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ABSTRACT Genuineness of smiles is of particular interest in the field of human emotions and social
interactions. In this work, we develop an experimental protocol to elicit genuine and fake smile expressions
on 28 healthy subjects. Then, we assess the type of smile expressions using electroencephalogram (EEG)
signals with convolutional neural networks (CNNs). Five different architectures (CNN1, CNN2, CNN3,
CNN4, and CNN5) were examined to differentiate between fake and real smiles. We transform the temporal
EEG signals into normalized gray-scale images and perform three-way classification to classify fake smiles,
genuine smiles, and neutral expressions in the form of subject-dependent classification. We achieved the
highest classification accuracy of 90.4% using CNN1 for the full EEG spectrum. Likewise, we achieved
classification accuracies of 87.4%, 88.3%, 89.7%, and 90.0% using Beta, Alpha, Theta, and Delta EEG
bands respectively. This paper suggests that CNNs models, widely used in image classification problems,
can provide an alternative approach for smile detection from physiological signals such as the EEG.

INDEX TERMS Smile, emotion, electroencephalogram (EEG), convolutional neural networks (CNNs),
machine learning.

I. INTRODUCTION
Smiling plays an important role in our daily lives and may be
thought of as a result of our perception of our surroundings.
However, people can fake smiles to convey happiness, e.g.
when they smile due to social pressure or when they do not
want to express their true feelings. Hence, it is important to
differentiate between a real smile from a fake one.

Applications of smile recognition are many, such as men-
tal health monitoring, human-computer interaction, human
behavioral studies, and patient monitoring [1], [2]. But if
smiles can be faked how do we differentiate between a fake
smile from a real one expressing pleasure? There has been
some work done in the past, for instance in [3], Hoque et al.
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study temporal patterns in facial movements related to smiles
that express delight. In this work, we look for a modality
that cannot be faked. We propose to look into brain sig-
nals via electroencephalography (EEG) as opposed to facial
expression recognition systems, especially considering the
recent spread of face masks. Although most EEG reading
and analysis systems require dedicated stationary hardware
and software, non-contact, wearable wireless EEG electrodes
have been in development for some time [4]–[6]. This will
make our proposed work translatable to real-life applications.
Note that, video-based systems require full facial visibility,
i.e. they require processing person identifiable information,
which can raise serious privacy concerns.

This work can also be applied to psychology, psychiatry,
and other commercial applications. For instance, the pre-
sented work, when deployed to practice, can be used for
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mental health monitoring, which can alert a patient when
it is the time to see a professional. This can also aid in
reflecting the mental state after recovery from depression or
traumatic disorder. Organizations and companies may befit
from devices to ascertain the level of happiness among their
employees, etc.

Smiling emotions in general are expressed in terms of
valence and arousal [7]. Valence ranges from negative to
positive (describes pleasantness and attractiveness) and from
sad to happy. Arousal ranges from calm or bored to excited or
alert [8], [9]. These ranges encompass the six basic emotions
described by Ekman and Friesen, wherein each specific emo-
tion would be a point in this affect space, where happiness for
instance would have high valence and moderate arousal [8],
[10]. In this work, however, we are concerned with one of
those six emotions, happiness, and as hinted earlier, we plan
to measure it by first identifying real smiles from fake ones.
Smiles can be socially motivated, as Crivelli et al. study [11]
showed or smiles can be spontaneous.

Note that, smiling spontaneously/genuinely can be con-
sidered a proxy for happiness (a discrete emotion) for the
sake of the study. An example of a study that uses EEG to
directly classify depression is Seal’s et al. [12] wherein they
use their framework, DeprNet to classify depression using
the Patient Health Questionnaire 9 score and EEG signals,
and though they acquire a high accuracy of 99.4% and area-
under-curve (AUC) of 99.9%, this questionnaire is a rather
subjective method of acquiring ground truth. Another study
that is more pertinent to our work is done by Hoque et al.,
who use an experimental procedure to elicit frustration and
delight through a video, and expressing these affective states
when recalling situations, i.e. their fake class [3]. Smiles were
classified as a binary classification problem using Support
Vector Machines (SVMs), Hidden Markov Models (HMM),
and Hidden-state Conditional Random Fields (HCRF). They
achieved an accuracy of 92 % with a dynamic SVM [3]. Dis-
tinguishing fake from real smiles is a challenging problem for
computers, though people may be able to do it instinctively
with reasonable accuracy.

As mentioned earlier, we can divide emotions based
on their arousal and valence scores. We are using this
emotion model in the study. We selected images from
the Geneva Affective Picture Database (GAPED) image
dataset [13], [14], as stimuli. These images are designed to
elicit a certain kind of emotional response from the subjects.
We selected images that can have a high valence and low
arousal, and medium valence and low-to-medium arousal
effect on the subjects. For further details about the emo-
tion model, the readers are referred to the one explained by
Liu et al. [15].

The main contribution of this work lies in the use of
an automated feature extraction technique via multiple con-
volutional neural networks (CNN). In [13], the features
were extracted manually using the discrete wavelet trans-
form (DWT) and empirical mode decomposition (EMD).
In addition, we have validated the proposed CNN networks

on the raw data using multiple other techniques like long
short-term memory (LSTM) networks, shallow artificial neu-
ral network (ANN), and support vector machines (SVM).
Furthermore, the present study performed three-way classifi-
cation (True vs Fake vs Neutral); which is an extension to the
work published in [13] that performed binary classification.
The simplicity of the proposed CNN architectures is also
part of our contribution. The proposed method required less
computation, which can enable us to deploy this algorithm in
wearable devices.

Studies in emotion recognition, apart from visual channel,
often involved the use of voice, eye-tracking mechanisms
(for visual stimuli), functional near-infrared spectroscopy
(fNIRS), and functional magnetic resonance imaging (fMRI),
and data related to the autonomous nervous system
(galvanic skin response, heart rate, etc.) [16]–[20]. For exam-
ple, Zhang et al. [21] investigated the use of involuntary
facial expressions to detect deceit in a system that represents
expressions as facial Action Units (AUs). The study detected
deceit with accuracies of 86.02%, 73.16%, 80.46%, and
90.15% for anger, enjoyment, fear, and sadness respectively.
Meanwhile, the study in [22] used two physiological signals
(pupillary response and Galvanic skin response) of subjects
viewing videos in the MAHNOB [23] and AFEW [24]
datasets to detect genuine smiles using machine learning and
observers’ self-judgement. The study classified smiles with
an average accuracy of 97.2% usingmachine learningmodels
and 58.9% to 68.4% based on observers’ judgement [22].
Another study in [25] utilized the temporal features of four
physiological signals namely: pupillary response (PR), elec-
trocardiogram (ECG), galvanic skin response (GSR), and
blood volume pulse (BVP) to distinguish between genuine
and fake smiles and achieved 98.8% accuracy.

Techniques that depend on audiovisual features can have
plenty of limitations. However, EEG signal acquisition can be
affected only by motion, eye blinking, or experimenter error,
all of which can be simply controlled, resolved, or mitigated,
as opposed to involuntary bodily responses or environmental
factors.

We conjecture that EEG signals can provide a more reli-
able insight into the participants’ emotions and consequently
provide better means of smile detection. This can be used
as a measure of a person’s own emotional well-being which
they can track with a measurable sensor. EEG data reflects
the electrical activities of the brain which can reveal the true
emotional state of a person. EEG signals are characterized
by frequency bands named Delta (0.5-4 Hz), theta (4-8 Hz),
Alpha (8-12 Hz), Beta (12-35 Hz) and Gamma (>35 Hz).
These frequency bands are associated with mental states [26].

EEG signals and machine learning have been extensively
used in the field of affective computing to predict differ-
ent emotions. Miranda and Patras [27] used convolutional
and recurrent neural networks to predict positive and neg-
ative affective behavior and obtained average F1-scores of
0.59, and 0.61 respectively using EEG while the subjects
watched videos (audiovisual stimuli). Xu and Plataniotis [28]
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investigated semi-supervised learning using a stacked denois-
ing autoencoder and deep belief networks and reported
higher average F1-scores, at 86.60% for valence and 86.67%
for arousal. Meanwhile, Williams’ investigation on deep
learning and transfer learning used multi-layer percep-
trons, convolutional neural networks (CNN), Long short-term
memory (LSTM), and LSTM-fully convolutional networks
to classify positive/negative emotions and achieved maxi-
mum accuracy of 64.36% [29]. Gao et al. used a core-brain-
network-based convolutional neural network with differential
entropy and time-frequency representation of the EEG data
to classify emotional states for 15 subjects of the SJTU emo-
tion EEG dataset (SEED) [30] yielding an average accuracy
of 91.45% [31].

Furthermore, studies in [32]–[35], that used the AMIGOS
dataset [36] or DEAP dataset [37] employed convolutional
neural networks or LSTM with different types of features
and obtained classification accuracies in the range of 85.65%
to 99.72%. The AMIGOS dataset consists of physiological
signals based on electrocardiograms (ECG), galvanic skin
response (GSR) and EEG signals that are recorded using
emotional videos as the stimuli [26]. Meanwhile, DEAP
dataset contains EEG, electromyogram (EMG), electrooculo-
gram (EOG), GSR, respiration amplitude, skin temperature,
and blood volume in response to video stimuli [37]. Despite
manual feature extraction, the best among these methods for
binary EEG emotion classification is [32] at 99.72%, which
uses data from the DEAP dataset, 5 fully connected layers,
and phase locking values as features.

A. NOVELTY OF THIS WORK
Our work, unlike the prior literature in this area, focuses on
discriminating fake from genuine expressions; more specifi-
cally distinguishing fake from real smiles. To do so, we uti-
lize a novel dataset collected in our lab [13] for three
levels of smile expressions. In addition, we used minimal
pre-processing of the EEG signals. Our work is one of the
first of its kind to use EEG signals to discriminate genuine and
fake smiles. It focuses on the use of pre-processed EEG data
and multiple CNNs to classify the expressions into a genuine
smile, a posed smile, or a neutral expression.

The next section, Section II presents the experimental
setup and describes the methodology, including deep learning
architectures and parameters selection. Section III describes
in details the obtained results, and Section IV presents dis-
cussion of findings from the experiments. Finally, Section V
concludes the paper.

II. MATERIALS AND METHODS
A. SUBJECTS, STIMULI, AND EXPERIMENTAL PROTOCOL
A pool of 28 subjects, 8 females and 20 males ranging
between 18-26 in age, with no known mental illnessess have
participated in the study. The subjects chose their preferred
timing to perform the experiment between 8 am to 5 pm,
to ensure they were in a more relaxed state. All subjects
were briefed prior to the experiment, and were given detailed

consent forms that included all the information as they
showed up for the experiment. They were made aware that
they can revoke their consent at any time. The study was
approved by the Institutional Review Board (IRB) of the
American University of Sharjah.

The stimuli, used for the sequence described in Figure 1,
came from a set of 245 images, carefully selected from
the Geneva Affective Picture Database (GAPED) image
dataset [13], [14]. Three types of image sets were chosen to
conduct this study (115 funny images, 70 neutral images, and
60 images of a plain book to prompt fake smile).

Images meant to elicit positive emotions include, but are
not limited to babies and animals. The neutral set includes
inanimate objects. The different image sets are intended to
induce different emotions and by extension different smile
expressions. For instance, positive images or images with a
high valence and low arousal scores, are intended to induce a
true smile, neutral images or images with a medium valence
score and low-to-medium arousal score are intended to induce
no response [38]. The book is an additional image used to
indicate the participants when to fake a smile.

To begin with, the subjects are asked to read a brief descrip-
tion of the experiment and its outcomes. They then give their
informed consent. Then, the experimenters equip the subjects
with the EEG cap. The electrode impedance is then checked
to ensure the recording process goes without error from the
equipment. The EEGdata is recorded using 64Ag/AgCl scalp
electrodes arranged according to the standard 10–20 system
(ANT waveguard system and ASA Lab 4.9.2 acquisition
software, ANT Neuro). The EEG data is sampled at 500 Hz.
The impedances of all EEG electrodes are maintained below
10 k� using Ag/AgCl gel, and are referenced to the left and
right mastoids. Figure 1(b) also shows an example of the
hardware setup and data acquisition layout.

Afterwards, the subjects are given the instructions, as fol-
lows. They would firstly learn where three keys are on the
keyboard, each corresponding to a response; ‘‘P’’ when they
genuinely smiled, ‘‘N’’ for neutral responses (no smile), and
‘‘Q’’ for fake smiles. The subjects were asked to fake a
smile and press the key whenever they would see the prompt
image, which in this experiment was that of a book. There
were a total of 245 trials in this experiment for 245 images.
These were randomly presented and were meant to elicit one
of the three aforementioned responses. Each image would
remain onscreen for 2 seconds or until a key is pressed, and
is followed by a cross for 1 second. The entire experiment
lasted for about 13 minutes per subject.

B. DATA PRE-PROCESSING AND CLASSIFICATION
After we obtain the data from all subjects, it is pre-processed
primarily with MATLAB and EEGLAB toolboxes [39] to
filter out interference frequencies, remove eye blink artifact
using Independent Component Analysis (ICA), and extract
epochs to be used as features to the classifiers.

We use Finite Impulse Response (FIR) band-pass filter-
ing, with a low cut-off frequency of 0.5 Hz, and the high
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FIGURE 1. a) Type of stimuli and corresponding key. b) Timing window for the protocol.

cutoff frequency of 40 Hz [13]. After filtering, the data is
re-referenced to the computed average of the channels for
each subject. Then, to remove eye-blink artifacts, ICA is
used to extract independent components and the dominant
ones corresponding to eye-blinks are identified and removed
manually. The data are then filtered to obtain one of the
four clinical frequency bands corresponding to brain waves
Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz) and Beta
(12-35 Hz). To obtain the full spectrum of the EEG data, the
signals are band-pass filtered between 0.5 to 40 Hz. In this
context, gamma band was inherently presented within the
full spectrum. Finally the data is segmented into epochs.
Each epoch starts 0.5 second before each event and lasts till
1 second after the event to retain useful information. This
results in a feature matrix with dimensions 5× 62× 750×N
(5 is the number of frequency bands- alpha, beta, theta, delta
and the full spectrum-, 62 is the number of electrodes, 750 is
the number of data points, and N is the number of epochs
for each subject). This data is then used as an input to the
proposed structures of the CNNs. We have also tested other
algorithms like Support Vector Machines (SVM), artificial
neural networks (ANN) and long short-termmemory (LSTM)
networks to evaluate the effectiveness of the CNN structure
proposed in this work.

It is worth pointing out here the difference between
machine learning and deep learning. In traditional machine
learning, features (a measurable quantity used to describe
the data), are in general learned independent of the end-goal
of the algorithm (e.g., classifiers in case of classification
problems). Let us take the example of object recognition.
In traditional approaches, we would first extract useful hand-
crafted features, such histogram of gradients, orientation of
edges, etc. Then we would pass these extracted features to a
classifier learning algorithm, that would then learn classifiers
to classify objects. Some of the traditional machine learning

algorithms include support vector machines (in which you
try to optimally separate the data in the feature space), deci-
sion trees (where you make a tree-like structure that makes
decisions on every branch, based upon the learned thresholds
in different feature dimensions), random forests (a collection
of many trees), shallow feed-forward neural networks (which
consist of three layers; an input layer, a hidden layer and the
output layer; the hidden and output layers consist of artificial
neurons, that compute a learned weighted sum of the inputs
and then apply a non-linear function; the final layer may give
probability of a certain label corresponding to certain input
instance), etc. [40].

In deep learning algorithm we learn the relevant features
from the data itself, jointly with the end-goal of the learning
algorithm (e.g., learning classifiers). This yields data specific
features that have shown to give superior results. Deep learn-
ing is essentially a sub-field of machine learning. It consists
of algorithms that put an emphasis on learning successive
layers of meaningful representations of the data. The higher
the number of layers, the greater the depth of the learned
model. In most cases, deep learning algorithms are variants of
neural networks. Some examples of deep learning algorithms
include, deep neural networks (consisting of multiple hidden
layers of neurons), deep convolutional neural networks (that
use convolution operations), deep LSTM networks (special-
ized for time sequenced data), deep auto-encoders (that gen-
erate the output using the learned representation of inputs
with some bottlenecks), generative adversarial networks (that
generate artificial data), etc. [40].

We used five different deep convolutional neural net-
work models (CNN1-CNN5) with different layers, parame-
ters and structures, selected in the same fashion as in [32].
CNN1 was the first architecture designed, and it was selected
after finding that a single convolutional layer works best
for the validation data. CNN2 and CNN3 were further

VOLUME 10, 2022 81023



M. M. Moussa et al.: Discriminating Fake and Real Smiles Using EEG Signals With CNNs

adaptations of CNN1. The remaining two architectures were
selected to observe the effect of increasing architecture com-
plexity and adding a convolutional layer on the results and
on the computation time. Table 1 provides details of the
architectures and model parameters.

In each model, the CNN has two main structures in the
network; convolution and fully connected layers. The first
three models (CNN1-CNN3) have a single convolutional
layer and two fully connected layers. Meanwhile, CNN4
and CNN5 utilize two convolutional layers and two fully
connected layers as shown in Figure 2.
The convolutional layers in the five models have different

parameters, which can be seen in Table 1. The LSTMnetwork
structure is similar to the CNN1 architecture, but with the
EEG data presented as a sequence. The LSTM layer has
128 hidden units and the format of output set to last. The
training options used are similar to CNN1.

Here, we describe the details of the layers shown in
Table 1 and Figure 2. These details are also known as hyper-
parameters of the networks. These hyper-parameters are user
defined settings, that describe how the networks are con-
structed. Three of our architectures have a single convolu-
tional layer, while the others have two convolutional layers.
Convolutional layers perform convolution of the preceding
layers with learned filters. With all our networks, we use
the same training options with a mini-batch size of 128,
40 epochs with 3 iterations per epoch, but without employing
dropout layers, as L2 regularization and batch normalization
was sufficient. For instance, let us take CNN1 (note that, the
same explanation also applies to other CNN architectures).
It has one convolution layer which has a kernel size of 11×11.
The kernel size refers to the size of the filter. Hence, in this
case the input layer is convolved with filters of size 11× 11.
This results in a two-dimensional output (both input matrix
and filter are two-dimensional, hence the convolution result
is also two-dimensional). This output is known as the feature
map of the corresponding filter. Since, we have 128 such
filters for CNN1. This implies that convolving the input with
128 filters outputs 128 feature maps. In signal and image
processing [41], we usually perform convolution in strides
of 1. However, we can also replicate the same process in
strides of 2, or more. Here we used strides of 4 in both
horizontal and vertical dimensions. This results in an output
size that is 4 times smaller in both the dimensions. This
reduces the computation in the proceeding layers. We then
apply a non-linear activation function, Rectified Linear Unit
(ReLU). This adds non-linearity to the structure and increases
the expressive power of the network. We also use Batch
normalization layers. These standardize the output of the
convolution layers across batches, i.e., make them mean-
centered and normalize their standard deviation for further
computation. This has shown to boost learning [42].

We then concatenate the output of the convolution layers
into a vector which is then fed to fully connected layers of
the network, as shown in Figure 2. We use softmax activation
function in the final layer. This forces the output of the

network to show the probability of the input belonging to each
of the three classes (true smile, fake smile, or neutral expres-
sion). It is worth mentioning here, that the filter weights and
the weights in fully connected layers, are all learned from the
training EEG data with backpropagation algorithm using a
cross-entropy cost function [40].
The softmax activation function is given by Equation 1.

In this equation, ni corresponds to the output of the ith neuron
in the final layer and yni is the output of the softmax function
for this neuron.

yni =
eni∑K
i=1 e

ni
(1)

Note that yni is in the range [0, 1], and
∑K

i=1 yni = 1 for
the three classes (K = 3). This shows that the output of
the softmax layer applied to the neurons in the final layer,
gives rise to a probability distribution across the three classes.
These show the probability of the input belonging to each of
the three classes.

Since the input can only belong to one of the three classes,
the true labels can be encoded as one-hot binary vectors,
which have the value 1 for dimension representing the true
label and 0 for the others. Hence, these label vectors can also
be thought as probability distributions. Thus, in this context
a good cost function to compare the true probability distribu-
tion with the one at the output of the network, can be a cross-
entropy loss function. We used the weighted cross-entropy
function in our experiments, as shown in Equation 2.

Loss =
1
N

N∑
n=1

K∑
i=1

witni ln yni (2)

In this equation, N is the number of training samples,
K is the number of classes,wi is the weight of class i, tni is the
ground truth or the indicator that sample n is in class i, and
yni is the output of sample n for class i or the likelihood that
the network classifies sample n in class i, given by Equation 1.
In Equations 1 and 2, parameters such as the number of
samples N, the number of classes K, and the input tni are
dependent on the EEG data and classification problem, while
others are set to the MATLAB default, such as the class
weight wi.
The input signals to the networks consist of EEG data rep-

resented as floating point images with pixel values that ranges
from 0.0 to 1.0. These normalized pixel values correspond to
the amplitudes of EEG signals. This is achieved by converting
the multi-channel EEG data, which is a function of time, into
a 3-D array, whose size is C×T×N. In this context, C is the
number of channels, T is the time points, andN is the number
of images, which is equivalent to number of epochs/events.
Each image contains the normalized floating pixel value that
corresponds to the amplitude of EEG signals, as discussed
earlier.

In the convolutional layers, features are learned from the
input EEG signals for each of the five frequency bands
separately when the input is only a specific band, or all
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TABLE 1. Descriptions of the five CNN architectures.

FIGURE 2. CNN5 Architecture. Processed EEG signals are input to the network through the input layer, the convolutional layer(s) reduce the
size of the data, and the fully connected layer(s) are where learning basically occurs.

the bands jointly when the input in the full spectrum (see
Subsection II-B for the description of the bands). The input
signals are mean-centered and over-sampled to remedy class
imbalance by augmenting with scaling and replication.

The output from the convolutional layers extract features
from the input data. The fully-connected layers then catego-
rize the input data into various classes based on the train-
ing data. In particular, the first fully connected layer has
150 neurons and the second fully connected layer has 3,
corresponding to the number of classes. Hence, the neurons
of the final layer forecast the outcome of the input signal as
true smile, fake smile or neutral expression.

All convolutional network architectures have the following
training options: Stochastic Gradient Descent with Momen-
tum of 0.95 as the training function, L2-regularization with a
factor of 0.0005, and piece-wise learning rate schedule with
an initial learning rate of 0.01. The default learnable weights
in MATLAB are initialized by the Glorot weight initializer,
which assigns theweights from a zero-mean uniform distribu-
tion with a variance dependent on the size of input and output
to the hidden layers [43]. The CNNs were trained and tested
using 4-fold cross-validation. We chose K = 4 to balance
between the amount of experimentation and the amount of
training and testing data in each fold.

The proposed CNNs were compared with ANN, SVM,
and LSTM in Section III. In addition, to evaluate the effec-
tiveness of the proposed models, we used several evaluation
metrics namely; accuracy, sensitivity, specificity, precision,
and F1-score.

III. EXPERIMENTAL RESULTS
The overall classification accuracy, sensitivity, specificity,
precision, and F1-score of the proposed models are sum-
marized in Table 2. The classification performance results
are given in the form of mean ± standard deviation across
subjects. From Table 2, we obtain the following significant
points:
• Regarding classification models, the best classification
performance in the form of accuracy, sensitivity, speci-
ficity, precision, and F1-score is achieved using CNN1
compared to all other CNN architectures, LSTM as well
as the SVM model.
However, ANN produced comparable classification per-
formance to CNNs when using the full spectrum. Aside
from accuracy, we can see that CNN1 yields the highest
F1-score in contrast with the ANN and the other CNN
architectures, and consequently the highest harmonic
mean of sensitivity and precision. This tells us that,
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TABLE 2. Subject-dependent results of the full spectrum (0.5-40Hz), Beta (12-35Hz), Alpha (8-12Hz), Theta (4-8Hz), and Delta (0.5-4Hz) Bands for all
algorithms.

overall, CNN1 is the most suitable model for smiles
classification.

• Considering the type of frequency band, the full
spectrum produced the highest classification perfor-
mance followed by delta and theta frequency bands.
In particular, we found that the full spectrum in
CNN1 performs the best with an average classification
accuracy of 90.4%, outperforming CNN2, CNN3,
CNN4, and CNN5, which yielded classification accura-
cies of 89.4%, 89.5%, 89.3%, and 89.6%, respectively.

To further investigate what CNN1 classifies erroneously,
we looked at its confusion matrix. Figure 3 shows the confu-
sionmatrices of CNN1 for the full spectrum and the four EEG
channels. It shows a higher rate of confusion between the
neutral class and true smiles than other class pairs. This is also
true vice-versa. That is, for true smiles that are misclassified,
more of them are confused with neutral expression than with

fake smiles. The misclassification for fake smiles, on the
contrary, is distributed similarly across the true smile and neu-
tral expression classes. The reported confusion matrix clearly
shows the superior performance of CNN1 for all the cases.
Figure 4 shows the training progress in terms of accuracy and
loss of one fold with CNN1.

IV. DISCUSSION
In this study, we measured brain activity using EEG data, due
to its simplicity compared to other brain imaging modalities,
and utilized the EEG signals to distinguish between genuine
smiles, fake smiles and neutral expression. We classified
these smiles using CNN with different architectures. To the
best of our knowledge, this is the first study to use the EEG
signals to classify genuine and fake smiles with deep learning.
We achieved the highest classification accuracy of 90.4%
using CNN1. The obtained result outperformed ANN, LSTM
and SVM classifiers.
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FIGURE 3. Confusion Matrices of CNN1 for all the frequency bands.

We compare our work with a subset of the aforementioned
works, that are similar in scope or methodology, for various
aspects, in Table 3. It is important to note that there is only one
work on the discrimination of genuine vs acted smiles with
EEG data [13]. The other works are attempting to solve other
emotion related problems, such as recognition of arousal,
valence and liking or arousal and valence. Apart from this,
the authors of [13] perform only two-way classification and
extract a multitude of features (power spectral density, phase
locking value, etc). Since the study in [13] follows a different
method of analysis, the results cannot be compared. The pre-
sented study performs three-way classification and learns the
features algorithmically, which is a much more challenging
problem.

We found that convolutional neural networks outperform
other models in differentiating between the three classes of
smiles as summarized in Table 2. It is also clear that CNN4
and CNN5 with the full spectrum yield a higher sensitivity
than CNN1, but CNN1 performed better than the rest in terms
of accuracy, specificity, precision, and F1-score. We found
that, one convolutional layer proved better than two, as CNN1
outperformed CNN4 and CNN5. This could be due to the
reduced number of parameters, in addition to the dataset size
in our study. Furthermore, the standard deviations were more
acceptable compared to the other architectures. In addition,
reduced number of parameters imply shorter computation
time and fewer required resources.

It is worth noting that our CNN testing shows that filter
size has a small effect on classification performance than
the number of filters. For instance, reducing the number of
filters from 128 to 70 while keeping the kernel size at 11×11
reduced the classification accuracy from 90.45% to 90.21%,

whereas reducing the kernel size from 11×11 to 3×3 reduced
the accuracy from 90.45% to 89.15%.

Table 2 shows that CNNs perform marginally better than
LSTM andANNs. However, both are vastly superior to SVM,
given the same pre-processing steps for this three-class prob-
lem. This is due to the lack of feature extraction for all
algorithms, which is consistent with some aforementioned
works in the literature ( [7] and [22]).

Whenwe examined the confusionmatrix between the three
expressions (genuine smile, fake smile and the neutral expres-
sion), we found the highest confusion between genuine smiles
and neutral expression. The reason for the higher confusion
rate between genuine smiles and neutral expression, seen
in Figure 3, might be because the two may share similar
features. A plain book image can be thought of as a neutral
stimulus after all. Another reason could be due to the short
time between stimuli; a fake smile may require a longer time
interval than simply no response. These reasons may make
it slightly more difficult for the network to distinguish those
two classes (genuine smiles and neutral expression) than fake
smiles.

For the four clinical frequency bands shown in Table 2,
we can see that the average performance is, in fact, slightly
sub-par when compared with the full spectrum at 0.5-40 Hz
for all CNN architectures. This entails the loss of some
features or patterns as some of those frequencies are fil-
tered out. It is noted that despite all four bands showing
slightly lower accuracy than the entire spectrum for all algo-
rithms, theta and delta perform almost equivalently for the
artificial neural network, and delta performs better than the
other three bands for the all CNN architectures. We note
the pattern of delta performing well with ANN and CNN1,
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TABLE 3. Comparison with other similar works.

FIGURE 4. Progress of one training fold with CNN1.

despite theta coming close with the artificial network. Delta
waves are usually associated with deep sleep, yet show the
best, or close to the best, performance, excluding the full
spectrum. We speculate this is due to the low EEG fre-
quency of delta waves, meaning they are less affected by

noise compared to the higher frequency bands. This trans-
lates to a lower error or higher accuracy. However, the supe-
rior performance obtained with full spectrum could mean
smiles are related to gamma waves more closely than beta,
alpha, theta, and delta waves. Gamma waves are associated
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with brain hyperactivity, which the experimental protocol
could fall under in terms of brain stimulation. This could
also mean that smile expression is not frequency-specific,
meaning that smiling would not necessarily be more promi-
nently visible in any single band over another, and it may
just follow different patterns than we would think from our
knowledge about these brainwaves. We could just as well
conclude that some features could be lost in the filtering
process itself or could even leak from other bands, as per-
fect brick-wall filters are not realistic. Consequently, some
information that could be included in the full spectrum might
still be available in the theoretical range of any of the other
bands.

The overall pattern obtained in our study indicates that con-
volution neural networks can discern EEG readings, at least
in regards to smiling, with reasonable accuracy usingminimal
pre-processing prior to training. Our findingsmotivate further
research into the application of Brain Computer Interfaces
within the medical interventions in psychology, cognitive
neuroscience or otherwise in applications pertaining to reha-
bilitation.

LIMITATIONS AND FUTURE WORK
Although, we have achieved high classification accuracy
using CNNs on the temporal variations of EEG, the clas-
sification performance should be further improved for real-
world applications. One possible way to improve the classi-
fication accuracy can be by combining the proposed CNNs
models with Recurrent Neural Networks (RNN) or LSTMs
which have good capability of learning from time series data.
Another way to improve the classification accuracy of our
work is to obtain the functional connectivity network and
graph theory analysis and use them as an input to the proposed
classification models as suggested in [44]. In addition, the
proposed classification models should be generalized and
tested with the new study samples, which may be captured
under different conditions.

V. CONCLUDING REMARKS
We demonstrated one of the first studies to discriminate
genuine smiles, fake smiles and neutral expressions with
the usage of EEG signals and CNNs. Our model achived
classification accuracy of 90.45% using EEG full spec-
trum data with subject-dependant experimentation. For the
other bands, we achieved classification accuracies of 87.4%,
88.3%, 89.7%, and 90.0% using Beta, Alpha, Theta, and
Delta bands respectively. We also compare the performance
of the proposedmodels with existing classifiers such as ANN,
LSTM and SVM and found that our CNNmodels outperform
traditional classifiers.
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