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ABSTRACT Identifying polyps is challenging for automatic analysis of endoscopic images in
computer-aided clinical support systems.Models based on convolutional networks (CNN), transformers, and
their combinations have been proposed to segment polyps with promising results. However, those approaches
have limitations either in modeling the local appearance of the polyps only or lack of multi-level feature
representation for spatial dependency in the decoding process. This paper proposes a novel network, namely
ColonFormer, to address these limitations. ColonFormer is an encoder-decoder architecture capable of mod-
eling long-range semantic information at both encoder and decoder branches. The encoder is a lightweight
architecture based on transformers for modeling global semantic relations at multi scales. The decoder is
a hierarchical network structure designed for learning multi-level features to enrich feature representation.
Besides, a refinement module is added with a new skip connection technique to refine the boundary of
polyp objects in the global map for accurate segmentation. Extensive experiments have been conducted on
five popular benchmark datasets for polyp segmentation, including Kvasir, CVC-Clinic DB, CVC-ColonDB,
CVC-T, and ETIS-Larib. Experimental results show that our ColonFormer outperforms other state-of-the-art
methods on all benchmark datasets. Our code is available at: https://github.com/ducnt9907/ColonFormer.

INDEX TERMS Polyp segmentation, deep learning, encoder-decoder network, hierarchical multi-scale
CNN, computer-aided diagnosis.

I. INTRODUCTION
Colorectal cancer (CRC) is among the most common types
of cancer worldwide, causing over 694,000 fatalities each
year [1]. The most common cause of CRC is colon polyps,
particularly adenomas with high-grade dysplasia. According
to a longitudinal study [2], every 1% increase in adenoma
detection rate is linked to a 3% reduction in the risk of colon
cancer. As a result, detecting and removing polyps early
is critical for cancer prevention and treatment. Therefore,
colonoscopy is regarded as the standard tool for detecting
colon adenomas and colorectal cancer. In practice, over-
burdened healthcare systems, particularly in low-resource

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaojie Guo.

settings, may result in shorter endoscopy durations and more
missed polyps. According to a literature review, the propor-
tion of colon polyps missing during endoscopies could range
from 20 to 47 percent [3]. This may lead to high associated
risk factors in patients. Therefore, research in developing
computer-aided tools to assist endoscopists in endoscopy
procedures is an essential need.

Advancements in artificial intelligence and deep learn-
ing have changed the landscape of such systems. Attempts
have been made to develop learning algorithms to deploy
in computer-aided diagnostic (CAD) systems for the auto-
matic detection and prediction of polyps, which could benefit
clinicians in detecting lesions and lower the miss detection
rate [4]–[6]. Deep neural networks have shown great potential
in assisting colon polyp detection in several retrospective
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investigations and diagnoses. A CAD system can sup-
port endoscopists in improving lesion detection rates, opti-
mizing strategies during endoscopy for high-risk lesions,
and increasing clinics’ capacity while preserving diagnostic
quality [7], [8].

Despite progress in machine learning and computer vision
research, automatic polyp segmentation remains a challeng-
ing problem. Polyps are caused by abnormal cell growth
in the human colon, meaning their appearances have strong
relationships with the surroundings. Images of polyps come
in various shapes, sizes, textures, and colors. In addition, the
boundary between polyps and their surrounding mucosa is
not always apparent during colonoscopy, especially in dif-
ferent lighting modes and in cases of flat lesions or unclean
bowel preparation. These cause a lot of uncertainty for the
learning models for polyp segmentation.

In recent years, the most widely used methods for image
segmentation in general and polyp segmentation, in partic-
ular, are based on Convolutional Neural Networks (CNNs).
Most segmentation models use a UNet-based architecture
containing an encoder and a decoder, which are often built
up from convolutional layers. Despite being widely used for
segmentation tasks with impressive performance, CNNs pose
certain limitations: They can only capture local information
while ignoring spatial context and global information due to
the limited receptive field. Furthermore, it was shown that
CNNs act like a series of high-pass filters and favor high-
frequency information.

Transformer [9] is a recently proposed deep neural net-
work architecture that models the global interactions among
input components using attention mechanisms. While ini-
tially designed to tackle natural language and speech pro-
cessing problems, Transformers have significantly impacted
computer vision in recent years. In contrast to CNNs, self-
attention layers in Transformers work as low-pass filters,
and they can effectively capture long-range dependency.
Therefore, combining the strengths of convolutional and self-
attention layers can increase the representation power of
deep networks. Very recently, there has been fast-growing
interest in using Transformers for semantic image segmen-
tation [10]–[13]. These methods use well-known encoder-
decoder architectures wherein Transformers and CNNs are
combined in various settings. The works in [10]–[12] pro-
posed Transformer-CNN architectures, in which a Trans-
former is used as an encoder, and a traditional CNN is used
as a decoder. The hybrid architecture of Transformers and
CNN has been proposed in [13], in which the decoder is
a traditional CNN or a Transformer, while the encoder is a
combination of CNN and Transformer layers.

Inspired by these approaches for modeling multi-scale
and multi-level features, we propose a new Transformers-
based network called ColonFormer. The main design of our
ColonFormer also contains a transformer encoder and a CNN
decoder, but our approach differs from the models men-
tioned above in several ways. In ColonFormer, the encoder
is a hierarchically structured lightweight Transformer for

learning multi-scale features. The decoder is a hierarchical
pyramid structure capable of learning from heterogeneous
data containing featuremaps extracted from encoder blocks at
different scales and subregions. Besides, a refinement module
is proposed for further improving the segmentation accuracy
on hard regions and small polyps.

Our main contributions include:
• A novel deep neural network, namely ColonFormer, that
integrates a hierarchical Transformer and a hierarchical
pyramid CNN in a unified architecture for efficient and
accurate polyp segmentation;

• An improved refinement technique using a newly pro-
posed residual axial attention module for feature fusion
and smoothing aiming at improving the segmentation
accuracy;

• A set of experiments on five standard benchmark
datasets for polyp segmentation (Kvasir, CVC-Clinic
DB, CVC-ColonDB, CVC-T, and ETIS-Larib) and com-
parisons of the effectiveness of ColonFormer to current
state-of-the-art methods.

The rest of the paper is organized as follows. We provide a
brief review of related works in Section II. The ColonFormer
architecture is described in Section III. Section IV presents
our experiments and results. Finally, we conclude the paper
and highlight future works in Section V.

II. RELATED WORK
In this section, we briefly review common methods and
techniques that have been developed for polyp segmentation.
First, we review CNN architectures and their variants, espe-
cially UNet models, in medical image segmentation. Then we
investigate the attention mechanism as a promising technique
that boosts the capability of a deep neural network in learning
feature representation. Finally, the Vision Transformer and
its applications in polyp segmentation and medical image
processing are investigated.

A. CONVOLUTIONAL NEURAL NETWORKS
CNNs are one of the most widely used deep neural net-
work architectures, especially in computer vision. A deep
CNN extracts features on multiple layers with increasing
levels of abstraction. Low-level features with high resolutions
represent spatial details, while high-level features with low
resolutions represent rich semantic information. CNNs are
especially powerful in image analysis as they can extract
highly informative and valuable features.

UNet [14] is a pioneering CNN architecture for medical
image segmentation. UNet consists of an encoder and a
decoder. The encoder includes convolutional, pooling lay-
ers for feature extraction, and the decoder uses upsampling
(or deconvolutional) and convolutional layers for yielding
the final segmentation prediction. Later works attempted to
improve UNet by introducing skip connections, which alle-
viate information loss caused by stacking multiple convolu-
tional layers. However, retaining information from low-level
may introduce noisy signals that degrade the performance.
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FIGURE 1. Overall architecture of our ColonFormer contains three components: an encoder, a decoder, and a refinement
module. The encoder is based on the Mix Transformer backbone. The decoder starts with a pyramid pooling module (PPM),
where its outputs are combined layer-wise with the output feature maps of the encoder at multiple levels to produce a
global map. The refinement module aims to gradually refine the boundary of the global map to yield the final accurate
segmentation. Besides this predicted output, the global map and two intermediate maps are also passed into the training
loss in a deep supervision manner. Before calculating the training loss, all refined maps are upsampled back to the original
image input size.

UNet variants such as UNet++ [15] and DoubleUnet [16]
have achieved stellar results on segmentation benchmarks.
UNet++ is constructed as an ensemble of nested UNets of
varying depths, which partially share an encoder and jointly
learn using deep supervision. DoubleUNet stacks two UNet
blocks and uses ASPP [17], and SE blocks [18] to enhance
the feature representation.

UNet encoders often use an existing pretrained archi-
tecture, also known as the backbone. Widely used back-
bones include VGG [19], MobileNet [20], ResNet [21],
DenseNet [22] and so on. PraNet [23] uses Res2Net as
the backbone, while AG-CuResNeSt [24] uses ResNeSt.
Meanwhile HarDNet-MSEG [25], NeoUNet [26] and
BlazeNeo [27] use HarDNet, an improvement of DenseNet
to extract features.

B. ATTENTION MECHANISM
The attention mechanism is a widely used technique to
help deep neural networks learn better feature representa-
tions, especially on highly variant inputs. Oktay et al. [28]
proposed an Attention Gate module for UNet, which helps
the model focus on necessary information while preserving
computational efficiency. AG-ResUNet++ [29] integrates
the attention gates with the ResNet backbone to improve
UNet++ [15] for polyp segmentation. PraNet [23] uses the

Reverse Attention module [30], which enforces focus on
the boundary between a polyp and its surroundings. In gen-
eral, most CNNs and neural networks can benefit by adding
attention modules. However, even with these attention mech-
anisms, CNNs are limited by the locality of convolution oper-
ations. This limitation makes them difficult to model natural
long-range spatial dependencies between input segments.

C. VISION TRANSFORMER
Transformer [9] is a highly influential deep neural network
architecture, originally proposed to solve natural language
processing and similar problems. While the original Trans-
former architecture is not very well suited for image analysis,
attempts have been proposed to leverage its advantages for
computer vision through some modifications. Vision Trans-
former (ViT) [32] was the first successful application of
Transformers for computer vision. ViT splits an image into
patches and processes them as sequential tokens. This method
greatly reduces computational costs and allows Transformers
to work with large images feasibly.

A major issue of ViT is that it requires extensive datasets
for training to remain effective while being severely lim-
ited when trained on small datasets. Such property hin-
ders its usage in problems such as medical image analysis,
including polyp segmentation, where data is typically scarce.
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FIGURE 2. Architecture of three neural blocks used in our ColonFormer. The left block (a) is the Mix Transformer block [31]. The middle block (b) is the
channel-wise feature pyramid block, where DR stands for dilation rate. The pyramid pooling module is shown on the right (c).

The Kvasir dataset, for example, contains just 1000 images
and their corresponding ground truth, despite being the
largest public image dataset of the gastrointestinal tract for
polyp segmentation.

Recent works have attempted to further enhance ViT in
several ways. DeiT [33] introduces a data-efficient train-
ing strategy combined with a distillation approach, which
helps improve the performance when training on small
datasets. Swin Transformer [10] redesigned the encoder for
Transformers. The Swin Transformer encoder computes self-
attention among a collection of adjacent patches within a slid-
ing window. Patches are merged every few blocks, reducing
the number of tokens and forming a multi-resolution token
hierarchy similar to convolutional blocks. SegFormer [31]
is another hierarchical Transformer design, where patches
are merged with overlap and preserving local continuity
around patches. The authors also introduced Efficient Self-
Attention, a modified attention mechanism for reducing com-
putational complexity, and Mix-FFN for better positional
information.

Both TransUNet [34] and TransFuse [35] models have
been developed based on Transformers for polyp seg-
mentation and yielded promising results. TransUNet uses
a Transformer-based network with a hybrid ViT encoder
and upsampling CNN decoder. The Hybrid ViT stacks the
CNN and Transformer together, leading to high compu-
tational costs. TransFuse addressed this problem by using
a parallel architecture. Both models use the attention gate
mechanism [28] and a so-called BiFusion Module. These
components make the network architecture large and highly
complex.

While there have been promising results in using Trans-
formers to develop networks for polyp segmentation, there
is plenty of room for improvement in this direction. Most
notably, reduced network size and latency can greatly bene-
fit downstream applications. In addition, improved accuracy
and robustness can also be achieved with more optimized
architectures. This paper seeks to design a Transformer-based
architecture that achieves these goals.

III. COLONFORMER
Fig. 1 depicts the overall architecture of our proposed
network, ColonFormer. The network consists of a hybrid
encoder, a decoder, and a refinement module. We will
describe each component in detail in the following sections.

A. ENCODER
A hierarchically structured model that can extract coarse-
to-fine features at multi-scale and multi-level is desired
for semantic segmentation. Our model uses Mix Trans-
former (MiT) proposed in [31] as the encoder backbone.
MiT is a hierarchical Transformer encoder that can represent
both high-resolution coarse and low-resolution fine features.
Assume X ∈ RH×W×C denotes the input image. MiT gen-
erates the CNN-like multi-level features Fi. The hierarchical
feature map Fi has the resolution of H

2i+1
×

W
2i+1
× Ci, where

i ∈ {1, 2, 3, 4} and Ci is ascending. The hierarchical feature
representation is brought by the overlapped patch merging.
After several Transformer blocks (Fig. 2a), a kernel with a
stride smaller than kernel size is used to divide the feature
map into overlapping patches. Such an overlapping patch
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merging process ensures the local continuity around those
patches.

Like other Transformer blocks, MiT blocks contain three
main parts: Multi-head Self-Attention (MHSA) layers, Feed
Forward Network (FFN), and Layer Norm. The MHSA is
improved into Efficient Self-Attention, where the number of
keys is decreased by a factor of R to reduce the computational
complexity of self-attention layers. Another reason that we
decide to choose MiT is the Mix-FFN. Instead of using
the positional encoding (PE) as ViT, a 3× 3 convolution
kernel is integrated into FFN. Since the resolution of PE is
fixed, it can not utilize the positional information of the pre-
trained dataset like ImageNet when the resolution of the test
images differs from the training ones. In such cases, ViT [32]
suggests interpolating the PE, which can lead to a drop in
accuracy. In contrast, arguing that convolutional layers are
adequate for providing location information for Transformer,
MiT directly uses a 3× 3 convolutional layer for positional
encoding. MiT has a series of variants, from MiT-B1 to
MiT-B5, with the same architecture but different model’s
sizes. We name the variants of our model as ColonFormer-
XS, ColonFormer-S, ColonFormer-L, ColonFormer-XL,
ColonFormer-XXL, corresponding to different MiT back-
bone scales from MiT-B1 to MiT-B5, respectively. Accord-
ing to ablation study described later in Section IV-D,
we found that ColonFormer-S and ColonFormer-L achieve
the best results. Therefore, wemostly use ColonFormer-S and
ColonFormer-L for comparison with other state-of-the-arts in
all experiments except where it is specified otherwise.

B. DECODER
In order to further capture global context information, the
feature maps extracted from the final block of the encoder
are first processed by a Pyramid Pooling Module (PPM) [36]
before being passed through the decoder blocks. The PPM
simultaneously produces multi-scale outputs of the input
feature map via a pyramid of pooling layers. The resulting
feature maps, which form a hierarchy of features containing
information at different scales and sub-regions, are then con-
catenated to produce an efficient prior global representation.
Fig. 2c depicts the Pyramid Pooling Module in detail.

ColonFormer uses a decoder architecture inspired byUPer-
Net [37], which we denote as UPer Decoder. The decoder
gradually fuses the prior global map produced by the PPM
with multi-scale feature maps yielded by the MiT backbone.
We suppose that applying convolutional layers to the feature
maps of the MiT backbone is necessary since such layers
can condense the information by emphasizing the coherence
between neighboring elements, thus enhancing the resulting
semantic map.

C. REFINEMENT MODULE
The decoder’s outputs are further processed by a refinement
module to achieve more precise and complete prediction
maps. The refinement module consists of Channel-wise Fea-
ture Pyramid (CFP) module [38] (Fig. 2b) and our novel

Reverse Attention module enhanced by a new residual
axial attention block for incremental correction of polyp
boundary [30], [39].

In the parallel reverse attention network architecture [23],
the global map is derived from the deepest CNN layer,
so it does not have many structural details and hence can
present only rough locations of the polyp pixels. The pro-
posed strategy to recover precise location and label is to
exploit complementary regions and details sequentially by
removing previously estimated polyp regions from high-
level side-output features, where the current estimation is
up-sampled from the deeper layer. By using Reverse Atten-
tion, a coarse saliency map is guided to sequentially dis-
cover complement object regions and details by erasing the
current predicted salient regions from side-output features.
The current prediction is upsampled from its deeper layer.
This erasing approach can refine the imprecise and coarse
estimation into an accurate and complete prediction map.
It was shown that self-attention layers in the MiT backbone
work like low-pass filters. Therefore, we argue that using
convolutional layers is essential for the refinement module
since such layers favor high-frequency components and can
provide richer edge information for the boundary correction.

Inspired by CaraNet [40], we use Channel-wise Feature
Pyramid (CFP) to extract features from the encoder in multi-
scale views. As depicted in Fig. 2b, the CFP module has
K = 4 branches with different dilation rates that allow them
to capture information at multiple scales. However, a direct
concatenation of all branches could lead to some unwanted
checkerboard or gridding artifacts that significantly impact
the quality of the following boundary correction. In order to
avoid this issue, the CFP module combines these branches
step by step to build a final accurate feature map to correct
the polyp boundaries.

CaraNet [40] also enhanced the Reverse Attention mod-
ule by an axial attention block, which is a straightforward
generalization of self-attention that naturally aligns with the
multiple dimensions of the tensors. This module is supposed
to filter the necessary information for the refinement process.
However, axial attention may not always be good for the
network since it can accidentally eliminate important edge
information. Therefore, we propose to relax this mechanism
using an additional residual connection, which allows the
network to omit the axial attention layers when required and
thus facilitates the learning process. The novel refinement
module is called Residual Axial Reverse Attention (RA-RA).
We experimentally found that utilizing the RA-RA module
up to the finest feature map does not help refine the polyp
boundary better. Hence, we propose to use just three RA-RA
blocks, as shown in Fig. 1. The effectiveness of the RA-RA
module is investigated in detail in Section IV-D.

D. LOSS FUNCTION
ColonFormer uses a compound loss combining the weighted
focal loss and weighted IoU loss to train the model. The
weighted focal loss is a distribution-based loss that treats
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every pixel individually. In contrast, the weighted IoU loss is
a region-based loss that considers the relationships between
neighboring pixels.

Some image pixels can be easy to be learned and classified.
However, some pixels, such as those on the edge regions,
may be harder to learn. Thus, the model should pay more
attention to challenging samples. In other words, some image
pixels may be more important than others in contributing to
the learning process. We represent the importance of pixel
(i, j) by a weight βij. As suggested in [41], the weight βij for
pixel (i, j) is defined as the difference between the center pixel
and its neighbors:

βij =

∣∣∣∑m,n∈Nij
gmn

|Nij|
− gij

∣∣∣ (1)

whereNij represents the area of size 31× 31 surrounding the
pixel (i, j), and gij ∈ {0, 1} is the true label of the pixel (i, j).
A large value of βij indicates a pixel with considerable dis-
tinction from its vicinity, i.e., pixels at polyp edges. Such a
weighting scheme enforces the model to focus more on the
boundary regions.

Assume that pij is the prediction probability of a pixel (i, j)
belonging to the polyp class. Let us define qij as:

qij =

{
pij, if gij = 1
1− pij, otherwise

(2)

As polyp segmentation is a problem with highly imbal-
anced data, the focal loss is employed to deal with class
imbalance during training. It integrates a modulating term in
order to focus learning on hard pixels. The weighted focal
loss is then defined as follows:

Lwfocal = −

∑H
i=1

∑W
j=1(1+ λβij)α(1− qij)

γ log(qij)∑H
i=1

∑W
j=1(1+ λβij)

(3)

where α, γ are tunable hyperparameters.
The weighted IoU loss is defined as follows:

Lwiou = 1−

∑H
i=1

∑W
j=1(gij ∗ pij) ∗ (1+ λβij)∑H

i=1
∑W

j=1(gij + pij − gij ∗ pij) ∗ (1+ λβij)
(4)

where λ is a hyperparameter to adjust the impact of impor-
tance weights βij.

The total loss of our ColonFormer is calculated as:

Ltotal =
Lwfocal + Lwiou

2
(5)

The total loss in Eq. (5) is applied to train our model for
multi-scale outputs as shown in Fig. 1. The final loss is the
sum of all total losses computed at different output levels.
Note that each output is upsampled back to the original size
of the image’s ground truth before the losses are evaluated.

IV. EXPERIMENTS
A. DATASETS
We perform experiments on the five popular benchmark
datasets for polyp segmentation: Kvasir [47], CVC-Clinic
DB [48], CVC-Colon DB [49], CVC-T [50], and ETIS-Larib
Polyp DB [51]. Details of these datasets are described as
follows:

• The Kvasir dataset is collected using endoscopic
equipment at Vestre Viken Health Trust (VV), Norway.
Images are carefully annotated and verified by expe-
rienced gastroenterologists from VV and the Cancer
Registry of Norway. The dataset consists of 1000 images
with different resolutions from 720 × 576 to
1920 × 1072 pixels.

• The CVC-ClinicDB dataset is a database of image
frames extracted from colonoscopy videos. The
dataset consists of 612 images with a resolution of
384 × 288 pixels from 31 colonoscopy sequences. The
dataset was used in the training stages of the MIC-
CAI 2015 Sub-Challenge on Automatic Polyp Detection
Challenge in Colonoscopy Videos.

• The CVC-ColonDB dataset is provided by the
Machine Vision Group (MVG). The dataset consists of
380 images with a resolution of 574 × 500 pixels from
15 short colonoscopy videos.

• The CVC-T dataset is the test set of a more exten-
sive dataset called Endoscene. CVC-T consists of
60 images obtained from 44 video sequences acquired
from 36 patients.

• The ETIS-Larib dataset contains 196 high resolution
(1226× 996) colonoscopy images.

B. EXPERIMENT SETTINGS
We implement ColonFormer using the PyTorch framework.
For a fair setting and comparison, we use the same parameters
as [31] for the MiT backbone: kernel size K = 7, stride
S = 4, padding size P = 3, and K = 3, S = 2,P = 1 to
produce features with the same size as the non-overlapping
process. Based on experiments in [41], [53], we use λ = 5,
α = 0.25 and γ = 2 for the losses in Eq. (3) and
Eq. (4). Training is performed using Google Colab on virtual
machines with 16GBRAMand an NVIDIA Tesla P100 GPU.
Input images are resized to 352 × 352 for testing. In order
to increase the model’s robustness w.r.t image sizes, the
training images are consequently scaled with a factor of
{0.75, 1, 1.25}, respectively, and fed to the model for learn-
ing. None of the data augmentation techniques is used in the
training phase.

We use six experiment setups to evaluate our method; each
setup is described in detail below:

• Experiment 1: We use the same split as suggested
in [23], where 90% of the Kvasir and ClinicDB datasets
are used for training. The remaining images in the Kvasir
and CVC-ClinicDB datasets and all images from CVC-
ColonDB, CVC-T, and ETIS-Larib are used for testing.
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TABLE 1. Performance comparison of different methods on the Kvasir, ClinicDB, ColonDB, CVC-T, and ETIS-Larib test sets. All results of ColonFormer are
averaged over five runs.

TABLE 2. Performance comparison of different methods on 5-fold cross-validation of the CVC-ClinicDB and Kvasir datasets. All results are averaged over
5 folds.

• Experiment 2: 5-fold cross-validation on the CVC-
ClinicDB and Kvasir datasets. Each dataset is divided
into five equal folds. Each run uses one fold for testing
and four remaining folds for training.

• Experiment 3: Cross-dataset evaluation with 3 training-
testing configurations:

1) CVC-ColonDB and ETIS-Larib for training, CVC-
ClinicDB for testing;

2) CVC-ColonDB for training, CVC-ClinicDB for
testing;

3) CVC-ClinicDB for training, ETIS-Larib for
testing.

The first experiment compares our ColonFormer model
with state-of-the-art CNN-based and Transformer-based net-
works using the same widely-used dataset configuration as
suggested in [23]. The second experiment compares Colon-
Former’s learning ability to several recent polyp segmentation
methods. Finally, the last experiment provides deeper insights

into the generalization capability of ColonFormer and other
benchmark models.

We use the Adam optimizer and cosine annealing sched-
uler with a learning rate of 1e-4. ColonFormer is trained in
20 epochs with a batch size of 8. The checkpoint of the last
epoch is used for evaluation. Except for the second experi-
ment with 5-fold cross-validation, we train ColonFormer five
times, and the ColonFormer’s results are averaged over five
runs.

In addition, we perform a series of ablation studies to
evaluate the effectiveness of each component in the pro-
posed ColonFormer. All ablation studies are performed on the
dataset configuration for Experiment 1.

C. COMPARISON WITH BENCHMARK MODELS
Table 1 describes the comparison results for Experiment 1.
ColonFormer generally outperforms the benchmark mod-
els on most datasets. Notably, both ColonFormer-S and
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TABLE 3. Performance comparison of different methods on cross-dataset configurations. All results are averaged over five runs.

FIGURE 3. ROC and PR curves on the 5-fold cross-validation on the Kvasir-SEG dataset. All the curves are averaged over 5 folds.

ColonFormer-L outperform the second-best TransFuse-L*
by 3% in mDice and 2.7% in mIOU on the ColonDB
dataset. Compared to the second-best CaraNet on the ETIS-
Larib dataset, ColonFormer-S achieves an improvement of
5.2% in mDice, and 4.8% in mIOU, while ColonFormer-L
achieves an improvement of 6.4% in mDice and 5.9%

in mIOU. The high capacity of ColonFormer-L seems
more suitable for high-resolution images in the ETIS-Larib
dataset. However, both ColonFormer-S and ColonFormer-L
achieve roughly 1% lower metrics against TransFuse-L* on
the CVC-ClinicDB dataset, whose images obtain very low
resolution.
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FIGURE 4. Qualitative result comparison of different models test on the first fold in the 5-fold cross-validation experiment on the Kvasir dataset.

Table 2 describes the comparison results for Experiment 2.
We report both the average value and the standard deviation
for each metric, which reflects the models’ stability. One can
see that both ColonFormer-S and ColonFormer-L outperform
all other state-of-the-art models in mDice, mIOU, precision,
and recall on both datasets. Notably, our ColonFormer is the
most stable model on both datasets, achieving the lowest
standard deviation for each evaluation metric.

Qualitative results for Experiment 2 are shown in Fig. 4.
ColonFormer-S demonstrates much fewer wrongly pre-
dicted pixels in segmentation results than other models.
ColonFormer-S also produces better ROC and PR curves than
the benchmark models, as depicted in Fig. 3.
Table 3 describes the comparison results for Experiment 3.

Overall, both ColonFormer-S and ColonFormer-L signifi-
cantly outperform benchmark models on cross-dataset met-
rics. For the first configuration, ColonFormer-S outperforms
the second-best PraNet by 7 − 8% on all metrics. In the
second configuration, ColonFormer-S continues to achieve
a 5.8% improvement in precision, 7.8% improvement in
mDice, and 9.4% improvement in mIoU over PraNet. For
the third configuration, ColonFormer-L again shows its suit-
ability to the ETIS-Larib dataset achieving a 10.1% improve-
ment in mDice and 18.3% in recall over the second-best
HarDNet-MSEG. These are highly significant improvements,
showing that our ColonFormer can generalize very well to
new unseen data. Some result samples for this experiment
are shown in Fig. 5. Similar to Fig. 4, one can see that
ColonFormer yields better segmentation results than other
state-of-the-arts.

Table 4 compares ColonFormer with other benchmark
models in terms of size and computational complexity. One
can see that our ColonFormer-S obtains competitive size and
computational complexity compared to the most lightweight
CNN-based models such as PraNet [23], and HarDNet-
MSEG [25]. Our ColonFormer-L is larger than most CNN-
based neural networks but still more efficient than other
Transformer-based methods in terms of GFlops.

TABLE 4. Number of parameters and GFLOPs of different methods.

D. ABLATION STUDIES
1) EFFECTIVENESS OF THE UPER DECODER
Wefirstly compare the original SegFormer-B3 [31]withMLP
Decoder and another model called SegFormer-B3-Uper that
replaces the original MLP decoder with the UPer Decoder.
Both models use the MiT-B3 backbone in terms of the
encoder.

Results are shown in the first two rows of Table 5. Both net-
work versions show similar metrics across the test datasets,
with slight variations of roughly 1%. However, one can see
from Table 4 that UPer Decoder is also significantly less
costly, requiring only 20.99 GFLOPs as opposed to MLP
Decoder (33.68 GFLOPs). These results compel us to choose
the UPer decoder for ColonFormer, which alleviates the high
computational cost incurred with the use of the Transformer-
based backbone.

2) EFFECTIVENESS OF THE REFINEMENT MODULE
We evaluate the performance of SegFormer-B3-Uper-ARA
with the A-RA Refinement Module as in [40], and
our ColonFormer-L with the adjusted Refinement Mod-
ule as described in Section III-C. Results are shown in
Table 5. Overall, incorporating the RefinementModule yields
improvement across all datasets. Our ColonFormer-L also
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FIGURE 5. Qualitative result comparison using CVC-Colon for training and CVC-Clinic for testing.

TABLE 5. Ablation study on the effectiveness of different components. All results are averaged over five runs.

TABLE 6. Evaluation metrics for different variations of the MiT backbone. All results are averaged over five runs.

yields superior performance than SegFormer-B3-Uper-ARA
on the Kvasir, CVC-ClinicDB, CVC-T, and most signifi-
cantly, the ETIS-Larib datasets, while slightly underperform-
ing on the CVC-ColonDB dataset.

3) EFFECTIVENESS OF THE MIT BACKBONE
The Mix Transformer (MiT) [31] backbone has several
variations ranging from MiT-B0 to MiT-B5. Accordingly,
our ColonFormer also have different variations, includ-
ing ColonFormer-XS, ColonFormer-S, ColonFormer-L,
ColonFormer-XL, ColonFormer-XXL, respectively. Table 6
shows our comparison between all variations of Colon-
Former. Overall, ColonFormer-S and ColonFormer-L yield
the best average results across our test datasets.

V. CONCLUSION
This paper proposes a novel deep neural network archi-
tecture called ColonFormer for colon polyp segmentation.
Our model leverages both the advantages of Transform-
ers and CNNs architectures to learn a powerful multi-scale
hierarchical feature representation. We also enhance the
reverse attention with axial attention by relaxing it with a
residual connection. The refinement module allows the net-
work to incrementally correct the polyp boundary from a
coarse global map produced by the decoder. Our extensive
experiments show that ColonFormer significantly outper-
forms existing state-of-the-art models on popular benchmark
datasets.

In future works, we will investigate lightweight or sparse
self-attention layers to reduce the computational complexity.
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In addition, other types of architectures for combining Trans-
formers and CNNs can also be exploited.
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