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ABSTRACT Continuous Compressed-Sensing-Karhunen-Loéve Expansion (CS-KLE) has been proposed.
Compressed sensing has been proposed as a highly efficient computational method to represent compressible
signals using a few numbers of linear functional. On the other hand, KLE is known to be the
optimum orthogonal decomposition. While both methodologies have been addressed comprehensively and
independently in the literature, their relationship has not been studied. In this work, we study the relation
between random sampling and KLE. In particular, we examine how doubly orthogonal property is affected
by themutual coherency and RIP of the compressed sensing. A detailed theoretical study of random sampling
and KLE is conducted. We prove the Compressed Sensing Hilbert-Schmidt integral operator as double
integral acting on the signal space and its dual space. The proof of the proposed integral operator follows
from the Kolmogorov Conditional Expectation theorem. Then, two formulations are proposed to compute
CS-KLE relation, (1) through Mercer’s theorem and (2) through Green’s theorem. Also, the convergence
of CS-KLE with respect to RIP is proved. It has been shown that there is a transition point in the spectral
overlap between the estimated and actual signal spaces. The transition point occurs for the optimum subspace
of the given compressible signal. Numerical simulation is presented by applying CS-KLE to semi-infinite
and infinite-dimensional signals and also Magnetic Resonance Images (MRI).

INDEX TERMS Karhunen-Loéve expansion, continuous compressed sensing, separable Hilbert space,
Kernel, random process, restricted isometry property, infinite-dimensional signals.

I. INTRODUCTION
Compressed sensing aims to represent and reconstruct sparse
vectors using infimum possible subspace such that the signal
space can be decomposed into orthogonal and orthogo-
nal complement subspace [1]. For this purpose, greedy-
pursuit [2]–[5] and `1-convex optimization solutions [6], [7]
have been recommended. While `1-solutions are good at the
accurate reconstruction of sparse vectors, the greed-pursuit
algorithms are known for a fast convergence rate.

On the other hand, Karhunen-Loéve Expansion (KLE)
[8, Chapter 6] is known for the optimum orthogonal
decomposition of the signal. However, KLE suffers from
numerous numerical problems, including computational
complexity decomposing signal space using an infinite
number of eigenpairs. To reduce computational complexity,
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truncated KLE has also been recommended to solve the
partial differential equation using the stochastic Galerkin
method [9].

The relation between CS and KLE has not been studied
in the literature, even though both address a random process
hidden in data. In this paper, we investigate the relation
between compressed sensing and Karhunen-Loéve Expan-
sion to propose compressed sensingHilbert-Schmidt operator
in Theorem 6. Accordingly, we propose Compressed sensing-
KLE (CS-KLE) based on compressed sensing Hilbert-
Schmidt operator. Two distinct formulations for CS-KLE
have been proved in Theorems 7 and 11.

II. MOTIVATION
A. TRANSITION POINT, AND `1 THEORETICAL
RESTRICTION
It has been shown by Donoho [10] that theoretically, regions
of success and failure of the sparse recovery algorithms
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FIGURE 1. Theoretical `1 transition phase [11, SparsLab ].

are well separated by a sharp threshold with tight upper
and lower bounds. As shown in Fig. 1, the transition
phase indicates that the performance of the sparse recovery
algorithms is optimum for a certain set of problems that
satisfy the range requirements determined by a normalized
ratio ρ = n

M and undersampling ratio δ = M
d . Beyond

the transition phase, one needs to consider the combinatorial
search to estimate the signal space.

In [11], the authors have examined several algorithms,
including LASSO [6] and LARS [12], and compared them
with the theoretical `1 performance. From their works,
one notices that LASSO shows the best performance in
addressing different ranges of ρ and δ. Nevertheless, the
significant range of problems regarding ρ and δ lies in the
combinatorial search region.
Due to the transition point, one should expect an optimum

subspace for which the performance metric is optimum for a
given number of measurements, M . We define the transition
point in the following.
Definition 1 (Transition Point): For a given basis totally

ordered in non-increasing rearrangement-invariant form
with respect to their spectral power, the transition point is
defined as the basis index in a directed support set for which
performance metric is optimum.

In many applications such as directional communica-
tion channel estimation, image processing, and continuous
spectrum approximation, the optimum sparsity level n is
unknown. More important, n can be significantly larger
than the expected sparsity level. The example signals with
continuous spectrum extension are studied in sectionVI. Nev-
ertheless, the prediction of the optimum subspace dimension
n is out of our scope in this paper and has been studied in [13].

B. CONTINUOUS SPECTRUM APPROXIMATION USING
COMPRESSED SENSING
Compressed sensing, recommended by Donoho [1], is widely
adopted in science and engineering to estimate finite-
dimensional signals. An n-dimensional signal can be
described as a signal in Kn that lies in a space Kd , d � n.
Nevertheless, in practical application, not only is n usually
unknown priori, the sparsity level can extend toward d

(d can be infinite), as discussed in section VI-D for the image
signals. The problem discussed here is a part of a larger class
of problems studied as continuous spectrum approximation in
the linear operator theories [14], [15]. Obviously, compressed
sensing and operator theory perfectly coincide if we notice
that the random sampling matrix is, in fact, a linear operator.

The diagonalization of infinite-dimensional signals, also
referred to as signals with continuous spectrum or continuous
spectral extension during the paper, has practical importance
in some applications such as image processing. In [16],
finite-dimensional compressed sensing has been applied to
the MRI. To decrease the point spread of the image (i.e.,
blurring), the authors have recommended leveraging the
wavelet basis with finite support in the space-frequency
joint domain and sampling the image in the Fourier domain.
However, if the wavelet base is Haar basis, then its Fourier
representation consists of the infinite number of basis
(iteration).

The approximation of infinite-dimensional signals has
practical importance in engineering (such as MRI, Comput-
erized Tomography, and tomography in general) and physics
(such as Helium Atom Scattering and Quantum mechanics in
general). We will see that the proposed CS-KLE formulations
through Mercer’s theorem (in Theorem 7) and Green’s
function (in Theorem 11) are capable of approximating
signals with continuous spectral extension while leveraging
the undersampling operator.

III. CONTRIBUTION
Our contributions is as in the following:
1) Examining the stochastic orthogonality of KLE and

random sampling operator, CS-KLE is proposed in
Theorem 7. CS-KLE estimates the optimum subspace
that maximizes spectral overlap between estimated and
actual basis.

2) Using separable Hilbert space, the theoretical aspects
of the CS-KLE, including compactness, trace-class
positive semidefinite, and continuity of the kernel,
are discussed. Accordingly, uniform convergence of
CS-KLE relation considering Restricted Isometry
Property (RIP) is proved.

3) We study CS and KLE in separable Hilbert space
to derive the Compressed Sensing Hilbert-Schmidt
integral operator. The condition for the Compressed
Sensing Hilbert-Schmidt Operator to be an integral
operator is studied. It is proved that the RIP condition
guarantees the existence of an integral operator.

4) It is shown that the outermost integral of CS-KLE
through Mercer’s theorem enables combinatorial
search. In fact, for a certain undersampling ratio
δ ≥ 0.6, CS-KLE can estimate the whole range of
ρ = n

M . Also, the outermost integral of CS-KLE
enables continuous spectrum approximation.

5) The relation between the Compressed Sensing
Hilbert-Schmidt operator and Green’s function is
examined. Considering the fact that the kernel of
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the integral operator is the Green’s function of
the CS-KLE, CS-KLE through Green’s function
is formulated in the Theorem 11. Similar to its
Mercer’s counterpart, CS-KLE formulation via Green’s
function extends compressed sensing solution to the
combinatorial search region in the theoretical `1
transition phase.

6) Continuous spectrum approximation is evaluated
by applying CS-KLE to semi-infinite and infinite-
dimensional signals. Accordingly, n-pseudospectrum
and optimum subspace are measured by optimizing
spectral overlap between estimated and actual signals.

7) Last but not least important, it is shown that the
optimum subspace coincides with the transition point.
For subspaces larger or smaller than the transition
point, the accuracy of local and global models is sub-
optimal.

IV. THEORETICAL DEVELOPMENT OF COMPRESSED
SENSING KARHUNEN-LOÉVE EXPANSION
In this section, we derive CS-KLE. Theorems 7 and 6
represent our proposed approach to robustly estimate the
underlying compressible signal X (ω, t) from a noisy mea-
surement Y (ω, t).

In order to develop CS-KLE, we need to show the relation-
ship between the KLE and compressed sensing. Sections IV-
A and IV-B explain the basics of KLE in separable Hilbert
space. In sections IV-D to IV-F, we formulate CS-KLE and
will prove two main theorems of CS-KLE in Theorems 6
and 7. The existence of compressed sensing Kernel will be
discussed in section IV-E. In section IV-F, we prove that it
is impossible to formulate CS-KLE without violation of the
stochastical orthogonality of KLE. Properties of the CS-KLE
and proof of convergence with respect to Restricted Isometry
Property (RIP) are presented in sections IV-F.

A. SEPARABLE HILBERT SPACE
Separable Hilbert space is essential to formulate KLE as a
weighted combination of linear functional. Hilbert spaces that
have a countable number of basis are said to be separable.
Note that the separable Hilbert space can be infinitely
countable or finitely countable. Both finitely and infinitely
countable Hilbert spaces are of interest in this work.
Definition 2 (Separable Hilbert Space): LetB be the sub-

set of Hilbert space H defined over scalar fieldK. Then,
(a) B ⊂ H are the Hilbert space basis, if and only if, for

every pair of basis bi, bj ∈ B, then 〈bi, bj〉 = δi,j.
(b) span{B} = H is a closed linear hull of B that

spans H.
(c) If B = {i ∈ N | bi ∈ H}, then H is said to be separable

Hilbert space.
(d) The system of orthogonal basis B = {i ∈ N |

bi ∈ H} is called orthonormal basis of H if∥∥bi∥∥2 = 1. According to the Gram-Schmidt theorem,
every separable Hilbert space has orthonormal basis

and can be subsequently represented as a weighted
linear combination of orthonormal basis.

In order to apply separable Hilbert space to compressed
sensing, the following property has to be considered in
addition to Definition 2.
Properties 1 (Separable Space for Compressed Sensing): •

Let X be a finite-dimensional compressible random
process in Hilbert space. Given n-dimensional subspace
Xn of X such that Xn uniformly converges to X, the set of
the orthonormal basis of Xn is a minimal orthonormal
subset of a basis of X.

• Let X be N infinite-dimensional compressible random
process in Hilbert space with a continuous spectrum
extension. An n-pseudospectrum of X is defined as the
discrete subset of a continuous spectrum of X that
uniformly converges to the continuous spectrum of X.

Theorem 7 and its convergence analysis require additional
structures in ‖ · ‖1,∞ and ‖ · ‖1. The appearance of
these additional structures is justified by their necessity
to formulate the compressed sensing problem in Hilbert
Space using the compressed sensing integral operators in
Theorem 6 and Theorem 7. The reader should note that
these additional structures are inherited directly from the
Banach space. Mainly, these additional structures are needed
to clearly define the boundedness for the kernel function
in Theorem 4 and 3.
Theorem 1 (Multiplication of `2 by `2): [17, Problem/

Solution 29] For a given sequence αn bounded in `2, i.e.,∑
n |αn|

2 <∞, then
∑

n

∣∣α∗nβn∣∣ <∞ if∑
n

|βn|
2 <∞ (1)

Theorem 1 indicates that C (X1,X2), for X1,X2 ∈ `2
exists, and it is bounded in L1-space. The product space in
L1 theoretically is enough for the Carleman kernel. However,
we assume that the X1

⊗ X2
∈ L2, a stronger condition than

Theorem 1, is a valid assumption for many applications. The
kernel in L2-space is called the Hilbert-Schmidt kernel.
Corollary 1 (Extension of Theorem 1 to ‖ · ‖1,∞): If

∑
n

|αn|
2 <∞ and

∑
n |βn|

2 <∞, then

ess supn
∑
n

|αnβn| <∞ (2)

According to Corollary 1, the product space of X1,X2 ∈ L2

has bounded essential supremum in L1-space. In other words,
the kernel C (X1,X2) is bounded by the essential supremum
of the product of two `2 sequences.

B. BASIC DEFINITIONS
Definition 3 (Compact Operator): Let X and Y be sepa-

rable Hilbert spaces. A bounded linear functional 3 : X →
Y is compact if it maps bounded subsets U ⊂ X onto
precompact subsets in Y , that is, 3(U) ⊂ Y .
Definition 4 (Operator Norm): Let 3 : X → Y be a

linear functional from Hilbert space X ∈ H1 to Hilbert space
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Y ∈ H2. The operator norm is defined as

‖3‖Y =
{
‖3x‖∞|x ∈ X, ‖x‖2 ≤ 1

}
(3)

for all x ∈ X.
Theorem 2 (Direct Sum of Subspaces): [18, Theorem

18.1] Let {H i
}i∈I be a set of separable vector spaces in

Hilbert spaces with a well-defined inner product. Then, H
can be expressed as

H = ⊕ni=1Hi (4)

where ⊕ denotes the internal direct sum.
Theorem 2 indicates that the internal and external direct

sums are equal provided that H1 and H2 are disjoint, that is,
H1
⋂
H2 = ∅, and conditions of vector spaces are satisfied.

Theorem 3 (Tensor Product and Quotient Spaces): [18,
Theorem 18.2] Let H1 and H2 be Hilbert spaces. Then, for
every bilinear map B : H1 × H2 → H3, there is a tensor
product defined as linear mapping l : (H1 ⊗ H2)→ H3 such
that

B
(
xi, xj

)
= l

(
xi ⊗ xj

)
= 3(H1,H2) /30

= 3(H1,H2)+30 (5)

where 30 is the null space of linear functional 3.
If the 30 is nontrivial, the quotient space is not unique.

However, discussed in [13], given an optimum 3(H1,H2),
B
(
xi, xj

)
is almost unique. Theorem 3 can be formulated

coordinate-wise in product space as represented in the
following theorem.
Theorem 4 Tensor Product of Subspaces and Compact

Kernel: Let B ∈ L2-space be a set of orthonormal basis
spanning Hilbert space H. Also, let H1, H2 be separable
restricted representations of H such that H1 := X1 ⊗ B1
and H2 := X2 ⊗B2 where X1 = {xi}i∈I1 and X2 = {xj}j∈I2
are sequences of compressible random processes in L2-space
such that I1 ∩ I2 = ∅. The set of basis B1 and B2 are the
subspace of B spanning H1 and H2. For {bi} ∈ B1 and
{bj} ∈ B2, i, j ∈ I, and for every column vectors {xi} ∈ X1,
{xj} ∈ X2, kernel C (X1,X2) is independent of orthonormal
basis B1 and B2.

Proof:

C (X1,X2) =
m∑
i=1

m∑
j=1

(
xi ⊗ bi

)
⊗

(
xj ⊗ bj

)
a
=

m∑
i=1

m∑
j=1

xibi
∗

⊗ xjbj
∗

=

m∑
i=1

m∑
j=1

xibi
∗
(
xjbj

∗
)∗

=

m∑
i=1

m∑
j=1

xibi
∗

bjx∗j

b
=

m∑
i=1

xix∗j = X1 ⊗ X2 (6)

where (a) is due to A ⊗ B =
∑

i
∑

j a
ibj
∗

for typical vector
space A and B with vectors ai ∈ A, and bj ∈ B. And, (b) is
because the inner product of the basis vector bi and bj defined
as 〈bi, bj〉 = δij where δij is the Kronecker delta.

Applying Theorems 2 and 3 to 4, C (X1,X2) can be
rephrased as a quotient space

C (X1,X2) = 3(X1,X2) /30 (7)

For compressible signals with continuous spectral exten-
sion where j / d , the diagonalization through deterministic
orthogonality is not accurate. In this case, the kernel can be
expressed as

C (X1,X2) = (3 (X1,X2)+4)+30 (8)

where 4 represents the continuous spectral extension of the
compressible random process. Obviously, failure to approxi-
mate 4 contributes to an estimation error of the signal. The
proper approximation of the4 provides continuous spectrum
approximation, which is important in many applications,
including MRI image processing and quantum operators.

While both Theorem 3 and 4 are equivalent, they provide
different capabilities. Especially, Theorem 3 can be extended
to n-dimensional Hilbert spaces as an n-fold tensor product

H = H1 ⊗ H2 · · · ⊗ Hn (9)

On the other hand, Theorem 4 implies that given
orthonormal basis B and separable Hilbert spaces H1
and H2, the kernel only depends on X1 and X2. As a
result, the decomposition of C (X1,X2) provides information
about the structure of the X1 and X2. The most important
information that eigenfunctions ofC (X1,X2) reveals is about
the distribution of X2 given X1, e.g., the coordinates of
non-zero components. The decomposition of C (X1,X2) can
be obtained using Mercer’s Theorem given in 5. This has
great implications since C (X1,X2) can be obtained as the
covariance of X1 and X2 for two Hilbert spaces H1 and H2,
and as an n-fold Tensor product for multi-dimensional signal
H1,H2, · · · ,Hn.
Definition 5 (Continuity of Compact Kernel): A compact

kernel is continuous on a given vector space. That is,
compressible vector X is closed under addition as x+x ′ ∈ X,
for every column vector x, x ′ ∈ X. X is also closed under
scalar multiplication since αx ∈ X, for α ∈ C. Note that
compressed sensing is only isomorphic for the well-defined
subspace of 0S ⊂ 0. However, this is not a problem since
CS-KLE in Theorem 7 is continuous inherently due to the
continuity of the kernel.
Definition 6 (Trace Class Positive Definite Operator):

Kernel function C := X1 ⊗ X2 can be defined as linear
functional C : L2 (X1 × X2) for H1 ∈ X1 ⊗BX1 , H2 ∈

X2 ⊗BX2 , and BX1 ,BX2 ⊂ B. The Hilbert-Schmidt kernel
C (X1,X2) satisfies the trace class positive semidefinite
property with respect to the inner product and bi ∈ BX1 and
b′j ∈ BX2

Tr{C} =
∑
i,j

〈Cbi, b′j〉 <∞ (10)
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C. HILBERT-SCHMIDT OPERATOR AND PROPERTIES
Definition 7 (Hilbert-Schmidt Operator): Let X and X ′ be

compact metric spaces with measurable spaces (X ,BX , µX ),
and

(
X ′,BX ′ , µX ′

)
. Provided continuous kernel C :

L2
(
X × X ′

)
, Hilbert-Schmidt operator G : L2

(
Cd
)
→

L2
(
Cd
)
is defined as

(Gψ)
(
x ′
)
=

∫
C
(
x, x ′

)
ψ (x) dµ (x) (11)

where ψ (x) is the eigenfunction of the kernel operator, and
dµ (x) is increment measurement corresponding to Lebesgue
measurement µ.

Linear functional C
(
x, x ′

)
is analogous to covariance

function, and the Hilbert-Schmidt operator extends the
covariance matrix to integral form using integral operator G.
Th implication is that if one knows the integral operator G
and the covariance matrix C

(
x, x ′

)
, then the unknown state

of a system ψ
(
x ′
)
can be estimated using known ψ (x).

The eigenfunction ψ (x) plays a crucial role in finding KLE
and Mercer’s formulation of CS-KLE. The easiest method to
obtain ψ (x) is through Mercer’s theorem.
Properties 2: Hilbert-Schmidt operator satisfies the fol-

lowing properties:
(a) G is linear
(b) G is positive semidefinite
(c) G is compact
Theorem 5 (Mercer’s Theorem): Let C : L2

(
X × X ′

)
be

a continuous, compact, and positive-semidefinite covariance
function. Then, there is an infinite number of eigenpairs
{λi, ψi (t)}i∈N such that

C
(
x, x ′

)
=

∞∑
i=1

λiψi (x) ψ∗i
(
x ′
)

(12)

At the heart of the compressed sensing lies the random
sampling, where the randomness is according to the few
dominant random macrostates that a system takes from
a universe space. As a result, Y (ω, t) is a separable
random function represented as a product of determin-
istic eigenfunction ψ (t) and stochastic random process
γi (ω) ∈ 0 (ω) for i ∈ S, where S is the support subset
of X (t, ω). For the sake of simplicity, we drop the ω in the
remaining of this letter.

Y (ω, t) =
∑
i∈S

√
λψ (t) γi (ω) (13)

In the remaining of the paper, the Hilbert-Schmidt operator
and Mercer’s Theorem are rephrased according to Y (ω, t)
and Y

(
ω′, t ′

)
. Note that t and x represent some longitudinal

variables hereafter. A measure space is also updated to
(Y ,BY , [0, 1]), where B is a σ -Borel set, and [0, 1] is the
segment of the real line corresponding to weights of γi (ω),
i ∈ [1, d], also in S.

D. COMPRESSED SENSING HILBERT-SCHMIDT
OPERATOR AND CS-KLE FORMULATION
Let f = g+ h be a compressible signal of interest with main
compact signal space g and a continuous spectrum h. Then,

the Hilbert-Schmidt operator needs not only to measure the
subset of the main signal space g but also it has to measure
the extension of the signal in the subset of Hilbert space
basis that spans h. In other words, a potential candidate for
compressed sensingHilbert-Schmidt operator has to integrate
over the orthonormal basisB. The following theorem extends
the Hilbert-Schmidt Operator to the Compressed Sensing
Hilbert-Schmidt Operator.
Theorem 6 (Compressed Sensing Hilbert-Schmidt Opera-

tor): Let X and X ′ be compact metric spaces with measurable
spaces (X ,BX , µX ), and

(
X ′,BX ′ , µX ′

)
. Also, let 0 ∈

CM×d be an underdetermined sampling matrix. Provided
continuous kernel C : L2

(
X × X ′

)
, compressed sensing

Hilbert-Schmidt operator Gc : L2
(
Cd
)
→ L2

(
Cd
)
is

obtained as

(Gcψ (0))
(
x ′
)
=

∫
X∗

∫
X
C
(
x, x ′

)
ψ (x) dµ (γ x) (14)

for all x ∈ X and γ ∈ X∗.
Proof: From averaging property of Kolmogorov condi-

tional expectation

E
[
EF ζ ;A

]
= E [ζ ;A] , ζ ∈ L1, A ∈ F (15)

where

E [ζ ;A] = E (ζ1A) =
∫
A
ζdµ (a) (16)

Substituting (16) into the LHS of (15)

E [ζ ;A] = E
(
EF ζ1A

)
=

∫
A
E
(
EF ζ1A

)
dµ (a) (17)

By defining evaluation map EF
: L1 → L1 (F) acting on

random process ζ as

EF ζ =
∫
X
C
(
x, x ′

)
ψ (x) dµ (x) (18)

such that ζ := ψ (x), F := C
(
x, x ′

)
, and F ⊂ X∗ is a

measurement on σ -algebra, where X∗ is a dual space of X ,1.2

By substituting (18) into (17) and applying Hilbert-Schmidt
operator

E
[
ψ
(
x ′
)
;0
]
= E

[
EFψ

(
x ′
)
;0
]

=

∫
0

∫
X
C
(
x, x ′

)
ψ (x) dµ (x) dµ (γ )

a
=

∫
0

∫
X
C
(
x, x ′

)
ψ (x) dµ (γ x) (19)

where a is due to Fubini-Tonelli’s theorem. And, this ends the
proof.
If sampling matrix 0 qualifies RIP condition, then

compressed sensing Hilbert-Schmidt operator exists with
high probability. Also, Theorem 6 satisfies the Fubini-Tonelli

1X∗ is a vector space with continuous linear functional elements acting on
vector space X .

2F : 0X × 0X ′ → CY ∈ L (0).
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theorem [19, Theorem 1.27], if and only if, the sampling
operator 0 satisfies completeness and absolute integrability
conditions [20, Remark 1.7.20].
Remark 1 (Extension to Beyond Combinatorial Search):

The operator Gc formulation in Definition 6 predicts
important property. The compressed sensing Hilbert Schmidt
operator Gc expands to the combinatorial search region
beyond the theoretical `1 transition phase.
Remark 2 Universality of Solution: Universal compressed

sensing aims to reconstruct the sparse vector from under-
sampled measurement y without a priori knowledge about
the structure of the underlying sparse vector. Here, the
structure of the compressible signal is determined mainly
by the probability distribution law that governs the com-
pressibility. The most important consequence of such a
structure is the compressibility level of the signal. However,
the compressibility level is vague since it follows a power
law pattern in the spectral domain and does not follow
the non-zero support definition commonly considered in the
compressed sensing literature [21, Chapter 2]. The support
subset of a compressible signal is obtained through ad-hoc
hard thresholding. In general, hard thresholding can change
the spectral structure of a signal by enforcing significant
entries to zero. In other words, the ad-hoc threshold level
may not reveal the optimum subspace. Considering averaging
property, compressed sensing Hilbert Schmidt operator is
capable of estimating the optimum subspace provided that
the kernel exists. The existence of a kernel, in general,
depends on the random mask used for sampling. Considering
that the kernel is almost zero everywhere, the concentration
of measurement needs to be considered somehow in the
construction of amask. This is proved in the next section while
studying the existence of a kernel for compressed sensing
Hilbert-Schmidt. Considering the fact that the outermost
integral of the Compressed Sensing Hilbert-Schmidt operator
enables to search the whole dual space X∗ and reconstruct
signal space X holistically.

Considering KLE signal reconstruction, we propose
CS-KLE as a compressed sensing reconstruction algorithm
in the following theorem. Note that unlike KLE, which
estimates the measurement vector y, CS-KLE formulation in
the following estimates the non-decreasing rearrangement-
invariant form of the underlying sparse signal.
Theorem 7 (CS-KLE Relation): Let Y (ω, t) = 0 (ω)

X (t) + e be a noisy measurement of compressible random
process X ∈ L2

(
Cd
)
filtered by the sampling process

0 (ω) ∈ L2
(
Cm×d

)
, where ω ∈ � is a random process

path ω → 0 (ω). Also, let CY
(
t, t ′

)
∈ L2

(
Y × Y ′

)
be a

continuous, compact, and positive-semidefinite covariance
matrix of compressed sensing measurement vector Y . Then,
CS-KLE relation is defined as

ess supγi(ω)
∑
i∈[1,d]

∣∣∣√λψ (t) γi (ω)∣∣∣ 7−→ ∥∥X (t) ∥∥1,∞
(20)

for all γi ∈ 0. ‖X (t) ‖1,∞ denotes the non-increasing
rearrangement-invariant of X.

Proof: Considering RIP and imperfect stochastical
orthogonal property, i.e., mutual coherency, we prove that
the convergence of Theorem 7 to `2-error of best s-term
approximation, σs (X)2.∥∥X (t) ∥∥1,∞ ∥∥I− 0∗S (ω) 0S (ω) ∥∥1,∞︸ ︷︷ ︸

≥

∥∥I∥∥
1,∞
−

∥∥0∗S (ω)0S (ω)∥∥1,∞
≤
∥∥∑
i∈S

√
λψ (t) γi (ω)

∥∥
1,∞ (21)

Inequality (21) can be rewritten as∣∣∣∣∥∥X (t) ∥∥1,∞ − ∥∥∑
i∈S

√
λψ (t) γi (ω)

∥∥
1,∞

∣∣∣∣
≤
∥∥0∗S (ω) 0S (ω) ∥∥∞∥∥X (t) ∥∥1,∞ + ηY
≤ C2µ

∥∥X (t) ∥∥1,∞ + ηY
a
≤ C2µ+ ηY (22)

for some constantC2 ≥ 0, ηY is least-square estimation error,
and (a) is because of compactness or

∥∥X (t) ∥∥
∞
≤ 1. And this

proves Theorem 7.
Theorem 7 integrates random sampling of compressed

sensing with KLE random weights, which describes the
stochastic behavior of the random process, to find the support
subset of X .Intuitively, Theorem 7 can be described using
Theorem (2), where the left-hand side can be written in the
form of the direct sum of subspaces. On the left-hand side,
the coordinates of pivots in eigenfunctions coincide with the
dominant components of X∗. The random sampling matrix
evaluates the eigenfunction coordinate-wise to uncover the
location of pivots. As it has been proved in [13], this
observation is an example of the Schwartz class test functions.

E. EXISTENCE OF KERNEL FOR COMPRESSED SENSING
HILBERT-SCHMIDT INTEGRAL OPERATOR
An important question is if the proper orthogonal decom-
position formulation in the previous section can be used for
compressed sensing. More accurate questions are (1) if there
is a kernel for compressed sensing Hilbert-Schmidt operator?
And (2) if the answer is YES, what are the conditions for
the compressed sensing operator to have a kernel? These
questions are answered in this section. As mentioned in [17,
Section 173], it is not easy to compute integral operator Gc
from a given kernel matrix in general. Then, related to the
questions above, the following statements are equivalent

1) The compressed sensing sampling operator has no
kernel.

2) The compressed sensing sampling operator is not an
integral operator.

3) The compressed sensing sampling operator does not
solve the problem.

The answer to the first question is YES with some
probability. The condition for the compressed sensing
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sampling operator to be an integral operator is the same as
RIP. As it is described in the following, the existence of
a kernel for the compressed sensing sampling operator is
probabilistic and is a function of the undersampling ratio δ
and random mask concentration (for continuous spectrum
scenarios). In compressed sensing, one aims to find an
optimum pseudospectrum subsetF inX using undersampled
operator 0. However, it is known that the identity operator
obtained for an interval is not an integral operator in general.
For convenience, we prove the idea in the following theorem.
Theorem 8 (Identity and Integral Operators): [22, Theo-

rem 8.5] The identity operator on interval L2 (t, 1) does not
admit integral operator.

Theorem 8 indicates that the compressed sensing sampling
operator measured that collects samples from a certain
interval with a high probability does not have a kernel.
However, for a properly randomized operator that covers all
the L2 (X) and also a sufficient number of measurements,
the compressed-sensing integral operator tends to have a
kernel. The randomness is the crucial condition to avoid the
condition f ∈ L2 (1, t). The condition is well-qualified for
f (x) = ψ (x), where ψ (x) is the eigenfunction obtained
from Mercer’s Theorem 5. For a given ψ (x), the random
location of the pivots along ψ (x) prevents the concentration
of ψ (x) in a certain region [t, 1] in general. However, if the
signal of interest has a continuous extension in the spectral
domain, i.e., in the dual space X∗, then one should properly
select a mask to collect enough samples from continuous
extensions. As a result, a sufficient number of measurements
MS , either uniformly at random or using a random mask,
generates random entries at custom from the whole L2

(
X ′
)

domain. Then, the integral operator has a kernel with respect
to the coordinates of the pivots and the Borel σ -algebra. The
existence of the integral operator entangled with the pivots
to be in the correct coordinates in ψ

(
x ′
)
. As a result, for a

sufficient number of measurements, the integral operator can
recover the underlying pivots almost surely.

The sufficient number of measurements is not a quan-
titative criterion and can be understood twofold: (1) for
a given sparsity level ρ, there is a sufficient number of
measurements that provides optimum subspace, equivalent to
minimal linear functional [13], and (2) the optimum subspace
is the function of the number of measurement, i.e., we are
only able to recover certain subsets of an actual support
subset given the undersampling ration δ. Obviously, this
is equivalent to the transition phase formulation proposed
by Donoho et al. [23].

Naturally, the question that arises here is the probability
of compressed sensing sampling operator to have a ker-
nel for given undersampling ratio δ. In the compressed
sensing literature, including [21, Chapters 7, and 8] [24],
the probability of success is derived from the Bernstein
inequality

Pr

(∣∣∣∣∣
M−1∑
l=0

εlal

∣∣∣∣∣ > u‖a‖2

)
<

1
1− δ

e−u
2δ (23)

where a ∈ L2
(
Kd
)
is an estimated sequence, {εl} for all

l ∈ [0,M − 1] is Steinhaus sequence, 0 < δ < 1,
u > 0. Here, we should be careful about two pitfalls using
(25). First, the left-hand side of the Bernstein inequality
expresses the probability, while the right-hand side is a more
analytic expression since it is a function of the fixed δ

and u. The value of u depends on the underlying problem
and should be chosen such that it leads to probabilistic
results rather than a certain outcome. For this, δ and u
should be determined asymptotically for a sufficiently large
number of trials. However, after an even sufficiently large
number of trials, it may be difficult to determine the proper
value of u. Second, we should carefully define the quality
for which the probability is measured. The probability is
assigned for the compressed sensing sampling operator to be
an integral operator. Due to ambiguity in the definition of
compressibility, such a quality is not a binary decision, but
it is best characterized by a probability of the reconstruction
error. In the following, δ denotes undersampling ratio,
and u is the mean square error measured for orthogonal
decomposition as

∣∣X⊥n ∣∣2 = |X − Xn|2, where X⊥n ⊂ X
is the orthogonal complement subspace of Xn. The next
two theorems prove the existence of a sufficient number of
measurements MS .
Theorem 9 (Integral Operator for δ→ 0): Let X =

Xn + X⊥n be an optimum orthogonal decomposition. The
probability of the Compressed Sensing Hilbert-Schmidt
operator to have a kernel approaches zeros as δ → 0.
Equivalently

Pr
(
‖X⊥n ‖ ≤ u

∣∣M , δ→ 0
)
≈ 0 (24)

Proof: Let rephrase (24) as

Pr
(
‖X⊥n ‖≤u

∣∣M , δ→ 0
)
=1− Pr

(
‖X⊥n ‖>u

∣∣M , δ→ 0
)

(25)

The second statement on the right-hand side can be obtained
using conditional Benstein inequality

Pr
(
‖X⊥n ‖ > u

∣∣M , δ→ 0
)
<

1
1− δ

e−u
2δ , u > 0 (26)

Since limδ→0
1

1−δ e
−u2δ
= 1,

Pr
(
‖X⊥n ‖ ≤ u

∣∣M , δ→ 0
)
= 1− 1 = 0 (27)

Theorem 10 Integral Operator for δ → 1: As δ

approaches 1, the probability that the Compressed Sensing
Hilbert-Schmidt operator to have a kernel approaches one.

Proof: To prove that the compressed sensing integral
operator has a kernel with probability one for δ→ 1, we need
to show that the following inequality is satisfied for some u

Pr
(
‖X⊥n ‖ < 0.1

∣∣∣∣MS , δ→ 1
)
→ 1 (28)
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For δ → 1, the limit of the right-hand side in (25) can be
found using L’Hôpital’s theorem as

lim
δ→1

1
1− δ

e−u
2δ
= lim
δ→1

u2e−u
2δ
= u2e−u

2
(29)

and substituting u = 0.1, the probability that the compressed
sensing integral operator to have kernel is obtained as

Pr
(
‖4‖ < 0.1

∣∣∣∣MS , δ→ 1
)
= 1− 0.12e−0.1

2
≈ 1 (30)

And this proves the theorem.

F. CS-KLE PROPERTIES AND CONVERGENCE WITH
RESPECT TO RIP
Corollary 2 (CS-KLE and Doubly Orthogonal Property):

Let X be a compressible random process with continuous
spectral extension. Considering CS-KLE, deterministic
orthogonality is guaranteed via mutually orthogonal eigen-
functions. However, doubly orthogonality is disrupted slightly
by the violation of stochastic orthogonality as

C
(
Y ,Y ′

)
= X0 (ω)∗ 0 (ω)X ′ + X4 + E (31)

Proof:

C
(
Y ,Y ′

)
=

d∑
i=1

d∑
j=1

(xi ⊗ γi)⊗
(
x ′j ⊗ γj

)

=

d∑
i=1

d∑
j=1

xiγ ∗i γjx
′
∗

j

= X0∗ (ω) 0 (ω)X ′ + X4 + E (32)

From Theorem 3 and 2, one can conclude that Theorem 7
represents a Hilbert space H as a normal and completely
continuous operator, 0 = D + 4 + N (0) (analogous to
X = XD + X4 + E). Here, D is a diagonal operator, 4
is a completely continuous spectral extension operator, and
N (0) is the null space corresponding to ‖E‖ < ε for
sufficiently small ε ∈ R+ ∪ {0}. This is equivalent to the
optimum orthogonal decomposition where the left-hand side
of (7) converges in norm (also called quadratic norm [8,
Chapter X]) to X (t) such that

‖E‖ =
∥∥∥∥ sup
γi(ω)

∑
i∈[d]

∣∣∣√λψ (t) γi (ω)∣∣∣− ∥∥X (t) ∥∥1,∞∥∥∥∥
= E

{ ∣∣∣∣∣∣ supγi(ω)

∑
i∈[d]

∣∣∣√λψ (t) γi (ω)∣∣∣− ∥∥X (t) ∥∥1,∞
∣∣∣∣∣∣
2}
< ε

(33)

The direct consequence of Corollary 2 is the violation of
the separable Hilbert space assumption. It is already known
that as the dictionary gets larger, it becomes more difficult
for the sparse recovery algorithm to distinguish nontrivial
supports from the surrounding trivial basis in the given
neighborhood of the bases. In addition, (32) illustrates the

direct impact of the mutual coherency on the covariance
matrix as the off-diagonal components are generated because
of the violation of stochastical orthogonality. Note how the
Compressed Sensing Hilbert-Schmidt kernel depends on the
basis in comparison to ideal incoherency in Theorem 4.
Properties 3: (Convergence Properties) Considering the

imperfect doubly orthogonal property, the convergence of
CS-KLE is characterized by Restricted Isometry Prop-
erty (RIP) and quadratic convergence. For the estimated
support set S
(a) RIP∥∥0∗S0S − I∥∥2→2 ≤ µ1 (s− 1) , forµ1 (s− 1) < 1

(34)

(b) Quadratic convergence

E

{ ∣∣∣∣∣Y (ω′, t)−∑
i∈S

√
λψ (t) γi (ω)

∣∣∣∣∣
2 }

≤ C2

(
1−

δs

s− 1

)
λ (35)

Proof: (a) characterizes separability of (20). It can
be proved with respect to RIP and mutual coherency as
‖0∗S0S − I‖2→2 ≤ δs and δs ≤ µ1 (s− 1) [21, Chapter 6].

(b) Considering convergence in quadratic mean

E

{ ∣∣∣∣∣Y (ω, t)−∑
i∈S

√
λψ (t) γi (ω)

∣∣∣∣∣
2 }

= E{|Y (ω, t)|2
}
− 2E

{
Y (t, ω)

∑
i∈S

√
λψ (t) γi (ω)∗

}

+E

{ ∣∣∣∣∣∑
i∈S

√
λψ (t) γi (ω)

∣∣∣∣∣
2 }

= tr{C
(
t, t ′

)
}

−2E
{∑

i∈S

√
λψ (t) γi (ω)

(∑
i∈S

√
λψ (t) γi (ω)

)∗ }

+E

{∑
i∈S

√
λψ (t) γi (ω)

(∑
i∈S

√
λψ (t) γi (ω)

)∗ }
= tr{C

(
t, t ′

)
}

−E

{∑
i∈S

√
λψ (t) γi (ω)

(∑
i∈S

√
λψ (t) γi (ω)

)∗ }
= λ− E

{∑
i∈S

λψ (t) γi (ω) γi (ω)∗ ψ (t)∗
}

= λ− E

{
λψ (t) ψ (t)∗

}∑
i∈S

γi (ω) γi (ω)
∗

= λ− λE

{
ψ (t) ψ (t)∗

}
0∗S0S

=
(
I− 0∗S0S

)
λ

≤ C1 (1− µ) λ, C1 ≥ 1 (36)
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V. CS-KLE AND GREEN’s THEOREM
Theorem 11 (Continuous Comrpessed Sensing and

Green’s Function): The kernel C
(
t, t ′

)
is the Green’s

function of the problem formulated in Theorem 7. Then, the
following properties have been satisfied.∫

t
CY

(
t, t ′

)
X (ω, t) dt 7−→ X

(
ω, t ′

)
(37)∫

t
CY

(
t, t ′

)
X
(
ω, t ′

)
dt ′ 7−→ X (ω, t) (38)

Definition 8 (Green’s Theorem): Let Luψ (t) = f be a
linear algebra problem. By solving this equation, one aims to
find an unknown vector ψ (t). Let L∗ be the adjoint operator
of L. There is a function G

(
t, t ′

)
such that L∗G

(
t − t ′

)
=

δ
(
t − t ′

)
. The Green’s function G

(
t, t ′

)
satisfies

ψ
(
t ′
)
=

∫
ψ (ω, t)G

(
t, t ′

)
dt (39)

Now we can prove Theorem 11.
Proof: By Theorem 7∫

0 (ω)ψ (ω, t) dw 7−→ X
(
ω, t ′

)
(40)

Substituting ψ
(
t ′, ω

)
by Hilbert-Schmidt operator∫

0 (ω)
(
CY

(
t, t ′

)
ψ
(
ω, t ′

)
dt
)
dω 7−→ X

(
ω, t ′

)
(41)

By applying Fubini’s Theorem∫
CY

(
t, t ′

) (
0 (ω)ψ

(
ω, t ′

)
dω
)
dt 7−→ X

(
ω, t ′

)
(42)

Substituting (20) into (42)∫
CY

(
t, t ′

)
X
(
ω, t ′

)
dt ′ 7−→ X (ω, t) (43)

By comparing (43) and (39), one notices that CY
(
t, t ′

)
is the

Green’s function of the (43). The eigenfunction ψ
(
ω, t ′

)
is

derived from the covariance function of Y (ω, t).ψ (ω, t) can
be generalized using the chain rule as a function of a random
sampling process 4(ω) : ω → X (ω, t) as ψ (t, 4 (ω)).
Then, we obtain∫

0 (ω)ψ (t, 4 (ω)) dω 7−→ X
(
ω, t ′

)
(44)∫

0 (ω) (ψ (t) ◦4) (ω) dω 7−→ X
(
ω, t ′

)
(45)∫

(0 (ω)ψ (t))4 (ω) dω 7−→ X
(
ω, t ′

)
(46)

where ◦ is for function composition. (46) can be written as∫
X (t, ω)

(∫
CY

(
t, t ′

)
e−j2πω

′t ′dt ′
)
dω 7−→ X

(
ω′, t

)
(47)

Theorem 11 has two main advantages: (1) CS-KLE
formulation in Theorem 6 relies on Mercer’s theorem.

The computation of eigenfunctions using Mercer’s theorem
requires eigendecomposition of the kernel that may cause a
memory bottleneck for large data. Also, from the computa-
tional point of view, the outermost integral in (47) breaks
the integration into finitely many Fourier transforms with
fast and parallel implementation possibilities. And (2) the
outermost integral in (47) guarantees continuous spectrum
approximation using a smaller undersampling ratio δ.

VI. NUMERICAL RESULTS
A. TRANSITION PHASE — CS-KLE VS. LASSO
Fig. 2 shows the transition phase for CS-KLE for noiseless
and noisy measurements with SNR = {∞, 15, 3}dB.
Fig. 2a shows that the CS-KLE divides the error regions
almost vertically as a function of undersampling ratio δ.
In other words, the performance of CS-KLE becomes
almost independent of the ρ, and only it depends on the
undersampling rate δ. This behavior is also observed for
different ranges of SNR. For comparison, the theoretical `1
transition phase for LASSO has shown in Fig. 2d with a
median error between 0.3 and 0.4 at SNR = 15dB. Obviously,
themedian error of LASSO is a function of both δ and ρ, since
there is no a certain δ for which the LASSO error estimation
is constant for the whole range of sparsity ρ.

From Fig. 2b at SNR = 15dB, it is obvious that as
δ → 0.7, the transition phase has an error performance
approximately the same as LASSO with the advantage that
CS-KLE acts independently of sparsity level ρ. For δ ' 0.8,
the median error drops to approximately 0.3. We conclude
that the optimum undersampling ratio with respect to the
Nyquist rate lies about 0.6 / δ, for which CS-KLE converges
for all possible values of ρ with an error less than 0.5. As the
SNR decreases further to 3dB in Fig. 2c, the median error
of 0.4 can be achieved if δ ' 0.8.
We end this section with the following conclusion. For

a large range of SNR, there is a reasonable range of
undersampling ratio δ where CS-KLE can solve compressed
sensing problems for the almost whole range of sparsity levels
ρ up to the median error of 0.4.

B. CONTINUOUS SPECTRUM APPROXIMATION OF
INFINITE-DIMENSIONAL SIGNAL
This section evaluates the reconstruction of the
infinite-dimensional signal in (48) with main signal space g
and continuous spectral extensions h1 and h2.

f (t) = g+ h1 + h2
= sin (2π ft)+ h1 + h2

(48)

In (48), d = +∞, f = 2 is the fundamental frequency.
h1, h2 are the first and second infinite-dimensional local
fluctuations with amplitudes of A1 = 0.15 and A2 = 0.25,
respectively.

Fig. 3a shows the signal in (48) with a finite-dimensional
spectrum and continuous spectral extensions of h1 and h2
in Fig. 3c-3d, respectively. Obviously, d → ∞. Fig. 4
shows the approximated spectrum and reconstructed signal
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FIGURE 2. Median NMSE, (a) noiseless measurements, infinite SNR, (b) noisy data, SNR = 15dB, (c) noisy data, SNR = 3dB, (d) LASSO, SNR = 15dB.

FIGURE 3. Infinite-dimensional signal, (a) Original signal f
(
t
)
, (b) infinite-dimensional continuous spectrum of f

(
t
)
, (c) infinite-dimensional

continuous spectrum of h1
(
t
)
, (d) infinite-dimensional continuous spectrum of h2

(
t
)
.

FIGURE 4. CS-KLE reconstruction using Mercer’s theorem (a) reconstructed semi-infinite-dimensional signal,
(b) reconstructed semi-infinite-dimensional continuous spectrum, (c) index-wise spectral overlap with maximum occurs at
n = 786.

for d = 4096 and undersampling rate of δ = 0.9. As shown
in Fig. 4c, the reconstruction process is slow convergence due
to the continuous spectrum. The reconstructed signal using
CS-KLE via Mercer’s theorem is shown in Fig. 4a.

In [13], the authors have proved that in order to approx-
imate continuous spectrum, it is sufficient to approximate
the set of n pseudospectrum. As shown in Fig. 4c, the
maximum spectral overlap of 0.999 has been achieved for the
n-pseudospectrum with n = 786 components. Accordingly,
a mean square error of 0.0127 is obtained.

C. COMPARISON WITH GENERALIZED SAMPLING
COMPRESSED SENSING
This section compares CS-KLE with the continuous
compressed sensing formulation recommended using the
Generalized Sampling theorem [25, Section 7]. The GS-CS
approach relies on the perfect knowledge about the distribu-
tion of the original signal space g and the continuous spectral
extensions. This is reflected in the set of measurements
f ∈ span{ϕj}j∈B [25, Section 4.3 - Equation 4.9 and
Equation 4.8], where f contains the exact local property
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FIGURE 5. GS-CS failure due to lack of information about the distribution of data. (a) Original signal space, reproduced
from [26] (b) reconstructed signal using compressed sensing measurement vector, which lacks information about local
perturbation,, reproduced from [26] (c) reconstructed signal using compressed sensing measurement vector contains
information about two out of four perturbations.

of the continuous spectral extension. This is equivalent to
saying that the compressed sensing measurement vectors are
constructed with a perfect priori knowledge about the local
distribution of the signal, i.e., it contains all the information
required for the perfect recovery of the signal. We examine
two scenarios in that GS-CS collapses due to partial priori
knowledge about the distribution of the signal.

The first scenario shown in Fig. 5 occurs when the
compressed sensing measurement vector does not contain
perfect information about the continuous spectral extension.
Two examples are given. First, when the knowledge about
the local distribution of the continuous spectral extension is
absent from the measurement vector, as shown in Fig. 5b.
Obviously, the original signal space g has been recovered
properly; however, the local perturbations h are completely
ignored. This is due to the fact that the approximated
spectrum lacks the spectrum of the continuous extension
portion corresponding to the h. In the second example,
it is assumed that the compressed sensing measurement
vector contains only partial information about the local
perturbations, e.g., two out of four local spikes. Then, as it
is observed in Fig. 5c, the recovered signal recovers two of
the local perturbations.

The second scenario occurs when the compressed sensing
measurement vector contains information about the fake local
perturbation. As shown in Fig. 6b, the GS-CS predicts local
perturbation in recovered signals, which do not exist in the
actual signal space given in Fig. 6a.

The two scenarios discussed above show that GS-CS
only is feasible if one has perfect knowledge of the global
and local distribution of the signal. Compared to GS-CS,
CS-KLE approximates the continuous spectrum of an
infinite-dimensional signal with proper local perturbation
without a priori knowledge about the distribution of the
spectrum of a signal. Fig. 7 compares GC-SC with CS-KLE.
GS-CS leverages the perfect knowledge about the distribution
of the signal, but CS-KLE samples DFT basis to generate
samplingmatrix. Also, it is obvious that CS-KLE reconstructs

FIGURE 6. GS-CS failure due to non-existence distribution, reproduced
from [26]. (a) Original signal space, reproduced from [26],
(b) reconstructed signal using compressed sensing measurement vector
with non-existence perturbation.

the infinite-dimensional signal more accurately.We conclude
this section with a claim that the CS-KLE approach provides a
universal solution for compressed sensing in the sense that it
does not require priori knowledge about the local and global
distributions of the signal.

D. IMAGE RECONSTRUCTION
As discussed in section II, images are the examples of
the signals that are not sparse in the Fourier domain.
In image processing, sampling is performed not uniformly
at random but randomly with respect to the weights that
are determined by a certain law. While the mask used to
generate the sampling operator itself is not unique, the
requirements to design an effective mask are unique. In order
to reconstruct MRI images with sufficient resolution, one
needs to generate a mask that samples lower frequency
components heavier than the higher frequency components.
Obviously, the deviation from the uniform random sampling
increases the cost of measurement and reconstruction. Since
high-frequency components lie outward in the K-space, one
can generate a mask that puts a larger weight sampling the
inward frequency components.
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FIGURE 7. Comparing the performance of GS-CS and CS-KLE reconstructing signal with continuous spectral extension.
(a) GS-CS, reproduced from [26], (b) CS-KLE through Mercer’s theorem, (c) CS-KLE through Green’s function.

FIGURE 8. MRI reconstruction using CS-KLE. (a) original 160× 160 image, (b) reconstructed image, (c) PSF and transition
point detect at n = 21482.

This section studies the degree of continuous spectral
extension of the images in the Fourier domain. In particular,
we are interested to see what is the range of n in
n-pseudospectral set. Fig. 8c shows the Point Spread
Function, PSF = φ∗ψ∗φψ , where φ is the Fourier transform
of the original image in 8a and ψ is the Fourier transform
of the CS-KLE reconstruction in Fig. 8b using CS-KLE.
The original image has 160 × 160 pixels. The sampling
matrix is generated using a dictionary matrix with a Fourier
basis of size 160 ∗ 160 and an undersampling ratio of
δ = 0.5. Obviously, PSF, which measures the spectral
overlap between the original image and reconstructed image,
saturates at PSF = 0.8 for a certain index n = 21482 in
the directed support set. However, the continuous spectral
extension continues till the n = 25594 where the maximum
is obtained. This indicates that the image in Fig. 8a has
an infinite-dimensional continuous spectrum that occupies
0.9998% of its full spectrum in the Fourier domain.

VII. DISCUSSION AND CONCLUSION
This work proposed CS-KLE algorithm as a universal
continuous compressed sensing scheme for a wide range of
applications. Independent of the application, the numerical
results indicate that CS-KLE algorithm guarantees to recon-
struct the compressible signal with a high probability for the

0.5 / δ / 0.9. For the signals with both Gaussian and
non-Gaussian distributions, the 0.5 / δ / 0.9 provides the
optimum subspace that optimizes spectral overlap between
the reconstructed and the actual signals. Finally, the proposed
algorithm can be applied when the sparsity level of the signal
is unknown, since for almost every possible sparsity level ρ
by setting measurement numbers to satisfy 0.5 / δ / 0.8.

We observed that both formulations of the CS-KLE
through Mercer’s theorem and Green’s function can approx-
imate signals with a continuous spectrum. In particular,
Green’s formulation of the CS-KLE could estimate the
n-pseudospectrum with an integral operator generated with
an undersampling ratio of δ = 0.6. However, Mercer’s
formulation of the CS-KLE needs the undersampling ratio
to be as high as 0.9. We believe that the difference between
the required undersampling ratios of the two formulations is
due to the fact that eigenfunction estimation using Mercer’s
theorem requires a larger number of measurements. However,
in Greens’ function approach, the test function C (t, ω)
obtained using inner integral already provides all the required
spectral components for continuous spectrum approximation.
Another difference between the Mercer’s and Green’s func-
tion formulation of CS-KLE is their complexity. Obviously,
the eigendecomposition of the covariance matrix leads to
a memory bottleneck for large data sets. CS-KLE with
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Green’s function formulation breaks the problem into simple
vector multiplication, which can be handled using parallel
processing. In particular, the CS-KLE through Green’s appli-
cation can be potentially solved using Kilo-core GPGPU,
which not only prevents memory bottleneck bit it also
decreases convergence time significantly.

Compared to GS-CS, CS-KLE does not require knowledge
about the distribution of data. It has been shown that
by adopting a proper philosophy, n-pseudospectrum can
approximate the continuous spectrum of the continuous
operators. The optimum subspace n (resp. the optimum
n-pseudospectrum for semi-infinite and infinite-dimensional
signal) has been computed by measuring spectral overlap
between the estimated spectrum and actual signal spec-
trum. It is obvious that such a measurement requires
knowledge about the actual signal, which does not sound
feasible. Measuring optimum subspace n (resp. the optimum
n-pseudospectrum) from a compressed sensing measurement
vector y is a subject have not been addressed in this work.
Readers can refer to [13], where compressible signals are
studied as locally convex spaces.
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