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ABSTRACT The smart grid connects components of power systems and communication networks in
an interdependent two-way system that delivers electricity to consumers and collects data that enables it
to react to usage levels and interference from threats, such as cyber-attacks. In this paper, we propose
a novel cyber-attack failure propagation model in smart grids. Our realistic failure propagation model
addresses the system’s heterogeneity by assigning different roles to its components. We define rules
for and interdependencies of failure propagation and propose a new approach to studying cascading
failures. In addition, our graph model identifies the most-vulnerable nodes. The model implements power
flow analysis to guarantee that all transmission lines work below capacity and remove lines exceeding
capacity. The model also considers that control packets could encounter different delays regarding the
communication network structure and investigates the impact of communication delay on the failure of
power components. Our results establish that by considering both power and communication characteristics
and interdependencies, cascading failures can be modeled more accurately. We show that when we run the
power flow analysis, there are a negligible number of failed nodes, which means that our model accurately
identifies system failures.

INDEX TERMS Cascading failures, communication delay, cyber-attacks, failure propagation, graph theory,
interconnection networks, power flow analysis, realistic model, smart grid.

I. INTRODUCTION
A smart grid network is a complex cyber-physical sys-
tem (CPS) that introduces new capabilities based on exclusive
systems features. These features are designed to improve
reliability, performance, and security of traditional power
grids [1]. A smart grid incorporates complex dependencies
between its various elements, which means that communica-
tion components depend on power assets for power supply,
and power assets and control systems need communication
infrastructure to connect with the network and perform their
functions.

The associate editor coordinating the review of this manuscript and
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The heterogeneous nature of the smart grid makes
it difficult to standardize procedures and communication
paradigms [2]. These system dependencies and heteroge-
neous communication architectures introduce new challenges
related to cyber security and reliability. The smart grid is a
complex network that different characteristics of elements
like nodes’ centrality have more impact on cascading the
information [3]. One of the main challenges is in the
cascading failures caused by cyber-attacks or in the failure
of a component in the power grid [4]. These attacks
may occur when nodes or transmission lines in a smart
grid fail [5]. When a power grid asset fails, this failure
can propagate across the system due to the interdepen-
dencies between the power assets and the communication
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components. Based on this, a cyber attack on a grid’s
communication network can lead to the failure of its power
elements.

Cyber-attacks and their cascading effects have caused
massive blackouts in recent years. For example, in 2015,
Ukrainian power companies experienced a cyber attack
that affected more than 225,000 customers and resulted in
blackouts across the country [6]. In 2020, the central region
of Mumbai, India, experienced a blackout for two hours.
Malicious software was pre-positioned on Indian power
sector organizations’ networks and caused the tripping of
circuits at two substations [7]. It affected the frequency of
the transmission system in Mumbai and caused a cut-off of
the power energy. These blackouts occurred because of the
cascading effects of an initial attack on the whole system.

Cascading failures start with the failure of one or several
power components and spread across the system. The
interdependencies between a system’s power and cyber
elementsmean that an initial failure can propagate throughout
the system and lead to power outages and blackouts. When a
power component fails, the load is automatically redistributed
across the system. Consequently, transmission lines and
power components can become overloaded and disconnected
from the system [8].

Many studies investigated how to mitigate the cascading
failure impacts caused by cyber-attacks. For example, [4], [5],
[9]–[11] proposed algorithms to identify the most-vulnerable
power lines and components in terms of their susceptibility to
cascading attacks to strengthen power systems by protecting
these vulnerable assets. These efforts show the importance of
addressing the problem of cascading failure attacks on smart
grids and the consequences of failing to do so.

Many models have been proposed to investigate cascading
failures in CPS and smart grids [10], [12]–[18]. Method
of probability, statics, and physics are commonly used in
modeling different phenomena in networks [17]. However,
some studies did not consider the role of cyber-attacks or
cascading failures in communication component failures [8].
Others did not consider the interdependencies between
power and communication networks or only modeled the
power grid [12]. However, some papers modeled both the
networks and the interdependencies between their different
components, regardless of the role of their power components
and the limitations of their power capacity [10], [12], [13].
The problem with these models is that they underestimated
the extent to which power components can fail. For example,
studies that used these models did not address how power
redistribution can cause failures in transmission lines; that
is, when a power component fails, the manner in which the
power flow is redistributed through existing transmission
lines can cause further failures. This factor was not recog-
nized in these studies.

The main goal of this paper is to model a smart grid
network and study the impact of the failure of different
components on power and communication networks. This
paper proposes a novel model to investigate the effects of
cascading failures caused by cyber-attacks in a smart grid

environment. We define different roles for power and com-
munication components based on IEEE standard systems,
and we consider their characteristics when determining the
interdependencies between two networks’ elements that are
different from the small-cluster model [13]. Our proposed
realistic failure propagation (RFP) model is based on the
conditions for failure propagation, network topologies, and
the interdependencies between components. The failure
propagation process consists of practical rules with which to
study cascading failures. To make the model more realistic,
we also address the role of the capacity of its power elements
in addressing the failure propagation process.

The main contributions of this paper can be summarized as
follows:
• We propose a novel model based on IEEE standard bus
systems to study the evolution of failure propagation in
a smart grid.

• We address the heterogeneity of this system’s power
components and define novel interdependencies so as
to percolate a failure in its power and communication
components.

• We define new rules and conditions based on IEEE
standards to model failure propagation in the system.

• Our model performs power flow analysis to identify
transmission lines that exceed their capacity limits so as
to consider the electrical transmission characteristics of
the system.

• We model delayed control packets in a communication
network to study the consequences of different delays on
the functionality of a smart grid network.

The rest of the paper is organized as follows: Section II
discusses related work. Section III presents modeling the
failure propagation and the RFP model for cascading
failure. Section IV outlines cyber-attacks and the failure
propagation process. Section V shows the experimental
results. Section VI presents four case studies, and, section VII
concludes.

II. RELATED WORK
Extensive academic and industrial investigations have been
carried out on cyber-attacks and their effects on smart grid
networks. The research community has developed different
methods of detecting these attacks and has studied the failure
propagations they have caused [8], [13], [14], [18]–[20].

Cai et al. [14] proposed a model to analyze failure prop-
agation in interdependent power and dispatching data net-
works in China. Their paper only considered transmission
line failures and proposed an algorithm to identify overloaded
branches and instability in a system. In [18], a control
algorithm was proposed to reduce the impact of propagating
failures based on a communication network and power grid
models. However, the authors did not study the effect of the
failure of communication components but only focused on
transmission line failures.

Sun et al. [19] presented a two-stage cyber intrusion
defense solution in a smart meter network. A Support Vector
Machine (SVM) is utilized as a detection technique in the
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initial step of intrusion detection to uncover suspicious behav-
ior inside a smart meter. The Temporal Failure Propagation
Graph (TFPG) approach is utilized in the second stage to
build attack pathways for detecting attack events. In [20],
the authors proposed an attack detection framework using
supervised machine-learning and deep learning algorithms to
assess secured and unsecured networks.

Che et al. [12] showed that a well-designed false data
injection (FDI) attack can overload critical branches of a
power network and, consequently, increase the probability
of initiating contingencies and causing a cascading failure.
However, the authors only focused on critical grid branches
and missed the impact of communication networks on
cascading failures.

In [21], the authors proposed a model that identifies
critical components that perform cascading failures when
experiencing cyber-attacks. Peng et al. [22] exploited a game
theory optimization method to formulate cascading failures
that are induced by overloaded branch chains. Although these
models considered the interdependencies of the different
components of a smart grid, they omitted the role of power
components and cyber elements in the propagation of failures
and the impact of cyber-attacks on communication networks.

Various studies have focused on interdependent networks
to study failure propagation in a smart grid [23]–[25]. All of
the above studies focused on modeling these interdependen-
cies and the impact of failure on a system; however, they omit-
ted the system’s heterogeneity, the role of its components, and
the power system’s electrical characteristics. Therefore, these
studies underestimated the impact of cascading failures and
did not model all of the parameters of failure propagation.

One of the first models that used to study failure in
interconnected networks was the one-to-one model [26].
This model assumed that all components in the power and
communication networks are homogeneous, and the failure
of each node in a network may cause some nodes in the
other network to fail. This model defined a one-to-one
dependency between each node in a physical graph and one
node in a cyber graph and vice versa. This dependency was
presented in two graphs, each with the same number of nodes.
Each graph consisted of nodes as components and edges as
physical connections between nodes. Therefore, the edges
that represented the interdependencies were unidirectional.

The failure propagation process consisted of two rules
that considered a node as functional after an initial failure.
The first rule stated that a functional node u should belong
to the largest connected sub-graph in its network, and the
second rule noted that there should be a connection between
node u and a node in the other network. Propagating a
failure with the initially failed nodes was an iterative process,
and nodes that did not consist of the mentioned conditions
were removed from the system until there were no further
failures.

In another study, Huang et al. [13] proposed a small-cluster
model to study cascading failures in interdependent systems.
The authors assumed two roles for the cyber nodes and more
interdependencies between the power and communication

components. As we will compare the RFP with the small-
cluster model, we will elaborate on this model in the next
section.

Based on the assumptions and interdependencies in [26]
and [13], both papers adopted simplifiedmodels and the same
roles for the power elements. Thus, these models were unable
to identify different components of the system’s physical
structure. Both models consider the number of nodes and
connections between them to determine the functionality of
nodes, and the role of nodes is not influential in the failure
propagation. For instance, based on these models, a system
without a generator can be considered a functional system.
Further, neither method can point out the power flow in a
power network nor can they identify lines that exceed their
capacity.

Unlike the small-cluster model [13], our RFP model
assumes different roles for power components and based on
this knowledge, it considers more-complicated interdepen-
dencies and rules for failure propagation. We also use power
flow analysis to identify the transmission line failures due
to these lines’ thermal limits. The other difference between
the small-cluster and RFP models is that we utilize different
delays for control packets to make the RFP model more
realistic.

III. MODELING FAILURE PROPAGATION
In this section, we describe the small-cluster model [13].
Then we describe our proposed RFP model. We elaborate
on the small-cluster model because we compare our results
with this model, which helps us understand our proposed
model’s fundamentals. We also use the concept of small
clusters to ensure that the results are achieved in the same
way that can be compared with the small-cluster model.
As a result, the RFP model is independent of the small-
cluster model. We improve the failure propagation process
by utilizing novel interdependencies and rules, nodes’ roles,
and electrical characteristics of power components.

A. SMALL-CLUSTER MODEL
In general, tomodel power and communication networks, two
separate graphs can be used: Gpow = (V pow,Epow) for the
power network and Gcom = (V com,Ecom) for the communi-
cation network. Another term is Edep, which represents the
interdependencies between the elements presented in the two
graphs in Figure 1.

The small-cluster model [13] assumes different roles in
a communication network and more-complex dependencies
compared to the one-to-onemodel. Similar to [26], this model
uses two graphs to form the system. It defines two roles
for the nodes in the communication network, including the
control centers that monitor power nodes and the relay nodes
that facilitate communication. Furthermore, all of the power
components have the same roles in the power network.

The model also defines the interdependencies between the
power and communication components. The model uses the
k − n dependency proposed in [27]. Each node in the power
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FIGURE 1. An example of small-cluster model where, n=3 and k=1 [13].
Each power node depends on a control center for monitoring and a relay
node for communication.

network is controlled by k control center nodes, and each
control node supports n power nodes. In addition, each cyber
component depends on a power node for the power supply.
In the failure propagation process, the algorithm defines
a threshold 1. All clusters with sizes greater than 1 are
functional after the failure of the initial nodes. A cluster is
a group of connected nodes that are located in one network
(either the power or the communication network).

In addition to the nodes that belong to the giant graph
component, all of the nodes that belong to clusters of a
size larger than 1 are considered functional. These nodes
should also connect to at least one node in the other network.
The failure propagation process is similar to the one-to-one
model [26]. One example of the small-cluster model can be
seen in Figure 1, where n = 3 and k = 1. In Figure 1, the
yellow nodes are control centers, and the black nodes present
relay nodes.

In the small-cluster model, if a node follows two rules,
then it can be considered functional. The first rule is that it
should belong to a cluster with a size larger than 1 in its
network; the second rule is that there should be at least one
inter-link between this node and another node in the other
network. The small-cluster model uses synthetic networks
to form the power and communication networks. Then the
k − n model is used to couple these two networks. The
small-cluster model follows percolation theory to show that
the system’s robustness increases as 1 increases. The model
also shows that there is an upper bound for the number of
small clusters after the failure propagation, which is also
based on percolation theory.

B. REALISTIC FAILURE PROPAGATION SYSTEM MODEL
We use two separate graphs to model the power and
communication networks. In Figure 2, we show the power
network using the graph Gpow = (V pow,Epow) and the
communication network with Gcom = (V com,Ecom).

1) ROLES AND DEPENDENCIES OF NODES
The communication network graph (Gcom) consists of
communication and control components. We define two roles

FIGURE 2. Interdependencies between power components and relay
nodes in the RFP model. Power nodes are connected to the control center
through relay nodes.

for the nodes in Gcom; namely, the relay nodes that form
the communication system and the control center nodes
that monitor and control the power nodes [13]. All of the
dependencies in the communication network are shown by
the edges in the Ecom. Ecom is a set of edges representing
a physical connection between the communication nodes.
The control center nodes are dependent on the relay nodes
for communication; that is, for a control node to be able to
communicate with other nodes, it needs to be connected to
at least one relay node. The power graph, Gpow, includes
the power components and is used to model the power
network.

We use the IEEE 14-, 39-, 118-, and 300-bus systems [28]
to define the roles of the power components and to construct
the power network.We specify four roles for the power nodes;
namely, bus, load, generator, and transformer.We assign these
roles according to IEEE standards [29]. These roles identify
both the dependencies and the rules for more accurately
modeling the power system. These assumptions make our
model more realistic because these roles are defined based
on actual power systems.

The dependencies between the nodes in the power graph
are identified by Epow, which is a set of undirected edges
that represents the transmission lines between the power
components. For instance, if there is a line between u and
v in the power network and u, v ∈ Gpow, then there is an
edge like e(u,v) ∈ Epow that connects these two nodes in the
power graph. Figure 3 (a) shows the IEEE 14-bus reference
model [28] that is the standard structure of this test case.

Figure 3 (b) shows the equivalent graph of the IEEE
14-bus test case with nodes and edges. It can be seen that
for each power component in the power network, there is
an equivalent node in this figure. There are four types of
components in the IEEE bus test cases (Figure 3 (a)); namely,
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FIGURE 3. The IEEE 14-bus system representation (a) the standard power
system, (b) the equivalent graph model. There are four types of power
elements, including bus, generator, transformer, and load in the system.

bus, load, generator, and transformer, represented by B, L, G,
and T and indicated by the circles in Figure 3 (a). There are
14 buses, 11 loads, five generators, and three transformers
in the graph (Figure 3 (b)). Transmission lines carry
power from one substation to the other. We use undirected
edges in the equivalent graph to present the transmission
lines.

2) INTERDEPENDENCIES
An interdependency represents the relationship between the
components in power and communication networks. The set
of interdependencies is represented by d inter-system. It includes
all of the directed edges in the system graph that connects
one node from Gpow to another in Gcom, or vice versa. These
dependencies are as follows:

a: CONTROL
We assume that all power nodes depend on control center
nodes for controlling and monitoring. This assumption is a
logical interdependency and means that the control centers
are responsible for controlling the power components. The
interdependency is represented by a directional arc that
shows one-way controllability. The power node cannot be

considered functional without this dependency (i.e., when the
control center fails). The power node will fail when there is
no control center to send commands to this power element
and monitor its functions.

In the RFP model, we consider four types of power nodes
monitored and controlled by the control center, including
bus, generator, transformer, and load. When a control center
fails, we consider that these power stations connected to the
control center will fail. These power stations are dependent
on the control center to operate. Other devices not controlled
by the control center will fail based on the failure of these
four components. Multiple papers consider this assumption
([13], [30]) because power stations are required to send and
receive control packets to/from the control center. Based on
the IEC 61850 standards [31], the sampled values from a
substation should be measured and sent to the controller with
different delays. For example, protection packets are critical
and should be sent to the control center with a delay of fewer
than three milliseconds [31]. These measured values are
used in the control center to calculate values like active and
reactive power. Without a control center, there is no central
controller to determine the station’s operational parameters.
As a result, the power station fails.

b: COMMUNICATION
We assume that all power nodes depend on relay nodes to
connect to the communication network and to communicate
with the control centers. Relay nodes transmit control
messages to the power nodes. This is a physical dependency,
and if we are to assume that the power node is functional,
then there should be a connection between the power node
and a relay node. The power node’s measured data should be
sent to the control center for further decisions. In addition,
this power node should receive control commands that
specify its next condition. These packets need to be sent
through the communication network. Therefore, there should
be a physical link between each power component and
communication network.

c: POWER SUPPLY
We assume that a power node connects to the communication
network via a relay node. Also, this relay node depends on the
power node for its power supply. This assumption is based on
two IEEE standards C37.115 [32] and IEEE 1615 [33], which
show that each power component should be connected to the
utilityWAN and the control center through a connecting point
(a relay node). The abstract presentation of this dependency
can be seen in Figure 2. According to the figure, there is a
mutual interdependency between the power components and
the relay nodes.

Apart from the above interdependencies, we consider two
rules that relate to the system’s functionality. The first is
that there should be at least one functional generator in each
cluster. The second rule is that there should be at least one bus
and one control center in the system because without them the
system will collapse.
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C. GENERATING THE SYSTEM
We now describe how we generate test systems and
couple power and communication networks. As previously
mentioned, these networks are represented by the two
different graphs shown in Figure 2. We use Python and
the Networkx [34] library to develop our simulator and
test our experimental results. We also use Pandapower [35]
(an open-source library on Python) to implement a power
system and analyze the power flow in our framework.
To generate the system, we use Pandapower to implement
different IEEE bus models. Then we convert these models
to graphs and use Networkx to study the cascade of failures.
The communication network consists of both relay and
control center nodes. One relay node is responsible for
supporting each power node for communication; that is, each
power element is connected to the WAN by a relay node.
This assumption is based on IEEE standards [32] that are
references for the design of power systems. This helps us
create a more practical model.

We use the k − n model [13] to connect the control
centers to the power nodes. This model is flexible because
we can generate different network models and dependencies
concerning different values of k and n. For instance, if we
choose k = 1, and n is selected in a way that there is a
certain number of control centers in the system, each power
component is controlled by one control center, and each
region is monitored by one control center.

The k−nmodel is an appropriate way to connect the power
and communication networks because it can simulate local
and distributed control in the power system. Modern power
systems facilitate distributed power generation, renewable
energy resources, and fast varying demand response man-
agement that can be implemented using distributed control
mechanisms [36], [37]. Furthermore, local control centers are
widely used in current power networks to provide a reliable
power supply. For example, New England’s power system
uses six sub-regional control centers to perform critical
functions [38].

Algorithm 1 describes how this happens. With predefined
values for k and n, the algorithm chooses the n power nodes
that are nearest to each control center with a greedy paradigm
and makes a logical connection or interdependency between
them (Control interdependency). As the location of each
power component is identified in the IEEE test cases, this
algorithm can be executed to create the control connections
in the system.

First, Algorithm 1 chooses one control center; for example,
Cx to make logical connections. The algorithm makes a
connection between Cx and the nearest power node with a
control connection less than k; that is, node Py. Then the
algorithm searches among the neighbors of Py. If there is a
node such as Pz whose control connections are less than k ,
then the algorithm makes a connection between Cx and Pz.
Otherwise, if it cannot find any node, it repeats the search
process for Pz’s neighbors. The algorithm is repeated for all
control centers until there are exactly n logical connections to
the power nodes.

Algorithm 1 Connecting Control Centers and Power Nodes
1: Input: Gpow, the set of control nodes.
2: for (All control nodes such as Cx) do
3: if (|ControlConnections(Cx)| < n) then
4: choose the nearest power node (Py) to Cx so that
5: its control connections is less than k
6: Connect(Cx to Py)
7: Seta← neighbors(Py)
8: Flag← 0
9: for (each Pz in Seta) do

10: if (|ControlConnections(Pz)| < k) then
11: Connect(Cx to Pz)
12: Flag← 1
13: break()
14: end if
15: end for
16: if (Flag == 0) then
17: Repeat from line 7 for Pz
18: end if
19: end if
20: end for

All power nodes in the small-cluster model have the same
role, and as a result, the model defines general interdependen-
cies based on this. Thus, the model cannot consider the power
characteristics of its elements in the failure propagation
process. The power network is constructed using synthetic
models and is not similar to real networks. Also, the model
identifies functional clusters based on the number of nodes,
and clusters with no power generation may be considered
functional in the small-cluster model. In contrast, we assign
different roles to power components that make the RFP more
flexible. We define realistic rules which identify functional
nodes and clusters. We also analyze power flow to identify
and remove transmission lines that exceed heating capacity.
Using IEEE standard bus systems, we model the system
accurately.

IV. CYBER-ATTACKS AND THE FAILURE PROPAGATION
PROCESS
In this section, we discuss the attack model and the types
of attacks the RFP model can address. Then we use this
model to investigate the failure propagation that is caused by
cyber-attacks.

A. THE ROOTS OF CYBER-ATTACKS
A cyber attacker can compromise a smart grid by attacking
its power or communication networks. Malicious agents
can use a grid’s communication system to access its power
components and measurement units and change its data or
gain information about the system. This paper studies the
impact of two types of attacks to build the attack model we
use to simulate the failure propagation process that leads
to cascading failures. According to [39] and [40], the most
common cyber-attacks on smart grid networks are denial of
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service (DoS), replay, spoofing, false data injection (FDI),
topology, and switching attacks. In this paper, we focus on
DoS and FDI attacks because these are common cyber-attacks
on smart grid networks and they have the most-devastating
impacts on these systems’ functionalities [41].

1) FALSE DATA INJECTION
In an FDI attack, sensor or meter data can be used to
inject malicious data into a system in order to mislead its
operational processes [42]. Attackers can manipulate data
through physical attacks or by using a system’s communica-
tion network to access its measured data. These attacks can
cause cascading failures in smart grid networks [43]. One of
the impacts of this kind of attack could be load redistribution
in a power network [44].

To plan an FDI attack, we assume that the attacker knows
the system and its architecture. Another assumption is that the
attacker has enough resources to alter the power components’
measured data and to overload its components. In this paper,
we consider an overload attack on a smart grid’s power
components. In this attack, a malicious agent falsifies the
electrical components’ loaded power so that it reads as
producing more power than than its actual capacity. This
overloads these components, which means they should be
tripped. The RFP model consists of four types of power
components: loads, generators, buses, and transformers.
When a load component overloads, load-shedding techniques
are used to shed the load from the system. When a generator
overloads, it works at overcapacity and this causes circuit
breakers to trip, which then causes a generator outage. Buses
and transformers are supported by overcurrent protection
devices that will trip them when the flow exceeds the line’s
threshold [43]. We suppose that when a component fails, it is
inoperable and should be removed from the simulation.

2) DENIAL OF SERVICE ATTACKS
DoS attacks affect communication networks by rendering
their communication nodes dysfunctional. Here, the attacker
tries to degrade a network’s functionality by sending useless
packets through its communication network [45]. As the
power grid uses public networks such as IP, an attacker can
manipulate a network component to compromise the system.

Sensors send measurement data to the grid’s state esti-
mators via its communication network. When the commu-
nication network is affected by a DoS attack, the system’s
measured data can neither be sent nor received. This
blocks the communication between the sensors and the state
estimators [46]; i.e., its remote transmission measurement
data is blocked and lost. We assume that DoS attacks
affect measurement channels and that these attacks will be
continuous. We also assume that when the measurement
is lost, it cannot be generated using a recently received
measured signal. The lack of a control signal will lead the
control center to consider that the power component has
failed. These types of attacks can be detected in the control
center [45].

B. FAILURE PROPAGATION PROCESS
After generating the system and initializing the network
parameters, the next step is to propagate failures that are
caused by an initial attack or failure. Figure 4 shows the
failure propagation process used in our RFP model. The first
step is to choose which nodes in the communication or power
networks will be subjected to the initial attacks. The selection
of these nodes depends on the attack strategy and this will
be explained in the next section. The nodes that fail, due to
these initial attacks, become disabled and therefore cannot
participate in the simulation. After removing these nodes,
an iterative process is executed until the propagation stops.
In this process, we identify nodes and edges that should be
removed from the power and communication networks, based
on the rules and interdependencies we previously defined.

Edges that are directly connected to these nodes should
also be removed from the system, including intra- and inter-
network edges. As edges represent dependencies between dif-
ferent components in the system, a failing component causes
an edge to be removed from the system. By removing these
edges, corresponding nodes will lack the interconnections we
previously defined.

If a power node is not connected to at least one
control center (logical connection) and relay node (physical
connection), then it should be considered non-functional.
This means that for every power node, such as u, there should
be two edges, such as duv and duw in the dinter-system, such that
v is a control center and w is a relay node. On the other hand,
a communication node will not be functional if there is no
power node to support its power supply.

In the next step, an algorithm identifies nodes that belong
to a cluster with a size less than 1. The parameter 1 is a
predefined variable that indicates the size of the functional
clusters. After removing nodes and edges from the system,
a giant cluster (defined as the largest connected group of
nodes in each network) and small clusters (whose sizes are
each smaller than the giant cluster) are formed. We assume
that a cluster with a size greater than 1 and that contains
at least one generator is functional in the RFP model.
This assumption makes the RFP more realistic because if a
cluster lacks a generator, then power cannot be generated,
and transmission lines will have no power to transmit.
Based on [13], we consider that the nodes that belong
to the giant cluster and the small clusters are functional.
The non-functional nodes in the power and communication
networks have been identified and removed from the system
(Figure 4).

Subsequently, the RFP model performs a power flow
analysis to identify the transmission lines that exceed their
capacity. Removing particular components from the power
network causes the system’s power flow to be redistributed.
This redistribution can cause transmission lines to exceed
their power capacity. Using power flow analysis, we identify
these transmission lines and remove them from the system
because they have become overheated. The process of
removing nodes or lines from the system is repeated until
there are no more failures (Figure 4). When the failure
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FIGURE 4. Failure propagation process of the RFP model. An iteration is
repeated after generating and coupling two networks until the
propagation stops.

propagation ends, the names of the failed nodes and edges
are stored in a log file. This file will be helpful for further
analysis of the steps involved in the failure propagation.

The failure propagation process is based on the interde-
pendencies and rules we defined in the previous section; it
provides a realistic model of cascading failures in smart grids.
As a result, we find that our RFP model produces more-
realistic results, based on our defined assumptions for the
failure propagation process.

FIGURE 5. An example of failure propagation process. There are 6 power
nodes, 2 control centers, and 6 relay nodes in the system. In this example,
k = 1, n = 3, and 1 = 3.

Figure 5a shows an example of a coupled network with six
power components, six relay nodes, and two control centers.
We explain the failure propagation steps using this figure.
Suppose that P1 is attacked and fails. All edges connected
to P1 are removed from the network. Accordingly, R1 fails
because of the power dependency. In the next step, C1
fails because it is connected to the communication network
through R1. As a result, P2 and P3 fail because of the lack
of control connection. Then, R2 and R3 fail because they
are dependent to P2 and P3 for power supply. The failure
propagation stops because there is no other failure. The
system’s final state is shown in Figure 5b.

V. EXPERIMENTAL RESULTS AND ANALYSIS
We evaluate the RFP model under different attack scenarios
and compare the results with the small-cluster model [13].
We build the power and communication networks in the
small-cluster model using the Barabasi-Albert model [47].
For the power network, we use 14-, 39-, 118-, and 300-bus
systems. After adding all of the buses, loads, generators, and
transformers to the power graph, the number of nodes in the
power network amount to 34, 80, 283 and 689 nodes for the
IEEE 14-, 39-, 118-, and 300-bus systems, respectively.

The RFP is capable of modeling more-complex systems.
To generate our communication network, we use the
Barabasi-Albert model [47] to connect the communication
nodes. The number of nodes in the communication network
for the IEEE 14-, 39-, 118-, and 300-bus systems are 55, 133,
469, and 1,148, respectively. We couple the two networks
and generate the smart grid system using our approach in

VOLUME 10, 2022 81061



A. Salehpour et al.: Modeling Cascading Failures in Coupled Smart Grid Networks

section III. In all of our simulations, the values of the
parameters are n = 3, k = 2, and1 = 3. The value of n and k
is chosen based on the small-cluster model [13] to achieve the
same results.1 is large enough to ensure a generator exists in
each cluster and at least one bus in the system. We simulate
the system 100 times for each initial number of attacks andwe
average the final functional nodes to achieve more accurate
results. Data of the simulation is available on GitHub [48].

The threshold 1 is the minimum number of nodes that,
if they are connected, we consider the group of these nodes a
functional cluster. The physical meaning is that each cluster
is a unit that can generate and transfer power to customers.
We choose 1 based on the rules that we define for the
functionality of a cluster. There should be at least one
generator, bus, and a load at each cluster that considers it
functional. Therefore, the minimum value for 1 is three.

We test the RFP model under two different attack
scenarios, namely random and targeted attacks. We study
these scenarios to identify the most-devastating attacks. First,
we inject simultaneous attacks into the system based on the
attack scenario. Then we run the failure propagation process
and show the components of the power and communication
networks that have failed. We repeat this process 100 times
for each initial attack size, and we obtain the average of the
functional nodes.

A. RANDOM ATTACKS
In the first attack, we randomly select the power and com-
munication nodes and calculate the percentage of functional
nodes after the initial failure propagation. Figure 6 shows the
percentage of functional nodes versus the number of attacked
nodes for different IEEE bus systems. We see that in the
IEEE 39-bus system, when approximately 23 percent of the
nodes initially fail, the whole systemmay collapse.More than
30 percent of the nodes fail for other test cases (31 percent
for the 14-bus, 39 percent for the 118-bus, and 33 percent
for the 300-bus test cases). We observe these results because
the number of transmission lines compared to the number of
nodes for the IEEE 39-bus system is less than those in the
other test cases. Therefore, the IEEE 39-bus test case becomes
fragmented faster than the other test systems.

We simulate the small-cluster model [13] with the same
number of power and communication nodes and use the
Barabasi-Albert model [47] to generate the two networks.
The simulation results can be seen in Figure 7. The number of
communication and power nodes in the small-cluster model
in the figure are similar to those in the IEEE 118- and 300-bus
systems, respectively. This means that the number of power
nodes for the small-cluster model is 283 and 689, respectively
(752 and 1,837, respectively, for all nodes in the system). The
RFP 283 and 689 nodes are IEEE 118- and 300-bus systems,
respectively.

We can see that the system fails faster in the small-cluster
model compared to the RFP model. This is mainly because
the small-cluster model assumes general interdependencies,
regardless of each node’s role, and unnecessary assumptions
are made that cause dramatic consequences in some cases.

FIGURE 6. Percentage of functional nodes based on the initially attacked
nodes in IEEE 14-, 39-, 118, and 300-bus test cases. Initial nodes are
chosen randomly, and for each attack size, the number of simulations
is 100.

FIGURE 7. Percentage of functional nodes based on the nodes initially
attacked in the RFP and Small-Cluster models. The first two cases are the
results of the RFP model for 118- and 300-bus test cases. The other two
cases are the same network with the same number of nodes for the
small-cluster model.

The small-cluster model assumes that all communication
nodes are dependent on one power node. As this model
does not define any role for its power components, it uses
general dependency for this purpose. However, we restrict
this dependency to the relay nodes, but this is only based on
IEEE standards.

We compare the results for random attacks with [18].
We chose this work because it proposed a model to simulate
failure propagation in the power grid based on the depen-
dencies between the power and communication networks
and studied the impact of the communication network on
the cascading failures. The paper assumed random failures
to evaluate the performance of the proposed algorithm.
The authors in [18] proposed a model to analyze the
dependency of the power system on the control network. The
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FIGURE 8. Percentage of functional nodes based on the initially attacked
nodes in IEEE 118-bus test cases for RFP and CDCF [18] models.

Communications-Dependent Cascading Failures (CDCF)
model [18] employed a one-to-one dependency, meaning
that each node in the power network depends on one
communication node and vice versa. Thus, the number of
nodes in the power and communication networks is the
same. The CDCF model used IEEE standard bus systems
to evaluate the proposed algorithm. The communication
network followed the topology of the power network. We use
the model presented in [18] to build the system and couple the
power and communication networks and do not implement
the control mechanism in that paper.

We simulate the RFP and CDCF models on the IEEE
118-bus system with the same number of power nodes.
Figure 8 shows the percentage of functional nodes with
a random attack strategy for the two models. The system
degrades faster in the CDCF model compared to the RFP
model because it considers a one-to-one interdependency, and
there is no backup node to control and connect the power
elements. We also consider the concept of small clusters
to increase the robustness of our model with reasonable
assumptions that provide better results than other models.

We are interested in comparing the amount of power
supplied to customers after the failure propagation stops.
Figure 9 shows the power supply for an IEEE 118-bus test
case using the RFP and CDCF models. The results are
achieved with an average of 100 simulations for each attack
size. According to the figure, the power is not a linear function
of the number of initially failed nodes. This functionality
happens because when we increase the number of failed
nodes to more than 30, important generators and load nodes
fail, and the demand decreases dramatically. The difference
between the two plots in Figure 9 is not big like Figure 8
because the PFA tries to balance generation and demand to
provide a higher power supply.

B. TARGETED ATTACKS
We evaluate the RFP model using targeted attacks that can
take place in real-world systems. We use the IEEE 300-bus

FIGURE 9. The power supplied for customers after failure propagation
stops for RFP and CDCF models on an IEEE 118-bus system.

system, as it contains more components and gives a better
understanding of the system. The simulation results can be
seen in Figure 10. We compare a random attack with inter-
and intra-degree attacks. In inter-degree attacks, nodes having
more interconnections to other nodes in a second network
are more likely to be chosen in the initial attack. However,
in an intra-degree attack, it is more probable that nodes
with higher intra-degrees are under attack. A node’s intra-
degree is the number of edges that connect this node to
other nodes in its network. From Figure 10, we can see that
when the number of initial attacks is high, an intra-degree
attack is more devastating compared to other attacks. This is
because nodes’ intra-degrees vary significantly compared to
nodes’ inter-degrees. As a result, when a node with a higher
intra-degree is attacked, the impact of its failure is more
devastating.

In Figure 11, we also compare the RFP with the
small-cluster model under inter- and intra-degree attacks.
The figure shows that the small-cluster model is also more
vulnerable to intra-degree attacks [13].

C. EXAMPLES OF FAILURE PROPAGATION IN THE RFP
MODEL
We use Figure 12 to explain the process of failure propagation
in the RFP model and show how the outage propagates in
two networks. This figure is constructed based on an IEEE
14-bus system. There are 14 buses, 11 loads, 5 generators,
and 3 transformers in the figure, which comprises 33 power
components. For each power element, there is a relay node
that connects the element to the communication network. The
values of other parameters are n = 3, k = 1, and 1 = 3.
The power graph (Gpow) components are connected based on
the IEEE 14-bus standard system based on Figure 3b. Each
power node is dependent on a relay node for communication
and vice versa. Also, each control center is responsible for
monitoring three power nodes (n = 3). Because there are
too many edges in the figure, we only draw one control
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FIGURE 10. Comparison between random, inter-degree and intra-degree
attacks on IEEE 300-bus system. For all simulations, the same parameters
are applied.

FIGURE 11. Inter- and intra-degree attacks on the RFP and the
small-cluster models. All simulations are applied on the IEEE 300-bus
system. The first two results are for inter- and intra-degree attacks on the
RFP model, and the other two are for the small-cluster model with the
same number of nodes and the same initial parameters.

connection between C1 and B1 and other control connections
are hidden. Each control center monitors three power nodes
starting from the left side of the figure, respectively.

We use an attack scenario to explain the RFP steps
and show how the failure propagates between two net-
works. In this case, nodes in Set1 initially fail as follows:
Set1 = {G1, L1, T2, G3, G4, B5, B7, B11, L9, B13}

After removing nodes in Set1, connected relay nodes
to these power components fail because of the power
interdependency. The failed nodes are shown in Table 1. The
nodes in the second step of the table are removed because
they do not have a power supply from the power network.
In step 3, nodes that belong to clusters with a size less than
1 are removed from the system. In the final step, B1 fails
because it is not connected to the communication network
because of the failure of R1.

TABLE 1. Scenario 1: Failed nodes at each step of failure propagation
according to Figure 12.

When the failure propagation stops, a total of 32 nodes
fail, which means that 58 percent of nodes are still functional
in the example. According to Figure 6, the percentage of
functional nodes for the IEEE 14-bus system with 10 initial
attacked nodes is 60 percent. This shows that the percentage
of functional nodes in the IEEE 14-bus system is similar to
this example because we average 100 simulations for each
attack size.

However, if nodes with special characteristics are chosen
as initially attacked nodes, the result might be different. In the
second example, we choose different nodes including: Set2 =
{B4, B6, G3, G5, T3, L2, }
The number of initially attacked nodes is 6, which is

less than the first scenario. Table 2 shows failing nodes at
each step. In step one, we remove initial nodes. Then, relay
nodes that depend on these nodes fail in step 2 because of
power dependency. In step 3, nodes without connection to the
communication network fail. In steps 4, 5, and 6, we remove
nodes that belong to clusters with a size less than three and
nodes with no power supply. Step 7 is important because
we remove all nodes in a cluster in the power network with
no generator in this cluster. In the final step, nodes in the
communication network with no power supply are removed,
which causes the system collapses.

The result is unexpected because the system fails with
8 percent of initial failures. Based on Figure 6, the average
percentage of attacked nodes for the IEEE 14-bus system
to collapse is 31 percent which is entirely different from
the results in this example. The difference between this
example and the figure occurs because we choose initial
nodes intelligently. Two initially failed nodes in the Set2,
including B4 and B6 have more intra-connections to other
elements in the power system, and removing these nodes
makes the system fragmented (Figure 3b). Removing nodeG5
causes that there is no generator in the second cluster which
fails this cluster. Nodes T 3, L2, and G3 play a vital role in the
failure propagation because by removing these nodes, relay
nodes in the communication network with a high number of
intra-connection fail.
According to this example and as seen in Figure 6, we can

conclude that the failure of nodes with unique characteristics
causes the system to collapse more quickly. These character-
istics are nodes with high intra-degree, generators far from
other generators, power nodes that support relay nodes with
high intra-degree, and interconnecting nodes like B4 in the
example. A similar trend is expected with larger bus systems.
For example, as seen in Figures 6 and 7, the system fails
when 39 and 33 percent of nodes in the IEEE 118- and
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FIGURE 12. An example of the RFP model on an IEEE 14-bus test case. The figure includes 33 power components, 33 relay nodes, and
11 control centers.

TABLE 2. Scenario 2: Failed nodes at each step of failure propagation
according to Figure 12.

300-bus systems initially fail, respectively. However, if we
choose initial nodes intelligently with the abovementioned
features, the systemwill collapse faster. This analysis helps us
identify more vulnerable nodes that, by strengthening them,
the system will be more robust.

VI. CASE STUDIES
In this section, we investigate four different case studies
to evaluate the performance of the RFP model and study
the failure propagation process. These case studies cover
role- and location-based attacks, power flow analysis, and
the impact of delay on failure propagation. We compare
the results of the location-based case study with the small-
cluster model. However, as the small-cluster model does not
consider power characteristics and roles for power nodes, it is
impossible to compare other case studies’ results with this
model.

We report the percentage of functional nodes to compare
different case studies and the impact of different attack
scenarios. Based on these results, we identify power nodes
that are more vulnerable to cyber-attacks and the most

devastating attack scenario (intra-degree attacks). We also
can measure the model’s accuracy in identifying failed nodes
after failure propagation. Even by considering power-flow
analysis (PFA), we prove that there is a negligible difference
in the percentage of functional nodes after failure propagation
with andwithout PFA.We also show that some characteristics
of power nodesmake them vulnerable to cyber-attacks, which
are explained in section V.C. These results are achieved by
comparing the percentage of functional nodes in different
case studies.

A. CASE STUDY 1: ROLE-BASED ATTACKS
In this case study, we investigate the impact of attacking
nodes based on the functionality of the system. Figure 13
shows the percentage of functional nodes after an attack
on different components in our power network. We con-
sider attacks on buses, loads, generators, and transformers.
We cannot compare the results of this attack scenario with
the small-cluster model because this model does not define
any role for power nodes.

Each initial attack is an FDI attack on specific nodes in the
IEEE 300-bus test case. In the case of more than 80 initial
attacks, some components are missed in the figure because
there are not enough components to run the simulation. For
example, since there are only 69 generators in the IEEE
300-bus system, results are missing for the higher number of
attacks. The figure clearly shows that attacks on bus nodes
are more devastating than attacks on other components. This
is because bus nodes are points of connection in the system.
Therefore, this kind of attack causes more harm to the system
compared to other attacks.

We simulate the same scenario in the communication
network and the results can be seen in Figure 14. Attacks on
relay nodes are a bit more detrimental compared to random
attacks. However, the results of attacks on control centers
are interesting. After about 50 percent of the control centers
fail (i.e., after 200 initial attacks on the control centers), the
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FIGURE 13. The impact of the role of nodes on the severity of an attack
on the power network. Random attacks are applied on buses, loads,
generators, and transformers in the IEEE 300-bus system.

FIGURE 14. The impact of role of nodes on the severity of attack in the
communication network. Random attacks are applied on relay and
control center nodes and compared with the random attacks on all
communication nodes. An IEEE 300-bus system is coupled with a
communication network in all simulations.

percentage of functional nodes decreases dramatically. This
happens because we use k = 2, which means that each power
node is monitored by two control centers. When more than
half of the control centers fail, the system starts to collapse,
and the number of functional nodes declines considerably.

B. CASE STUDY 2: LOCATION OF ATTACKED NODES
In this case study, we investigate the impact of the location of
the attacks on the failure propagation. As the IEEE test cases
are designed based on actual power systems, the location of
the failed nodes may affect the cascading failure.

To investigate how the attack locations affect the system,
we can use partitioning methods. Different algorithms are
used to partition the power network and study the failure
propagation process. Newman’s fast algorithm [49] is one
of the first algorithms proposed in the literature to partition

TABLE 3. Percentage of functional nodes in different partitions. The first
two rows are the results of the Newman partitioning algorithm in the RFP
model. The last two rows are for the same algorithm in the small-cluster
model.

networks. This algorithm is based on topological community
structures and is typically used in unweighted networks.

One implementation of the Newman algorithm on the
IEEE 300-bus system divides the power network into two
partitions. Since the sizes of the two partitions are neither
equal nor balanced, random attacks on partition 2 are
more devastating, as is shown in Table 3. We utilize the
same algorithm to partition the small-cluster model. The
method divides the small-cluster model into two partitions
of different sizes. The percentage of functional nodes based
on the number of initially failed nodes is shown in Table 3.
Compared to the RFP model, the difference between the
functional nodes in two partitions is higher because the
small-cluster model uses the Barabasi-Albert method [47] to
form the power network. In this method, some nodes have
more connections than others and failing these nodes results
in more devastating consequences.

We also use a modified version of the Newman algorithm
proposed in [50], which we present in Figure 15. This method
divides the power network into balanced partitions, using an
optimal approach. Based on the results, the number of power
nodes in partitions 1 to 3 are 98, 96, and 89, respectively.
The simulation results are shown in Figure 16. Based on the
results, the number of functional nodes after each partition’s
initial failure is almost the same. This happens because this
method creates partitions of similar size and with the same
electrical characteristics.

C. CASE STUDY 3: POWER FLOW ANALYSIS
Here, we investigate the impact of the power capacity of
transmission lines in cascading failures, which we show in
Figure 17. When a transmission line fails, the power flow
is redistributed, and the flow in the remaining lines may
increase. As each transmission line has a maximum capacity,
the new power flow assigned to this line may exceed its
capacity. As a result, these lines may heat up and become
inoperable [18]. To identify these lines, we run a power flow
analysis (PFA) after each iteration of the failure propagation,
and we remove the identified lines from the power network.
A PFA uses mathematical analysis to indicate the voltage and
current of the power flow in each line and component in a
power system. As we previously indicated, the last step of
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FIGURE 15. The partitioning result of IEEE 118-bus using a modified
Newman algorithm [50].

FIGURE 16. Simulation results of modified Newman algorithm in the IEEE
118-bus system. In each plot, the initial attacks are applied on only one
partition.

the iteration in the RFP model shown in Figure 4 implements
this analysis. In the first step, the graph of the power network
is converted to a power system, using Pandapower [35], and
then a power flow analysis is run to indicate the flow of each
line.
The role of slack buses: Mathematical methods such as

Newton-Raphson are used to solve power flow equations
and find optimal solutions for the electrical characteristics
of power grids, such as active and reactive power. These
methods use a reference bus (i.e., a slack bus) to find solutions
that can be used to balance active and reactive power. A slack
bus is used to solve equations and absorb any uncertainties
in the system. However, failure propagation may cause this
bus to fail, and as a result, a PFA cannot be completed.
To address this problem, a variety of algorithms have been
proposed. One of the most commonly used methods is the
distributed slack bus [51], which is a heuristic method that
assigns system loss to generators. We assume there should be

at least one functional generator in each cluster. Therefore,
we can implement the distributed slack bus method in our
RFP model.

In this paper, we do not implement a dynamic model.
We also use a DC model for power analysis because it
is commonly used as an approximated version of the AC
model in such implementations. TheDC and static models are
used in multiple papers to identify overheated transmission
lines [18], [52]. We use a static model because it can
identify transmission lines that exceed their power capacity.
We remove these lines from the system to assure that system
works appropriately. By removing overheated transmission
lines, new failures may occur in the system that propagates
in the power and communication networks. The model is
acceptably accurate because we study the condition of power
nodes in a steady-state and identify failed nodes at each step
of failure propagation.

Figure 17 shows the results of implementing PFA in an
IEEE 118-bus system. We also implement PFA for an IEEE
300-bus system.We obtain the line capacity data for the IEEE
118-bus test case from [53] and for the 300-bus from [54].
The figure compares the percentages of functional nodes
after a failure propagation that is due to initial attacks on the
IEEE 118- and 300-bus systems, with and without a power
flow analysis. When the number of nodes that fail after an
initial attack is low, the system works to full capacity, and
when power components fail, the number of failed lines is
negligible. When we increase the number of nodes in the
initial attack, the two graphs are the same.

According to Figure 17, the percentage of functional nodes
is almost the same when the PFA is applied and when it is not.
This is mainly because the RFP model accurately identifies
the failed nodes and transmission lines even though we do
not use the PFA. The model detects the lines that should be
removed from the system; each step is shown on the flowchart
in Figure 4. The results confirm that the RFP model can
accurately model failure propagation.

In some cases, however, power flow analysis does not
converge. This is mainly because the mismatches between the
generators in the power system and the loads that occur when
the generators’ failures are higher than the loads. As the IEEE
300-bus system is more sensitive to power loss, this case
happens more often than other IEEE test systems. Figure 17
shows that the percentage of functional nodes detected with
and without PFA is approximately the same.

D. CASE STUDY 4: EFFECT OF LATENCY ON FAILURE
PROPAGATION
In previous simulations, we considered the communication
network ideal, where there was no communication delay. This
means that all control packets are sent and received simulta-
neously. A more realistic assumption is that different packets
from components are delivered with different latencies. In the
real world, this happens because power components have
different distances from control centers, and as a result,
control messages are delivered with various delays. Here,
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FIGURE 17. The impact of PFA on failure propagation process in the IEEE
118- and 300-bus test cases. The results are compared with and without
applying the power flow analysis. As the RFP model identified the failed
nodes accurately, there is a negligible difference when the PFA is used.

we study the impact of communication delay on the failure
propagation process and cascading failures.

Whenever a power component receives a control packet,
the related power of the element will change. This change
modifies the power flow of transmission lines connected to
the power element and other corresponding nodes. These
power flow changes make transmission lines heat up and
become non-functional [18]. When the power changes more
frequently, the probability of heating transmission lines will
increase. Consequently, more transmission lines exceed their
power capacity. Therefore, a control mechanism is needed to
reduce power modifications related to communication delay.

In general, we can model the delay of control packets as a
random variable [55]. In our simulations, we define a time
threshold δ for the delay of control packets. We employ a
simple control algorithm. If the delay of a control message
is less than δ, the power modification is applied, and the
system is stable. Otherwise (delayed control message), the
latest values of electric parameters of the transmission lines
are used for evaluation. If the delay of control packets is
higher than 2δ, the transmission line is considered a failed
line. This delay makes particular transmission lines heat up
and become dysfunctional. This delay happens because of
cyber-attacks on the power network.

We consider ten percent of the control packets delivered
after a defined threshold in our simulations. The delayed
packets are chosen randomly. These packets can overload
transmission lines and, therefore, cause more power compo-
nents to be disconnected from the power network. The failure
propagates to the communication system and affects the
system’s functionality. In each iteration of failure propagation
shown in Figure 4, we randomly choose control packets with
a delay higher than δ and apply the control mechanism we
discussed.

Each control packet is sent from the control center to the
power component and vice versa through the communication

FIGURE 18. The impact of communication delay on failure propagation
process in the IEEE 118- and 300-bus test cases. In all simulations the
value of threshold δ = 100 ms.

network. The physical meaning of δ is the time taken
for control packets to be sent and received using the
communication network. We set δ = 100 ms in our
simulations, which is a reasonable threshold for delay [18].
This threshold value provides enough time tomake all control
decisions.

Figure 18 shows the percentage of functional nodes in the
IEEE 118- and 300-bus test systems regarding the different
communication delays. It is clear that when we consider the
delay of control messages, the number of functional nodes
decreases. The difference between the ideal system (with no
delay) and the system with delayed control packets is higher
when the number of initially failed nodes is low. This happens
because when more transmission lines participate in power
flow analysis the system works to full capacity.

VII. CONCLUSION
In this paper, we proposed a novel realistic failure propaga-
tion model (RFP) for smart grid networks. Our model defined
novel interdependencies and the role of nodes to study
cascading failures. We also defined new rules based on IEEE
standards for a smart grid to investigate failure propagation
and cascading failures. The proposed RFP model addressed
the heterogeneity of the cyber and physical components
of the smart grid to model attacks on both power and
communication networks. The RFP model considered the
electrical parameters of such a system and analyzed power
flows to identify overheated transmission lines. We also
assumed different communication delays in the system and
studied the impact of delayed control packets on the number
of functional nodes. These assumptions provide a better
understanding of failure propagation and make RFP more
realistic. It also proves that without considering PFA, the
RFP model works precisely. We compared the RFP model
with the small-cluster model and evaluated it under different
attack scenarios. We also presented four case studies to
investigate our proposed model’s performance and study the
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effects of cascading failures on different scenarios. Based
on the simulation results, we identify the most vulnerable
components of the power system to cyber-attacks. This
points to the need to strengthen these buses so smart grids’
robustness will increase. We also showed that intra-degree
attacks are more devastating than other attack scenarios. The
results of the RFP model can be used to generate a data set
for training an algorithm to predict failure propagation in the
smart grid networks. We leave the study of the exact location
of these systems’ initial failures, using a dynamic model, and
comprehensive analysis of different delays of control packets
in the failure propagation to a future study that extends the
RFP model.
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