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ABSTRACT Blood samples are easily damaged in traditional bloodstain detection and identification.
In complex scenes with interfering objects, bloodstain identification may be inaccurate, with low detection
rates and false-positive results. In order to meet these challenges, we propose a bloodstain detection and
identification method based on hyperspectral imaging and mixed convolutional neural networks, which
enables fast and efficient non-destructive identification of bloodstains. In this study, we apply visible/near-
infrared reflectance hyperspectral imaging in the 380-1000 nm spectral region to analyze the shape, structure,
and biochemical characteristics of bloodstains. Hyperspectral images of bloodstains on different substrates
and six bloodstain analogs are experimentally obtained. The acquired spectral pixels are pre-processed
by Principal Component Analysis (PCA). For bloodstains and different bloodstain analogs, regions of
interest are selected from each substance to obtain pixels, which are further used in convolutional neural
network (CNN) modeling. After the mixed CNN modeling is completed, pixels are selected from the
hyperspectral images as a test set for bloodstains and bloodstain analogs. Finally, the bloodstain recognition
ability of the mixed 2D-3D CNN model is evaluated by analyzing the kappa coefficient and classification
accuracy. The experimental results show that the accuracy of the constructed CNN bloodstain identification
model reaches 95.4%. Compared with other methods, the bloodstain identification method proposed in this
study has higher efficiency and accuracy in complex scenes. The results of this study will provide a reference
for the future development of the bloodstain online detection system.

INDEX TERMS Bloodstain identification, visible/near-infrared, hyperspectral imaging, deep learning,
convolutional neural networks, feature extraction.

I. INTRODUCTION
Blood is one of the most common liquids found at violent
crime scenes, and investigators generally need to examine
blood to determine the relationship between a victim and a
suspects in a criminal case. However, bloodstain detection
need to meet certain requirements, including the external and
internal characteristics of bloodstains (e.g., color, location,
authenticity, etc.). Moisture content and hemoglobin in blood
are two important intrinsic factors that determine the nature of
bloodstains. At present, most bloodstain detection techniques
employ destructive methods. In some specific scenarios,
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bloodstains may be wiped or cleaned, resulting in scarcity
of blood samples. The use of destructive detection methods
will undoubtedly make it difficult to conduct other tests in the
future. Therefore, a detection method is needed that is fast,
reliable, and shows the characteristics of bloodstains in all
aspects in a non-destructive way. To this purpose, we propose
a visual detection method that combines hyperspectral
imaging techniques with convolutional neural networks to
improve the ability to detect the physical features such as
the size, shape, location, and relationship to the substrate of
bloodstain patterns [1].

In recent years, hyperspectral imaging, as a fast, reliable,
and non-destructive analysis technique, has been widely
concerned and applied in various fields. It can be used
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to detect the internal properties of food products [2]–[4],
analyze the chemical composition of pharmaceuticals [5], [6],
do medical research [7], [8], and do some non-destructive
testing [9], [10], etc. Hyperspectral imaging is a technique
that combines image information with spectral information
to record spectral information in different wavelength ranges.
In addition, it allows the simultaneous qualitative and
quantitative analysis of the intrinsic chemical properties,
physical properties, and spatial distribution of bloodstain
samples. With this technique, researchers can understand the
interactions between photons and molecules in a scene of
specific wavelengths [11]. If we analyze the spectral profiles
and spectral images further, we can use this interaction
to determine the presence of target bloodstains or other
substances at the scene.

Although visible/near-infrared hyperspectral imaging has
many advantages, more useful information can be obtained
and provided than other multispectral techniques. However,
hyperspectral imaging still faces enormous challenges, such
as the huge amount of information that can cause problems
in data processing [12]. The main problems of hyperspectral
data processing are manifested in the dimensionality prob-
lems caused by a large number of channels, and the variation
of spatial dimension can cause data sparsity and other
troubles. At the same time, the precise spectral resolution also
brings a large amount of redundant data, which requires a
reduction in the dimension of spectral data [13]. However,
the spatial nature of spectral data is very complex, and it is
not easy to reduce the dimension while ensuring sufficient
spectral data information. On the other hand, the use of
hyperspectral imaging to design an accurate and efficient
detection scheme is also a major challenge.

Currently, with the continuous development of deep
learning, researchers have introduced many new methods
in the field of hyperspectral image classification, such
as support vector machines (SVM) [14], CNN [15], etc.
Compared with the more complex and difficult to implement
traditional algorithms, the neural network-based method can
well overcome the problems caused by the complexity of
calculation in the case of multi-classification. CNN is a
representative and highly effective deep learning method.
It simulates the process of neuron processing problems in
the human brain through a hierarchy of input layer, hidden
layer, fully connected layer, and output layer. The design of
an effective CNN model avoids artificial feature extraction
and conduct in-depth learning of features at different levels.
Ding et al. proposed a method of semi-supervised locality
preserving dense graph neural network with ARMA filters
and context-aware learning for hyperspectral image classifi-
cation [16], which greatly reduces the computational cost and
can effectively suppress noise. Ding et al. proposed a method
of graph sample and aggregate-attention network for hyper-
spectral image classification [17], which can automatically
learn the deep background and global information by using an
attention mechanism to characterize the importance between
spatially adjacent regions. Ding et al. proposed the method of

multiscale graph sample and aggregate network with context-
aware learning for hyperspectral image classification [18].
By learning multi-scale features from local regions, the
diversity of network input information can be improved
and the impact of inputting wrong original images on
classification can be effectively addressed. Huang et al. used
a one-dimensional convolutional neural network (1D-CNN)
to classify bloodstains in the spectral domain [19]. Although
deep learning performs well in a variety of visualization tasks
in image classification, training datasets is still required to
achieve higher accuracy.

At present, there are few studies on blood classification
using deep learning methods, and detection tasks in complex
environments will be more complicated to perform. To this
end, this study proposes a mixed network model based on
2D-CNN and 3D-CNN, and compares it with 1D-CNN
[20], 2D-CNN [21], and 3D-CNN [22] to better identify
hyperspectral bloodstain data.

The main contributions of this study are shown as follows:
(1) A new method for detecting bloodstain using hyper-

spectral imaging is proposed. By designing a mixed con-
volutional neural network(CNN), we can accurately detect
bloodstains and bloodstain analogs on complex scenes and
different substrates.

(2) Due to the large amount of spectral data, we have
designed a targeted method to reduce the redundancy of
spectral data. This method can retain useful spectral data
information while removing a large amount of repetitive or
irrelevant spectral information.

(3) A bloodstain spectral information detection model is
constructed. This model accurately distinguishes between
bloodstains, artificial blood, ketchup and many other blood-
stain analogs. The detection rate remains very reliable for
complex scenes and substrates. Compared with other state-
of-the-art methods, the model proposed in this study has more
advantages in terms of detection efficiency and identification
accuracy.

The rest of this article is divided into four parts. The first
part introduces the data content as well as data processing
and modeling methods. The second part is a demonstration
of results. The third part discusses and analyzes the experi-
mental results. The last part is a conclusion and a description
of possible future work.

II. MATERIALS AND METHODS
A. HYPERSPECTRAL IMAGING SYSTEM
A push-scan hyperspectral camera (Headwall Photonics,
Resonon, Inc., RA1000m/D_DFG) is used in this study. The
whole system consists of four parts in total: a Headwall
hyperspectral camera, a hyperspectral illumination circuit,
a motorized positioning sample stage driven by stepper
motors, and a computer (i7-7700HQ CPU). The composed
hyperspectral imaging system is shown in Figure 1. To avoid
interference of stray light to the experiment, the system is
placed in a dark room without stray light. On the other
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FIGURE 1. Schematic diagram of the hyperspectral imaging system.

hand, the experiment requires setting up the equipment
acquisition parameters in advance to obtain visible/near-
infrared hyperspectral images as soon as possible. This
is done to avoid the thermal effect of the light source
on the experiment and to obtain a higher-quality image.
In this study, the distance between the camera and the
sample is adjusted to 40 cm, and the illumination source
is set at an angle of 45◦ to the horizontal plane. The
movement speed of the mechanical stage is set to 20 mm/s,
and the camera exposure time is set to 1 ms. The whole
system acquires spectral images in the wavelength range
of 380-1000 nm with a spectral resolution of 4.84 nm.
For the acquired visible/near-infrared hyperspectral images,
each image contains 128 single wavelengths in the full
spectral range. The presence of dark currents in the camera
itself causes a lot of noise in some bands with low light
intensity. Therefore, before further experiments, the acquired
hyperspectral images need to be corrected with white
reference (RW) and black reference (RB). The correction
method is to use a white diffuse reflectance plate with 99%
reflectance efficiency to acquire a white reference image. The
black reference image with 0% reflectance is acquired by
covering the lens cap in a light-free environment.

B. EXPERIMENTAL SAMPLE
The experimental samples used in this study were designed
by our laboratory and the blood samples were provided by
three volunteers. Several different target detection scenes
were set up for this study. This included backgroundmaterials
of different colors and compositions, as well as different
experimental samples. Bloodstains of different sizes and
shapes were placed on the substrate as well as substances
that were visually similar to the bloodstains, such as ketchup,
artificial blood, oil-soluble pigment, beetroot juice, acrylic
paint, and sweet-spicy sauce. Due to their similarity in color,
it is difficult to discern them with the naked eye in certain
special cases. Therefore, our experiment intends to solve
this problem using hyperspectral images combined with a
convolutional diviner network.

Figure 2 illustrates a standard experimental scene, this
scenario simulates a bloodstain identification exercise in a
laboratory setting with bloodstains as well as six bloodstain

FIGURE 2. Standard bloodstain detection model under laboratory.

FIGURE 3. Hyperspectral images of bloodstains in complex scenes.

analogs on a white fabric substrate. This set of blood spectral
data was obtained as an experiment by taking multiple shots
at different times.

Figure 3 shows a more complex scene with bloodstain
and five bloodstain analogs in eight different material
backgrounds. The background complexity and environmental
diversity of this scene make the detection task more
challenging.

C. SPECTRAL DATA EXTRACTION AND PRETREATMENT
The hyperspectral data used in this study contains 128 bands,
and such a huge amount of data will cause difficulties for
subsequent data processing. To remove the spectral redundant
data, this study adopts the method of Principal Component
Analysis (PCA) to do dimensionality reduction on the raw
hyperspectral data for the spectral bands.

Feature extraction is to find the optimal solution in the
process of visualization and machine learning. In this study,
PCA [23] is used to reduce the dimensionality of the
data. We map 128-dimensional features to 3 dimensions,
and ignore very similar detailed information. The PCA
transformation formula is as follows:

P =W× S (1)

In formula (1), S is the initial data set, W is the transfor-
mationmatrix, andP is the obtained dimensionality reduction
data. The transformation matrix is obtained according to the
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following formula:

(λI − C)E = 0λ (2)

where C is the covariance matrix of S, I is the unit matrix, E
is the eigenvector of C , and λ is the eigenvalue matrix of C .
The eigenvector E is expressed as:

E = [a1, a2, a3, . . . an] (3)

where a satisfies the following equation:

aaT = aT a = 1 (4)

The transformation matrix W consists of several aT

corresponding to the largest eigenvalues, and the sum of the
eigenvalues is 95% of C .
Finally, the non-negative matrix decomposition (NMF) is

used to reduce the dimensionality of the non-negative data
matrix, and the principle is as follows:

V ≈ W × H (5)

where V denotes the original matrix, andW and H represent
the smaller matrices into which it is decomposed. By this
principle and performing several iterations, the original
input matrix is decomposed into a weight matrix and an
eigenmatrix to achieve data dimensionality reduction.

D. ESTABLISHMENT OF MODELS
At present, most classification models use 2D-CNN or
3D-CNN for feature extraction. Among them, 2D-CNN is a
classical deep learning algorithm, which has performed well
inmachine vision tasks such as image classification and target
detection [24], [25]. 2D-CNN has the advantage that features
can be extracted directly from images, which is end-to-end
processing. The equation of the convolution process is as
follows:

V xy
1j = f

∑
m

HI−1∑
h=0

WI−1∑
w=0

K hw
1jmV

(x+h)(y+w)
(I−1)m + b1j

 (6)

where m is the number of channels, HI−1 and WI−1 are the
convolution kernel sizes, and K and b are linear coefficients.
When 2D convolutional processing, each channel needs to

train convolutional kernels. While the number of channels
in hyperspectral images is large, if 2D-CNN is directly used
to process hyperspectral image data, it will lead to a large
introduction of parameters, which will reduce the training
efficiency and speed of the network, and more likely affect
the final accuracy.

Compared with 2D-CNN, 3D-CNN has the advantage
of one more convolutional kernel RI−1, which makes it
well compensate for the shortcomings of 2D-CNN. Its
convolutional model equation is described as follows:

V xyz
1j = f

∑
m

HI−1∑
h=0

WI−1∑
w=0

RI−1∑
r=0

K hwr
1jm V

(x+h)(y+w)(z+r)
(I−1)m + b1j


(7)

However, the deepening of the network has also brought
about problems such as gradient explosion and longer
calculation time, and if the training data is limited, over-
fitting may also occur.

Since hyperspectral images are stereoscopic data and
contain massive information, 1D-CNN or 2D-CNN cannot
extract the feature information of the target object from the
spectral dimension well. 3D-CNN kernel can extract spatial
and spectral information from hyperspectral images, but the
cost is that the parameters of the network are too large, which
increases the computational complexity and makes the model
difficult to be applied in practice.

In order to alleviate the above problems, in this study,
we propose a mixed CNN model framework that com-
bines 2D-CNN and 3D-CNN, as shown in Figure 4. The
model includes 3D-convolution, 2D-convolution and fully-
connected layers, and after the features are extracted in
different convolutional layers, the data are fed into the
fully-connected layer for classification and then output.
The model can make full use of the spectral information
and spatial feature maps of bloodstains, and retains the
spatial-temporal feature based on 2D-CNN to achieve the
maximum possible accuracy of bloodstain detection.

The dimensions of the 3D convolutional kernels of the
proposed mixed model are: conv1 is 8 convolutional kernels
of 7× 7× 3; conv2 is 16 convolutional kernels of 5× 3× 3;
and conv3 is 32 convolutional kernels of 3 × 3 × 3. The
dimensionality of the 2D convolutional kernels is: conv4
is 64 convolutional kernels of 3 × 3 × 3, which is done
because small 3 × 3 × 3 convolutional kernels are the best
choice for input spatial-temporal feature learning. Also, the
processing method using one two-dimensional convolution
can distinguish the spatial information of different spectral
bands without losing spectral information. This inspiration
comes from the processing of some 3D medical CT images,
because both hyperspectral and CT images have image
information as well as similar 3D data.

The 2D convolutional layers are placed after successive
3D convolutional layers to further differentiate the features.
To adapt to the input dimension of the 2D convolutional layer,
the feature cube generated by the 3D convolutional layer
is connected to the spectral dimension, i.e. the dimension
W × H × B × C of the four-dimensional tensor is reshaped
into W × H × BC. The traditional 2D convolution is then
replaced with a deeply separable convolution, which can
improve usage efficiency, simplify network training, and
enhance spectral information flow in the network.

As can be seen from the traditional 2D convolution process,
in terms of feature map generation, spatial dimensions
and channel information are mapped simultaneously. Unlike
traditional 2D convolution, we first convolve each channel
of the input data with 2D convolution kernels, setting the
number of kernels to 1 for deep convolution. The second step
is similar to the traditional 2D convolution with a kernel size
of 1 × 1. This is shown in Figure 5. Compared to traditional
2D convolution, this method reduces the possibility of
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FIGURE 4. Schematic diagram of the structure of the bloodstain recognition model based on mixed 2D-3D CNN.

FIGURE 5. Deeply separable convolution operation.

overfitting in the classification task. On the other hand, the
training speed of the network is accelerated.

The application of deeply separable convolution can
improve spectral classification performance. The main
advantage is the reduction in the number of parameters and
the number of calculations. Secondly, the cascaded feature
maps generated from successive 3D convolution layers can
contain extremely informative spectral information in the
neighborhood of the pixel to be classified.

E. DATA PROCESSING
Anaconda3-5.2.0, MATLAB 2018b, Excel 2019 (Microsoft,
USA) software is used for data processing in this study.
Hyperspectral images of bloodstains and blood analogs in
two scenes are firstly obtained by acquisition. Secondly, dark
current correction and whiteboard correction are performed.
The third step is to extract the spectral information of the

bloodstains and bloodstain analogs, and the huge spectral
data are processed by dimensionality reduction to remove
redundant information. Then, the pixel data of the labeled
regions are used to build a CNN model. And the remaining
labeled sample pixel regions are used as the test set. The
specific processing flow of the experiment is shown in Figure
6. The wavelengths from 380-1000 nm (a total of 128 bands)
are analyzed experimentally.

III. EXPERIMENT RESULTS AND DISCUSSION
A. HYPERSPECTRAL IMAGING SYSTEM
This section shows the results of the experiments, and
the results are compared and discussed. In this study,
our proposed method has been implemented in Anaconda
3-5.2.0 software and tested on hyperspectral images of
bloodstains in a laboratory scene and complex scenes. All
experiments were performed on an Intel Core i7-7700HQ
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FIGURE 6. Data processing process.

@2.80GHZ 8GB computer and computed by a CUAD GPU
device.

To take full advantage of hyperspectral image classification
techniques, a cube of HIS data is divided into small
overlapping 3D patches with the truth labels determined by
the labels of the central pixels. In the network framework
of this study, the 3D convolution kernel dimensions are
8 × 7 × 7 × 3, 16 × 5 × 3× 3, and 32 × 3 × 3 × 3. The
2D convolution kernel has a dimension of 64 × 3 × 3, with
64 representing the number of kernels and 3× 3 denoting the
spatial dimension of the 2D kernel. Three three-dimensional
convolutions are used to increase the number of spectral-
spatial feature maps so that the spectral information of the
data can then be retained in the output cube. Then two-
dimensional convolution is used once because it strongly
distinguishes spatial information within different spectral
bands and does not result in a loss of spectral information.
Table 1 summarizes the layer types, output map dimensions
and number of parameters for the proposed model.

B. HYPERSPECTRAL SPECTRAL ANALYSIS
Hemoglobin is the main component for identifying blood-
stains is. The main role of hemoglobin in blood is to
transport the element oxygen to various organs of the body.
Hemoglobin is made up of four hemoglobin subunits, two
alpha chains and two beta chains.

The hemoglobin subunit contains a peptide chain and a
hematoxylin molecule, and the peptide chain is coiled and
folded into a spherical shape, sandwiching the hemoglobin
molecule inside. The hemoglobin molecule is a small

TABLE 1. Layer types, output map dimensions, number of parameters for
the proposed model.

molecule of porphyrin structure, bound at the center of the
porphyrin molecule by four nitrogen atoms on a pyrrole
ring and a ferrous ion ligand. In an aerobic environment,
hemoglobin carries oxygen for movement and oxygen
molecules take the place of water molecules, coordinating
their binding to ferrous ions. In the internal environment,
hemoglobin’s main function is to transport oxygen and
carbon dioxide to the organs, maintaining the body’s normal
requirements.

The function of hemoglobin in transporting oxygen
determines its presence in the body environment in the
form of different derivatives. There are two main forms
of hemoglobin in the body: deoxyhemoglobin (Hb) and
oxyhemoglobin (HbO2), which is bound to oxygen and is
converted by various catalytic enzymes and hormones in the
body. In addition, a small amount of HBO2 is oxidized to
methemoglobin (Met-Hb). Met-Hb is unable to bind oxygen,
but is catalyzed by the action of reductase enzymes to
reduce it to HB. Based on the presence of these hemoglobin
derivative components in blood, blood shows a complete
system of absorption bands in the visible/near-infrared
regions of the spectrum. The structure of the absorption
spectra of the HB derivatives varies considerably, with strong
absorption in the band between 400-425 nm. In the presence
of HBO2, two strong absorption peaks are also produced in
the 500-600 nm band of the spectrum.

The spectral profile of a substance is a visual representation
of its internal components. The bloodstain spectrum is a
representation of hemoglobin and its derivatives, and this
representation is determined by the specific gravity of the
various components in the bloodstain. The spectral profile
of a bloodstain can be seen as a specific gravity fit to the
spectra of the various components of the substance, which in
the internal environment are mainly determined by HB and
HBO2. The in vitro environment is also influenced by Met-
Hb and hemichromatin.

Overall, the bloodstain spectral profile has three identi-
fiable features in the visible/near-infrared band range, one
being a strong absorption peak in the 400-425 nm band.
Another is a strong absorption peak in the 500-600 nm band
due to the presence of a large amount of HBO2, where the
reflectance amplitude is weak and the reflectance spectrum
shows a trough. The last identifying feature is the strong
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FIGURE 7. Average reflectance spectra of blood and six blood analogs:
(a) blood; (b) seven liquids on a chart.

reflection amplitude value in the visible 600 nm band and
beyond due to the red color of the bloodstain. The average
reflection spectra of all pixels of the hyperspectral bloodstain
and blood analog images under laboratory conditions are
shown in Figure 7.

In more complex scenes, the spectrum curve of bloodstains
varies greatly and is influenced by different substrates.
As shown in Figure 8, it can be seen that different substrates
affect the amplitude variation of the bloodstain spectral curve.
This huge difference brings great difficulties to the intuitive
classification of samples. Therefore, in complex scenes,
it is necessary to complete the bloodstain hyperspectral data
analysis work through deep learning.

C. CNN TRAINING PROCESS
Since 2D-CNN and 3D-CNN are based on pixels as input
objects, a uniform training and test set needs to be created
for each image. The aim is to avoid regions of non-empty
intersections in the training and test sets. We select a set
of samples with ntrain = 5% · ns in each class, and
finally select the least number of pixels in the class as
training pixels. The advantage of this is that each class is
represented by the same number of samples. On the other
hand, the neighborhoods of 2 pixels around the training

FIGURE 8. Average reflectance spectra of bloodstains and artificial
bloodstains on different substrates: (a) standard bloodstain spectra;
(b) bloodstains on black metal substrates; (c) bloodstains on eight
different substrates; (d) standard artificial bloodstain spectra; (e) artificial
bloodstains on black metal substrates; (f) artificial bloodstains on eight
different substrates.

FIGURE 9. Selected training pixels and testing examples.

pixels will be marked as unavailable. All the marked pixels
will constitute a testing set and the result of this process is
shown in Figure 9. Thus for each image, a different set of
randomized training pixels is prepared. And use the same
training set for each network to ensure comparability of
results across architectures. Results are run for each scenario
for the network type/image configuration using the fixed
training dataset specified above.

To pursue a higher detection performance, we train the
experimental scene and the complex scene separately, with
a total of 36,548 sample inputs. Figure 10 shows the
training process of the blood spectral data collected in the
experimental scene in the proposed network model in this
study. Figure 10(a) shows that the final loss functions of
the training and testing sets are stable at 0.000352 and
0.002247 after 100 rounds of training. Figure 10(b) shows
that the final classification accuracies of the training and
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FIGURE 10. Bloodstain spectral data of laboratory scene by 2D-3D CNN
training process: (a) Loss function; (b) Accuracy of classification.

testing sets reach 100% and 98.41%, respectively, after
100 rounds of training.

Figure 11 shows the training process of the bloodstain
spectral data collected in more complex scenes using the
proposed network model in this study. Figure 11(a) shows
that the final loss functions of the training and testing
sets are stable at 0.026 and 0.02 after 100 rounds of
training for the hyperspectral data, which indicates that the
model has reached a stable optimal training state graph in
a more complex scene. Figure 11(b) represents the final
classification accuracies of 93.75% and 92.42% for the
training set and testing set, respectively, after 100 rounds of
training for hyperspectral data. Compared with the traditional
methods, the model proposed in this study has obvious
advantages and can identify bloodstains more accurately.

D. MODEL OBJECTIVE EVALUATION RESULTS
In this section, we use four models to train and test the
same data input under experimental scenes and complex
scenes, respectively, in order to ensure the objectivity of
the model quality, and finally the results are compared. The
models being compared are 1D-CNN, 2D-CNN, 3D-CNN
and the proposed model in this study. Table 2 shows the

FIGURE 11. Bloodstain spectral data of complex scenes by 2D-3D CNN
training process:(a) Loss function; (b) Accuracy of classification.

TABLE 2. Performance comparison of different models in standard
experimental scenes.

comparison results of the four models under the experimental
scenes. From the data, it can be seen that the detection
results of all four models are excellent in the experimental
scene without much difference. It shows that the detection of
bloodstains using hyperspectral techniques has better results
in the standard experiment.

Table 3 shows the comparison results of the four models
under complex scenes. From the results, it can be seen
that under more complex scenes, the proposed model in
this study achieves an accuracy of 95.4% for bloodstain
recognition, an average accuracy of 95.39% for classification
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TABLE 3. Performance comparison of different models in complex
scenes.

FIGURE 12. Hyperspectral image visualization.

TABLE 4. Training time and test time using 1D-CNN, 2D-CNN, 3D-CNN and
the proposed method on data under laboratory conditions and complex
scenes. Training time is in minutes (m) and testing time is in seconds (s).

of bloodstains and bloodstain analogs, as well as a kappa
coefficient of 0.944. Compared with other models, our
proposed method in this study clearly has a huge advantage.

Hyperspectral images contain rich spectral and spatial
information, which provides visualization possibilities to
identify bloodstains and bloodstain analogs in complex
scenes. The mixed 2D-3D CNN model is used for the
identification and detection of bloodstains and bloodstain
analogs, and mapped out to better understand the distribution
of bloodstains and bloodstain analogs. Figure 12 shows the
visualization of bloodstains and bloodstain analogs, and this
visualization is consistent with the results of the analysis of
the model in Table 2.

The computational efficiency of the proposed mixed
2D-3DCNNmodel in this study is presented in Table 4, in the
form of training and testing time. This proposed model is
more efficient than other models.

IV. CONCLUSION
In this study, bloodstain and blood analogs in different scenes
are successfully detected and identified using visible/near-
infrared hyperspectral combined with mixed 2D-3D
CNN technology. The mixed CNN model for bloodstain

identification is proposed to address the challenge that
hyperspectral bloodstain detection is difficult to accomplish
in complex scenes. Next, a large number of spectral data
are analyzed by principal component and reduced dimension
processing. Then, training and testing are carried out
and the models are evaluated and compared. Finally, the
distribution of bloodstain and blood analogs is visualized.
The experimental results show that the model has a 95.4%
accuracy in identifying bloodstain and bloodstain analogs
on complex substrates, which has a state of the art than
other detection methods. In this study, we use hyperspectral
imaging technology for fast and non-destructive bloodstain
detection and combined it with the mixed CNN model
to improve the accuracy of bloodstain recognition. This
detection method provides a certain reference value for other
detection fields and online detection work. In future work,
we will consider how to determine the exposure time and
blood type of bloodstains by this technique.
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