, it is
converted to a pre-computed value in bytes. Therefore, it is
necessary to convert a 32-bit value by dividing it into 8-bit
units. For the implementation, a stack pointer (SP) and load
unsigned byte (LUB) are used. The SP has the address of
the current stack, and the LBU loads only the 1-byte value
of the indicated address. The S-Box process is the same as
Algorithm 1. In Algorithm 1, the result value of the S-Box is
stored in T1, and A2 has the S-Box address.

C. 64-BIT HIGH-END ARM PROCESSORS
On the 64-bit ARMv8 processor, efficient implementation is
possible by using vector registers. In parallel implementation,
12 plaintexts can be encrypted at once. Because ARMv8 has
32 vector registers, we utilized these registers in an optimal
way. First, vector registers (v0–v11) store plaintext. Second,
vector registers (v12–v15) have intermediate values, and the
v15 register is also used for saving the round key value. Third
vector registers v16–v31 are used for the S-Box look-up
table. The SM4 encryption is performed on ARM processors
in the following order, loading phase, register transpose step,
round function layer, and storing phase.

1) INSTRUCTIONS SUMMARY
Table 4 shows the instructions for parallel implementation
of the SM4 block cipher. Most of the instructions are vector
instructions, except the ADR instruction. The ADR instruction

VOLUME 10, 2022 80229



H. Kwon et al.: Optimized Implementation of SM4

Algorithm 1 Efficient S-Box Implementation in RISC-V

Input: S-Box In = T0
Output: S-Box Out = T1
1: SW T0, 0(SP)
2: LBU T1, 3(SP)
3: ADD T0, A2, T1
4: LBU T1, 0(T0)
5: SLLI T1, T1, 24
6: LBU T2, 2(SP)
7: ADD T0, A2, T2
8: LBU T2, 0(T0)
9: SLLI T2, T2, 16

10: XOR T1, T1, T2
11: LBU T2, 1(SP)
12: ADD T0, A2, T2
13: LBU T2, 0(T0)
14: SLLI T2, T2, 8
15: XOR T1, T1, T2
16: LBU T2, 0(SP)
17: ADD T0, A2, T2
18: LBU T2, 0(T0)
19: XOR T1, T1, T2

TABLE 4. Instructions set of ARM64 for optimized implementation of the
SM4 block cipher; Xd: destination scalar register, Xn: source scalar
register, Vd: destination vector register, Vt: transferred vector register,
Vn, Vm: source vector register.

is used to store the S-Box table address. The ARMv8 proces-
sor has 32 128-bit vector registers, which can be calculate in
a parallel way. Some instructions are require to specify the
memory arrangement. In Table 4, the memory arrangement
is omitted for the convenience.

2) LOADING PHASE
Algorithm 2 shows the implementation of the loading phase.
Using three LD1 instructions, 12 128-bit plaintexts are
stored in vector registers (v0–v11). At this point, the
post-incremented memory access is used to adjust the address
pointer offset. Therefore, it is possible to reduce the execu-
tion time for calculating additional addresses. After that, the
table look-up of S-Box is performed through TBL and TBX
instructions.

3) REGISTER SCHEDULING PLAN
ARM64 has 31 general purpose registers and 32 vector reg-
isters. Each vector register has a size of 128-bit, so 12 vector
registers are used to store 12 plaintexts. Since operations are
performed between registers, there is no additional register
use. The remaining registers store the S-Box. Vector registers
can use arrangement specifiers to adjust the arithmetic units
of their internal values. For example, if ’b’ is used, calcula-
tions are performed in units of 8 or 16 8-bits. Figure 5 shows
an example of a register scheduling scheme and arrangement
specifier.

Algorithm 2 Loading 12-Plaintext in Vector Instructions
Input: Memory address = [x1]
Output: Plaintexts = [v0, v1, v2, v3, v4, v5, v6, v7, v8, v9,

v10, v11]
1: LD1.4S v0, v1, v2,v3, [x1], #64
2: LD1.4S v4, v5, v6,v7, [x1], #64
3: LD1.4S v8, v9, v10,v11, [x1], #64

FIGURE 5. Register scheduling plan and description of arrangement
specifier for ARM64.

4) REGISTER TRANSPOSE STEP
Algorithm 3 is the transpose step with UZP1 and UZP2
instructions at the a source-code level. The UZP1 instruction
reads even-numbered vector elements from the source reg-
ister, and stores them in the destination register. The UZP2
instruction does a similar operation, but reads odd-numbered
elements. In this process, registers are grouped by four, and
32-bit blocks are arranged to be stored in one register. In total,
three iterations are repeated to align 12 plaintexts. At the end
of encryption, the transpose step is performed once again to
retrieve vector registers. Figure 6 shows the operation process
of UZP1 and UZP2 instructions.

5) ROUND FUNCTION LAYER
Source codes for the round function layer are shown at lines
1–8 of Algorithm 4, which carries out the nonlinear transfor-
mation (tau). It is implemented byTBL andTBX instructions
to seek the S-Box table. The TBL and TBX instructions read
a value from a vector element in the index source register,
search each result as an index in the byte table of the source
table register, and write the result to the destination register.
The first 64 bytes of the S-Box are extracted through the TBL
instruction. The TBX instruction searches the table in the next
range of the previous TBL instruction. To search for the next
S-Box branch, subtraction to the value of the index source
register by 0× 40 is performed, and then the TBX instruction
is carried out.

In Algorithm 4, lines 9–20 show the source code that
implements linear transformations (L) of the round function.
The rotation operation is implemented using the left shift
operations SHL and SRI instructions. Using only three regis-
ters (v12, V13, v14,), v15 is used as a temporary regis-
ter to store the round key value. To use only three registers, the
rotation operation is performed and then XOR is performed
immediately.

6) STORING PHASE
In the last storing phase, the encryption result is saved. Algo-
rithm 5 is to perform an operation that stores the ciphertext

80230 VOLUME 10, 2022



H. Kwon et al.: Optimized Implementation of SM4

Algorithm 3 Alignment of the Plaintext in Vector Instruc-
tions
Input: PT0 = [va.4s], PT1 = [vb.4s], PT2 = [vc.4s], PT3 =

[vd .4s]
Output: X0 = [va.4s], X1 = [vb.4s], X2 = [vc.4s], X3 =

[vd .4s]
1: UZP1.4S v12, va, vb
2: UZP2.4S v13, va, vb
3: UZP1.4S v14, vc, vd
4: UZP2.4S v15, vc, vd
5: UZP1.4S va, v12, v14
6: UZP1.4S vb, v13, v15
7: UZP2.4S vc, v12, v14
8: UZP2.4S vd, v13, v15

FIGURE 6. UZP1 and UZP2 instructions process for SM4.

in the memory. The result value (v0–v11) is stored in the
memory address (x0) by 512-bits in a post incremental
method, and 12 ciphertexts are stored through a total of three
operations.

IV. EVALUATION
In this section, we present the evaluation of proposed imple-
mentations. The evaluationwas conducted separately for each
implementation environment. The performance evaluation
was based on clock cycles per byte (cpb).

A. EFFICIENT IMPLEMENTATIONS OF SM4 BLOCK CIPHER
ON 8-BIT AVR MICROCONTROLLERS
The proposed implementations are intended for the
ATmega128 processor, which is an AVR. Source codes were
implemented over the Microchip Studio framework
and compiled using the -O2 option. Because there are no
other SM4 block cipher implementations on AVR microcon-
trollers, performance comparisons were done with reference
C code implementations. The comparison results are shown
in Table 5. Reference C code takes 1670.69 cpb (clock cycles
per byte), while the proposed speed-optimization implemen-
tation achieved 205.2 cpb, the memory-optimization imple-
mentation recorded 213.3 cpb, and the code size-optimization
implementation reached 207.4 cpb. These excellent results

Algorithm 4 Round Function of the Plaintext in Vector
Instruction
Input: S-Box In = [va.16b]
Output: S-Box Out = [va.16b]
1: MOVI v13.16b, #0× 40
2: TBL v12.16b, v16.16b-v19.16b, va.16b
3: SUB va.16b, va.16b, v13.16b
4: TBX v12.16b, v20.16b-v23.16b, va.16b
5: SUB va.16b, va.16b, v13.16b
6: TBX v12.16b, v24.16b-v27.16b, va.16b
7: SUB va.16b, va.16b, v13.16b
8: TBX va.16b, v28.16b-v31.16b, va.16b
9: SHL.4s v13, v12, #2
10: SRI.4s v13, v12, #30
11: EOR.16b va, v12, v13
12: SHL.4s v13, v12, #10
13: SRI.4s v13, v12, #22
14: EOR.16b va, v13, va
15: SHL.4s v13, v12, #18
16: SRI.4s v13, v12, #14
17: EOR.16b va, v13, va
18: SHL.4s v13, v12, #24
19: SRI.4s v13, v12, #8
20: EOR.16b va, v13, va

Algorithm 5 Storing 12-Plaintexts in Vector Instruction
Input: Ciphertexts = [v0, v1, v2, v3, v4, v5,

v6, v7, v8, v9, v10,v11]
Output: Memory address = [x0]
1: st1.4s v0, v1, v2, v3, [x0], #64
2: st1.4s v4, v5, v6, v7, [x0], #64
3: st1.4s v8, v9, v10, v11, [x0], #64

TABLE 5. Comparison result on 8-Bit AVR microcontrollers. Symbols (s,
m, and c) represent speed, memory, and code size-optimized
implementations, respectively.

are that the proposed implementation is implemented in an
optimal form using an AVR assembly. In particular, effi-
cient rotation is used in the linear transformation (L); thus,
it achieves better performance than the reference C code
implementation. In addition, it can be compared in terms
of each criteria. The speed-optimization approach achieved
better performance than the others, the memory-optimization
approach requires the least RAM size; and the code size-
optimization approach has the smallest ROM size.

B. IMPLEMENTATIONS OF SM4 BLOCK CIPHER ON
32-BIT RISC-V PROCESSORS
In this section we present the analysis and evaluation of
the performance of the SM4 encryption implementation on
RISC-V. In this work, the implementation was not applied

VOLUME 10, 2022 80231



H. Kwon et al.: Optimized Implementation of SM4

TABLE 6. Comparison result of execution timing (cycles per byte) on
32-bit RISC-V processors (left) and 64-bit ARM processors (right).

any kinds of optimization techniques. It is only proceed per-
formance measurements on RISC-V. The RISC-V implemen-
tation does not use extensions and relies on the RV32I-based
ISA. For the performance measurement, the HiFive1 Rev
B development board with a 32-bit E31 RISC-V core was
used. The results are shown in the left part of Table 6. For
the reference code, the execution timing was 345.7 cpb. The
implementation achieved 128.8 cpb, which reflects a perfor-
mance improvement by 2.68×.

C. SPEED-OPTIMIZATION OF SM4 BLOCK CIPHER ON
64-BIT ARM PROCESSORS
In this section we present the analysis and evaluation of
the performance of the SM4 encryption implementation on
ARMv8. It was written usingXcode and the calculation speed
was measured by Apple A13 Bionic. The Apple A13 Bionic
is a 64-bit ARM-based single chip (2.65 GHz) designed
by Apple. The performance comparison was done with the
reference code implemented in C language. The results are
shown in the right part of Table 6. For the reference code,
the execution timing was 120.07 cpb. The proposed imple-
mentation achieved 8.62 cpb, which reflects a performance
improvement by 12.93×.

V. CONCLUSION
In this paper, optimized implementation of SM4 block cipher
was introduced. The target environments are 8-bit AVR
microcontrollers, 32-bit RISC-V processors, and 64-bit ARM
processors. Proposed implementation improved performance
of SM4 block cipher compared to previous approaches.
We hope that proposed techniques becomes helpful to imple-
ment SM4 block cipher in various environments, including
both low-end and high-end IoT environments.

REFERENCES
[1] H. Cheng and Q. Ding, ‘‘Overview of the block cipher,’’ in Proc.

2nd Int. Conf. Instrum., Meas., Comput., Commun. Control, Dec. 2012,
pp. 1628–1631.

[2] S. Abed, R. Jaffal, B. J. Mohd, andM. Alshayeji, ‘‘Performance evaluation
of the SM4 cipher based on field-programmable gate array implementa-
tion,’’ IET Circuits, Devices Syst., vol. 15, no. 2, pp. 121–135, 2021.

[3] Internet Engineering Task Force. Accessed: Apr. 21, 2018. [Online]. Avail-
able: https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10

[4] Microchip Document. Accessed: Aug. 11, 2014. [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/doc2467.pdf

[5] Y. Kim, H. Kwon, S. An, H. Seo, and S. C. Seo, ‘‘Efficient implementation
of ARX-based block ciphers on 8-Bit AVR microcontrollers,’’ Mathemat-
ics, vol. 8, no. 10, p. 1837, Oct. 2020.

[6] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovic,
‘‘The RISC-V instruction set manual volume 2: Privileged architec-
ture version 1.7,’’ Univ. California Berkeley, Berkeley, CA, USA, Tech.
Rep. UCB/EECS-2016-161, 2015.

[7] H. Seo, Z. Liu, P. Longa, and Z. Hu, ‘‘SIDH on ARM: Faster modular mul-
tiplications for faster post-quantum supersingular isogeny key exchange,’’
in IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, Amsterdam, The Netherlands, 2018, pp. 1–20.

[8] H. Kwon, H. Kim, S. J. Choi, K. Jang, J. Park, H. Kim, and H. Seo, ‘‘Com-
pact implementation of CHAMblock cipher on low-endmicrocontrollers,’’
in Proc. Int. Conf. Inf. Secur. Appl. Jeju Island, South Korea: Springer,
2020, pp. 127–141.

[9] H. Kwon, S. An, Y. Kim, H. Kim, S. J. Choi, K. Jang, J. Park, H. Kim,
S. C. Seo, and H. Seo, ‘‘Designing a CHAM block cipher on low-end
microcontrollers for Internet of Things,’’ Electronics, vol. 9, no. 9, p. 1548,
Sep. 2020.

[10] H. Seo, H. Kwon, H. Kim, and J. Park, ‘‘ACE: ARIA-CTR encryption
for low-end embedded processors,’’ Sensors, vol. 20, no. 13, p. 3788,
Jul. 2020.

[11] H. Kwon, Y. B. Kim, S. C. Seo, and H. Seo, ‘‘High-speed implementation
of PRESENT on AVRmicrocontroller,’’Mathematics, vol. 9, no. 4, p. 374,
Feb. 2021.

[12] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. Robshaw, Y. Seurin, and C. Vikkelsoe, ‘‘PRESENT: An ultra-
lightweight block cipher,’’ in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst. Vienna, Austria: Springer, 2007, pp. 450–466.

[13] J. H. Park and D. H. Lee, ‘‘FACE: Fast AES CTR mode encryption
techniques based on the reuse of repetitive data,’’ in IACR Transactions
on Cryptographic Hardware and Embedded Systems, Amsterdam, The
Netherlands, 2018, pp. 469–499.

[14] K. Kim, S. Choi, H. Kwon, Z. Liu, and H. Seo, ‘‘FACE–LIGHT: Fast AES–
CTR mode encryption for low-end microcontrollers,’’ in Proc. Int. Conf.
Inf. Secur. Cryptol. Seoul, South Korea: Springer, 2019, pp. 102–114.

[15] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, ‘‘The Simon and SPECK lightweight block ciphers,’’ in Proc.
52nd Annu. Design Autom. Conf., Jun. 2015, pp. 1–6.

[16] H. Kwon, K. Jang, H. Kim, and H. Seo, ‘‘The fast implementation of block
cipher SIMON using pre-computation with counter mode of operation,’’
J. Korea Inst. Inf. Commun. Eng., vol. 25, no. 4, pp. 588–594, 2021.

[17] H. Kim, Y. Jeon, G. Kim, J. Kim, B. Y. Sim, and D. G. Han, ‘‘PIPO:
A lightweight block cipher with efficient higher-order masking software
implementations,’’ in Proc. Int. Conf. Inf. Secur. Cryptol. Seoul, South
Korea: Springer, 2020, pp. 99–122.

[18] H. Kim, M. Sim, S. Eum, K. Jang, G. Song, H. Kim, H. Kwon,
W.-K. Lee, and H. Seo, ‘‘Masked implementation of PIPO block cipher
on 8-bit AVR microcontrollers,’’ in Proc. Int. Conf. Inf. Secur. Appl. Jeju
Island, South Korea: Springer, 2021, pp. 171–182.

[19] H. Seo, H. Kwon, K. Jang, and H. Kim, ‘‘Optimized implementation of
scalable multi-precision multiplication method on RISC-V processor for
high-speed computation of post-quantum cryptography,’’ J. Korea Inst. Inf.
Secur. Cryptol., vol. 31, no. 3, pp. 473–480, 2021.

[20] H. Seo, H. Kwon, S. Eum, K. Jang, H. Kim, H. Kim, M. Sim, G. Song,
and W.-K. Lee, ‘‘All the polynomial multiplication you need on RISC-V,’’
Cryptol. ePrint Arch., USA, Tech. Rep. 1117, 2021.

[21] M. Sim, S. Eum, H. Kwon, G. Song, and H. Seo, ‘‘Implementation of
ultra-lightweight block cipher algorithm revised CHAMon 32-Bit RISC-V
processor,’’ in Proc. Korea Inf. Process. Soc. Conf., 2021, pp. 217–220.

[22] K. Stoffelen, ‘‘Efficient cryptography on the RISC-V architecture,’’ in
Proc. Int. Conf. Cryptol. Inf. Secur. Latin Amer. Santiago, Chile: Springer,
2019, pp. 323–340.

[23] D. Kwon, J. Kim, S. Park, S. H. Sung, and Y. Sohn, ‘‘New block cipher:
ARIA,’’ in Proc. Int. Conf. Inf. Secur. Cryptol. Seoul, South Korea:
Springer, 2003, pp. 432–445.

[24] H. Seo, H. Kim, K. Jang, H. Kwon, M. Sim, G. Song, and S. Uhm,
‘‘Compact implementation of ARIA on 16-bit MSP430 and 32-bit ARM
cortex-M3microcontrollers,’’Electronics, vol. 10, no. 8, p. 908, Apr. 2021.

[25] H. Kim, M. Sim, K. Jang, H. Kwon, S. Uhm, and H. Seo, ‘‘Masked
implementation of format preserving encryption on low-end AVR micro-
controllers and high-end ARM processors,’’ Mathematics, vol. 9, no. 11,
p. 1294, Jun. 2021.

[26] S. Eum, H. Kwon, H. Kim, K. Jang, H. Kim, J. Park, G. Song, M. Sim, and
H. Seo, ‘‘Optimized implementation of block cipher PIPO in parallel-way
on 64-bit ARM processors,’’ KIPS Trans. Comput. Commun. Syst., vol. 10,
no. 8, pp. 223–230, 2021.

[27] M. Naehrig, ‘‘FrodoKEM: Learning with errors key encapsulation,’’ NIST
PQC Round, vol. 2, p. 4, Jan. 2020.

[28] H. Kwon, K. Jang, H. Kim, H. Kim, M. Sim, S. Eum, W.-K. Lee, and
H. Seo, ‘‘ARMed Frodo,’’ in Proc. Int. Conf. Inf. Secur. Appl. Springer,
2021, pp. 206–217.

[29] R. Wang, H. Guo, J. Lu, and J. Liu, ‘‘Cryptanalysis of a white-box SM4
implementation based on collision attack,’’ IET Inf. Secur., vol. 16, no. 1,
pp. 18–27, 2022.

80232 VOLUME 10, 2022



H. Kwon et al.: Optimized Implementation of SM4

[30] Y. Shi, W. Wei, and Z. He, ‘‘A lightweight white-box symmetric encryp-
tion algorithm against node capture for WSNs,’’ Sensors, vol. 15, no. 5,
pp. 11928–11952, May 2015.

HYEOKDONG KWON received the B.S. and
M.S. degrees in IT convergence engineering from
Hansung University, where he is currently pursu-
ing the Ph.D. degree. His research interests include
cryptography implementation, information secu-
rity, and machine learning.

HYUNJUN KIM (Member, IEEE) received the
B.S. and M.S. degrees in IT convergence engi-
neering from Hansung University, where he is
currently pursuing the Ph.D. degree. His research
interests include side-channel analysis and cryp-
tography implementation.

SIWOO EUM received the B.S. degree in IT con-
vergence engineering from Hansung University,
where he is currently pursuing theM.S. degree. His
research interests include cryptography implemen-
tation and information security.

MINJOO SIM received the B.S. degree in IT con-
vergence engineering from Hansung University,
where she is currently pursuing the M.S. degree.
Her research interests include cryptography imple-
mentation and information security.

HYUNJI KIM received the B.S. and M.S. degrees
in IT convergence engineering from Hansung Uni-
versity, where she is currently pursuing the Ph.D.
degree. Her research interests include artificial
intelligence, machine learning, and information
security.

WAI-KONG LEE (Member, IEEE) received the
B.Eng. degree in electronics and the M.Eng.Sc.
degree from Multimedia University, in 2006 and
2009, respectively, and the Ph.D. degree in engi-
neering from University Tunku Abdul Rahman
(UTAR), Malaysia, in 2018. From 2009 to 2012,
he worked as a Research and Development
Engineer for several multinational companies,
including Agilent Technologies (now known as
Keysight), Malaysia. He worked as an Assistant

Professor and the Deputy Dean (research and development) with the Faculty
of Information and Communication Technology, UTAR. He was a Visiting
Scholar at Carleton University, Canada, in 2017, Feng Chia University,
Taiwan, in 2016 and 2018, and OTH Regensburg, Germany, in 2015, 2018,
and 2019. He is currently a Postdoctoral Researcher at Gachon University,
South Korea. His research interests include cryptography, GPU computing,
numerical algorithms, the Internet of Things (IoT), and energy harvesting.
He served as a Reviewer for several international journals, such as IEEE
TRANSACTIONSONDEPENDABLEAND SECURECOMPUTING, in 2016 and 2017, IEEE
SENSORS JOURNAL, IEEE INTERNET OF THINGS JOURNAL, from 2018 to 2021, and
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, from 2018 to 2021.

ZHI HU received the B.S. and Ph.D. degrees
from the School of Mathematical Sciences, Peking
University, China, in 2007 and 2012, respectively.
He was a Postdoctoral Researcher Fellow with
the Beijing International Center for Mathematical
Research (BICMR), from 2012 to 2014. After that,
he joined the School of Mathematics and Statis-
tics, Central South University, China, where he is
currently a Lecturer. His research interests include
cryptography and information security, especially

in elliptic curve cryptography.

HWAJEONG SEO received the B.S.E.E., M.S.,
and Ph.D. degrees in computer engineering from
Pusan National University. He is currently an
Assistant Professor with Hansung University. His
research interests include the Internet of Things
and information security.

VOLUME 10, 2022 80233


