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ABSTRACT In recent times, Distributed Generation (DG) penetration, especially, through Renewable
Energy Sources (RES) has been growing immensely due to marginal carbon footprints. Furthermore, they
make system more reliable by minimizing the voltage deviation of the distribution network. Nevertheless,
to exploit the DGs in the best manner, they need to be sited and rated optimally. Diverse solutions exist
for the problem mainly classified as: analytical approaches, classical non-linear optimization algorithms
and meta-heuristic methods. With the objective of minimizing power loss, this manuscript proposes a
novel hybrid meta-heuristics approach: Particle Swarm Optimization-Coral Reef Optimization (PSO-CRO)
for identifying an optimum positioning and rating of Type-1, Type-2 & Type-3 DGs (at 0.82 optimal
power factor) in IEEE 33, 69 & 118 bus Radial Distributed System (RDS). Furthermore, the results from
the proposed hypothesis are compared with its prevalent peers, namely, PSO, CRO, Gravitational Search
Algorithm (GSA), PSO-GSA and PSO-GreyWolf Optimization (PSO-GWO) etc. The results of the proposed
algorithm are also compared with the results of GAMS/CONOPT commercial solver. The simulation results
prove the robustness, higher efficacy and faster convergence of the proposed method when applied to larger
distribution systems.

INDEX TERMS Radial distribution network, power loss minimization, optimal DG integration, coral reef
optimization (CRO), particle swarm optimization (PSO).

LIST OF ABBREVIATIONS
PLoss system active power loss.
Qa reactive power at bus a.
Qb reactive power at bus b.
δa, δb voltage angles at bus a and b respectively.
Vb voltage in pu at bus b.
xab reactance of the line connecting bus a and b.
PTG,grid total active power injected though grid.
PTD,load total active power demand by the connected

loads.
QTG,grid total reactive power injected though grid.
QTD,load total reactive power demand by the connected

loads.
STD,load total apparent power demand by the connected

loads.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaodong Liang .

Vmin, Vmax minimum and maximum voltage limit.
PT−1DG size of Type-1 DG.
ST−3DG size of Type-3 DG.
ρ0 the ratio of free and occupied squares.
1-Fb brooders.
gbest global best solution.
w Inertia weight.
Pa active power at bus a.
Pb active power at bus b.
αab, βab loss coefficients.
Va voltage in pu at bus a.
rab resistance of the line connecting bus a

and b.
zab impedance of the line connecting bus a

and b.
PTG,DG total active power injected through DG.
PTLoss total system active power loss.

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 80623

https://orcid.org/0000-0003-1661-7702
https://orcid.org/0000-0001-8323-6585
https://orcid.org/0000-0003-0995-5332
https://orcid.org/0000-0002-8089-5419


L. K. Yadav et al.: Novel Real Valued Improved Coral-Reef Optimization Algorithm

QTG,DG total reactive power injected through DG.
QTLoss total system reactive power loss.
STLoss total system apparent power loss.
Ik , I ratedk current and rated current of branch k.
QT−2DG size of Type-2 DG.
∧ N ×M reef grid.
Fb broadcast spawners.
Fd fraction of corals are depredated.
k number of attempts given to a larva to settle.
c1, c2 individual cognition and social learning param-

eter.

I. INTRODUCTION
An electrical power network consists of a transmission sys-
tem and a distribution system. A distribution network is
usually a radial or weekly connected ring type system that
draws power from a single generator bus and transmits it
to individual load buses. Such type of structures have high
R/X ratio which results in high power loss as well as low
voltage profile [1]–[3]. Additionally, industrial loads often
cause dramatic load variations that causes voltage collapses.

Preventive measures like ‘‘feeder reconfiguration’’ [4], [5]
and ‘‘capacitor bank/DG placement’’ [6] may be employed to
reduce high power loss and low voltage profile respectively.
Distribution systems have various tie-switches which may
be opened/closed in such a manner that the power loss is
minimized which inherently improves voltage profile.

Generally, low rating renewable energy sources come in
the category of DGs. They have emerged as the alternative
solution to power loss and voltage regulation problems in
RDS. Proper sizing and placing of DGs reduces total active
power loss [7] and improve the voltage profile of each bus [8].
DGs can be employed to inject the appropriate type of power
as enlisted in table 1. DGs may also be utilized for reliability
augmentation and future investment deferral on the system
equipment.

Contemporarily most power system optimization problems
are being catered through metaheuristic algorithms. Numer-
ous applications of metaheuristic optimization approaches
in power system include optimal DG integration [9], net-
work reconfiguration [10], optimal phasor measurement
unit (PMU) placement [11], optimal scheduling of genera-
tors [12], [13], real time economic dispatch with DGs [14],
[15] and VAR compensation [16].

Essentially, DGs integration problem encapsulates the
optimal siting and sizing of utility owned DGs in RDS.
The problem is extremely complex and non-linear in nature.
The problem can be postulated as single or multi objec-
tive by considering the power loss minimization, voltage
profile improvement, network reinforcement, cost minimiza-
tion, reliability enhancement, and reduction of environmental
emissions pertaining to techno-economic benefits. [17], [18].
Copious methodologies are available for the said problem
in the scripts like analytical approach, classical non-linear
optimization algorithms and bio-inspired approaches [19].

Bio-inspired algorithms used for the for DG allocation
and sizing problem include particle swarm optimization
(PSO) [20], improved PSO (IPSO) [21], genetic algo-
rithm (GA) [22], hybrid GA-PSO algorithm [23], harmony
search algorithm (HS) [24], big bang-big crunch algorithm
(BBBCA) [25], [26], grey wolf optimization (GWO) [27],
Genetic Algorithm-Tabu Search (GA-TS) [28], Artificial Bee
Colony (ABC) [29] and PSO & shuffled frog leaping algo-
rithm (PSO-SLF) [30] etc.

A. LITERATURE REVIEW
Most researchers use power loss minimization as the fit-
ness function for the problem of optimal siting & sizing
of DG. [31] utilized GA-PSO to optimize the size of DG
and also determine the site of the same by taking active,
reactive power loss & voltage deviation as an weighted fit-
ness function and the results were compared with GA and
PSO individually with DG and without DG. In [32], authors
proposed a mixed integer conic programming (MICP) model
to find the optimal type, size and site of DG to minimize
the cost in several aspects objective function, investment,
production, CO2 emission and load shedding for various
cases likewhen considering only gas turbine generation, wind
turbine and energy storage device (ESD), PV generation,
intermittent of DG and ESD and considering all alternatives.
The proposed approach is directly applied to the application.
In [33] Coyote Optimization Algorithm (COA), a two stage
optimization approach has been employed for optimal zero
power factor DG integration in 123-bus IEEE network. Volt-
age regulator tap and power loss minimization has been taken
as objective function. Results has been compared with that
of classical mixed-integer nonlinear programming, GA, PSO
and GWO. A hybrid of empirical discrete metaheuristic &
steepest descent method is proposed in [34] to solve problem
of optimal DG location-allocation by minimizing power loss.
Qualitative and quantitative analysis in terms of efficiency,
convergence & robustness has been carried out on 34-bus
IEEE network. Optimal planning of only Type-1 DG has
been presented in the paper. An improved parameter PSO and
sequential quadratic programming (SQP) has been proposed
in [35] for optimal planning of individual andmultiple Type-1
DGs with the aim of minimizing active power loss. The
results are tested over 33 & 69-bus IEEE networks. The novel
quasi-op-positional chaotic symbiotic organisms search algo-
rithm has been proposed in [36]. The aim is to minimize sys-
tem power loss and place themultiple Type-1 and Type-2DGs
with appropriate size at optimal location in 33 & 69-bus IEEE
networks. Every optimization algorithm may not be suitable
for finding the optimal solution of each type of DG. Uniform
Voltage Distribution Algorithm (UVDA) proposed in [37]
is not suitable for optimal siting and sizing of Type-2 DG.
Authors in [38] came up with new hybrid of Cuckoo Search
technique & Grasshopper Optimization Algorithm for opti-
mal planning of Type-1DG. The objective function adopted is
weighted sum of loss, voltage deviation and cost of DG power
generated. Single and multi-objective based improved harris
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hawks optimization algorithm has been presented in [39] for
optimal integration of unity pf, 0.95 lead pf and optimal pf
DGs in 33& 69-bus IEEE networks. An improved eco system
based optimization approach is implemented by the authors
in [40] for optimal integration of unity pf, fixed pf & optimal
pf DGs in 33 & 69-bus IEEE networks.

B. CONTRIBUTION AND PAPER ORGANIZATION
Radial distribution system has large R/X ratio that results
in high power loss during power transmission. Now-a-days
optimally placed distributed generators (DGs) are utilised
to generate power in decentralised manner to compensate
the power loss in the distribution system. Several work has
been reported in literature on optimal placement of dis-
tributed generators for loss minimization. These methodolo-
gies may broadly be classified as analytical approaches and
metaheuristic approaches. Analytical approaches are found
most accurate in solving optimal DG integration problem but
the major drawback is that these are not suitable for large
power system networks [41]. The drawback of the analyt-
ical approaches has been overcome by classical non-linear
optimization algorithms. But such optimization algorithms
generally get stuck at local minima and fail to find optimal
solution [41].

Lately, meta heuristic optimization techniques have been
employed by several researchers for a variety of optimization
problems. The convergence and efficacy of the metaheuristic
approaches can further be improved by hybridizing two opti-
mization techniques. This motivated authors of the paper to
propose a new metaheuristic approach for optimal placement
of DGs by hybridizing particle swarm optimization (PSO)
and coral reef optimization (CRO). The exploration capability
of PSO and the exploitation capability of Coral reef opti-
mization (CRO) approach enables the proposedmetaheuristic
approach to avoid local minima and reach global optimal
solution. Convergence and accuracy of the effectiveness of
PSO-CRO is tested over five test functions recommended by
IEEE. Further, the applicability of the approach is demon-
strated on 33, 69 and 118-bus IEEE networks for optimal inte-
gration of Type-1, Type-2 and Type-3 DGs. Also, the results
obtained by the proposed approach for Type-1, Type-2 and
Type-3 DGs are compared with PSO, CRO, GSA, PSO-GSA,
PSO-GWO, GAMS/CONOPT commercial solver [42] and
some other existing work reported in the literature. Investiga-
tions carried out on three test systems shows the preeminence
of proposed approach over existing approaches.

The paper has been structured as follows. Section II
provides an overview of DG classification based on
of active/reactive power absorption/dispatch to/from grid.
Section III provides mathematical outlook of the problem.
Section IV depicts the fundamentals of the proposed method.
Section V confers the results of the various methods for
Type-1, Type-2 & Type-3 DGs on both 33, 69 & 118 bus
systems and critically compares the results. Statistical anal-
ysis proves the superiority of the proposed approach over
PSO & CRO. Simulation results depict the optimal size of

TABLE 1. Categorisation of DGs.

DGs, system power loss corresponding to the optimal DG
size and voltage profile for 33, 69 & 118 bus IEEE net-
works. Section VI summarizes the method’s conceptual and
programming simplicity, fastness and efficacy and its ability
to identify the optimal solution in all types of RDS.

II. DG CATEGORIZATION
Table 1 categorizes different types of DGs where ‘‘+′′ sign
indicates injection of real/reactive power to the system,
whereas, ‘‘−′′ sign indicates absorption of these. Zero indi-
cates neither injection nor absorption.

Distributed generators having unity power factor and
injecting only active power to the power system (like PV cell
and fuel cell) falls into category of Type-1 DG. Zero power
factor DGs (like KVAr compensator, synchronous condensers
and capacitors) inject only reactive power to the power system
and falls in Type-2 category of DGs. Distributed genera-
tors with leading power factor such as diesel genset that
injects both active and reactive power to the power system
network fall into the category of Type-3 DG. Type-4 DG
injects active power to the power system and absorbs reactive
power. Such type of DGs operate at lagging power factor.
Wind turbines/wind energy generator or induction generators
operating at fixed speed fall under the category of Type-4 DG.
However, Doubly Fed Induction Generator (DFIG) can either
absorb or deliver reactive power to the grid. Wind turbine
driven DFIG operating at leading power factor and injecting
reactive power to the grid can be considered as Type 3 DG
instead of Type 4.

In this work, optimal placement of Type-1, Type-2 and
Type-3 DGs have been contemplated.

III. PROBLEM FORMULATION
It is imperative to provide a suitable allocation of DG with
appropriate size as the improper siting and sizing of DGs in
distribution network causes increased power loss, operating
cost, reduces energy transmission and under utilization of
resources. The main objective of the proposed approach is to
minimize total active power loss at maximum load condition
subject to various constraints like load flow equations, volt-
age constraints, current constraints and DG size constraints
of the buses.

The objective function is to be minimize active power
loss [43] by optimally placing and sizing the DG in a given
radial distribution system. Mathematically, it is represented
as:

f = min(PLoss) (1)
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where, PLoss is the loss due to resistance in the distribu-
tion feeder. The power loss in a network is given by equa-
tion (2) [43].

PLoss=
n∑

a=1

n∑
b=1

(αab(PaPb + QaQb)+ βab(QaPb − PaQb))

(2)

The expression represented by equation (2) shows the loss as
a function of active and reactive power injected at each bus in
the network, n denotes the number of buses in the network,
αab and βab are the loss coefficients. These loss coefficients
are calculated as per following:

αab =
rab
VaVb

cos(δa − δb) (3)

βab =
rab
VaVb

sin(δa − δb) (4)

and,

z̄ab = rab + jxab (5)

where z̄ab, rab and xab represent impedance, resistance and
reactance,respectively, of line connecting buses a and b and,
V̄i = Vi 6 δi represents complex voltage at bus i.

Objective function given by equation (1) is to beminimized
subjected to:
1) System power balance equality constraints,

PTG,grid + P
T
G,DG − P

T
D,load = PTLoss (6)

where, PTG,grid is total active power injected though grid,
PTG,DG is total active power injected through DG, PTD,load is
total active power demand by the connected loads and PTLoss
is total system active power loss. Similarly:

QTG,grid + Q
T
G,DG − Q

T
D,load = QTLoss (7)

where, QTG,grid is total reactive power injected though grid,
QTG,DG is total reactive power injected through DG, QTD,load
is total reactive power demand by the connected loads and
QTLoss is total system reactive power loss.
2) Voltage constraints,

Vmin ≤ Va ≤ Vmax (8)

where, Va is the voltage in per unit (pu) at bus ‘a’, Vmin and
Vmax are the minimum and maximum permissible voltage
limits.
3) Current constraint,

Ik ≤ IRatedk (9)

where, IRatedk is rated permissible branch current in branch k.
4) DG size constraints,
For Type-1 DG

PT−1DG ≤ PTD,load + P
T
Loss (10)

where, PT−1DG is the size of Type-1 DG.

For Type-2 DG

QT−2DG ≤ QTD,load + Q
T
Loss (11)

where, QT−2DG is the size of Type-2 DG.
For Type-3 DG

ST−3DG ≤ STD,load + S
T
Loss (12)

where, ST−3DG, STD,load and STLoss represent size of Type-
3 DG, total MVA demand in the system and total MVA loss
in the system, respectively.

The exact values of maximum capacity of Type 1, Type 2
and Type 3 DG are calculated as 3.931 MW, 2.435 MVAr
and 4.624 MVA, respectively for IEEE 33 bus system and
4.025 MW, 2.793 MVAr and 4.899 MVA, respectively for
IEEE 69 bus system. Also, maximum capacity of Type 1,
Type 2 and Type 3DG for IEEE 118 bus system are calculated
as 24.007 MW, 18.019 MVAr and 30.017 MVA respectively.
Considering practical considerations, maximum capacity of
Type 1, Type 2 and Type 3 DG were taken as 4 MW,
2.5MVAr and 4.5MVA, respectively for IEEE 33 bus system,
and 4MW, 3MVAr and 5MVA, respectively for IEEE 69 bus
system and 4MW, 4MVAr and 5MVA respectively for IEEE
118 bus system. The maximum capacity of each type of DG
for the three test systems considered in this work have been
shown in Appendix.

IV. OPTIMAL SITING & SIZING OF DGs
A novel hybrid meta-heuristic optimization technique PSO-
CRO is proposed for optimal integration of classified DGs.
The proposed approach exhibits improved performance, flex-
ibility in decision making, intelligence and high scalable
property over conventional optimization approaches. PSO-
CRO is flexible in decisionmaking and it determines the alter-
nate optimal solutions for a problem. On the contrary, con-
ventional algorithm’s flexibility in decision making depends
on the user’s understanding over problem. Intelligence in the
proposed approach involves a bottom-up approach, which
generates simple basic rules, whereas in conventional algo-
rithm rules generation is problem dependent. Improved CRO
approach is highly scalable but conventional algorithms are
scalable up to certain extend. Less computational time, cost
effectiveness, ease of programming and lesser mathematical
complexity are the advantages of improved CRO approach
over conventional optimization methods.

This section presents the application of the proposed
PSO-CRO approach for finding optimal location and size of
DG for minimum system active power loss. It is apparent
from equation (2) (in Section III) that real power loss (PLoss)
is a function of power injected by DG placed at same bus.
Thus, injected power as well as location of DG can be varied
by proposed approach to get minimum real power loss in the
network. The proposed approach provides information in the
form of optimal size and location of DG. In this work Type 1,
Type 2 and Type 3 DGs are optimally integrated in 33, 69 and
118 bus IEEE networks to minimize objective function, using
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FIGURE 1. General approach for optimal siting & sizing of DG.

PSO-CRO approach. Tominimize the objective function vari-
ables in the decision vector considered in the system are given
below:

Dvar = [DGloc DGsize] (13)

where, decision variables DGloc and DGsize are the DG loca-
tion and DG size.

Both the decision variables (DGloc and DGsize) are initial-
ized randomly and updated at each iteration. Location and
size of each Type of DGs are optimized by the proposed
optimization technique. Optimal location and size of DG is
selected for which the system active power loss (i.e. objective
function) is minimum. By utilizing this approach the optimal
locations of Type-1, Type-2 and Type-3 DGs are computed
and presented in result and discussion section for 33, 69 and
118 bus IEEE networks.

The general approach for optimally siting and sizing of
DGs is shown in the Fig. 1.

A. PROPOSED NOVEL APPROACH: PARTICLE SWARM
OPTIMIZATION-CORAL REEF OPTIMIZATION (PSO-CRO)
The proposed algorithm provides a co-evolutionary hybridiza-
tion of Particle Swarm Optimization and Coral Reef Opti-

mization techniques [44]. The methodology blended the high
exploration capability of PSO with the excellent exploita-
tion proficiency of Coral Reef Optimization. It is termed
as co-evolutionary as both the algorithms run in tandem to
achieve the solution for a given optimization problem.

The following section describes the salient features of the
novel (PSO-CRO).

The flowchart for optimal planning of DG using PSO-CRO
is shown in Fig. 2. The pseudocode for the proposed approach
is shown in the Fig. 4.

1) CORALS AND REEF FORMATION
The corals belong to the Cnidaria phylum. Hundreds of such
corals form a reef. Thus, let ∧ represent an N ×M reef grid.
It is assumed that each block (n, m) of the grid is able to house
a coral Ei,j, representing the different feasible solutions of a
given problem.

2) PROBLEM INITIALIZATION
Initially some squares of ∧ are set to be occupied by corals
and some are left empty. This ratio of the free and the
occupied squares is represented by 0 < ρ0 < 1. Consider
Fig. 3, for a grid of 5 × 5 size, the shaded squares indicate
existence of a coral and the hole represents absence of them.
The occupied places are 14 and the non-occupied are 11.
Thus, ρ0 = 11/14, which is approximately equal to 0.785.
Each feasible solution is accompanied with its health, which
is the value of the objective function when the solution is
substituted into the given function. It is imperative that for
a maximization problem, solutions that have better health
survive, whereas, weaker solutions perish gradually.

Subsequently, a second phase of reef formation through
reproduction is carried out which includes modelling of
sexual reproduction (broadcast spawning and brooding) and
the asexual reproduction (budding). Lastly, the new corals
fight for their place in the reef modelled by the depredation
process.

3) GLOBAL BEST SOLUTION
The exploration feature of the PSO has been incorporated
to improve the efficiency of the CRO. Once the fitness is
determined, the global best variable is used to retain the value
of the solution that generates the best fitness value. Later this
value is used to improve the quality of the solutions generated
through sexual reproduction.

4) SEXUAL REPRODUCTION
(a) External Sexual Reproduction (Broadcast Spawning):
This phenomenon involves a two-step approach explained as
follows:

(1) In any given iteration i, a fraction of the corals is
selected as the broadcast spawners. This fraction is denoted
by, Fb, and and the remaining (1 − Fb) reproduce through
brooding.
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FIGURE 2. Flowchart for optimal siting & sizing of DG using PSO-CRO.

(2) The spawners are selected using the fitness proportion-
ate approach to form couples, which then form a larva through
crossover.

(b) Internal Sexual Reproduction (Brooding): The (1−Fb)
brooders form larvae by a random mutation process.

FIGURE 3. Coral and empty spaces in a reef.

5) LARVAE SETTING
The larvae generated through any of the above mentioned
processes now try to settle in the reef. The setting process of
larvae depends on its fitness value. If the reef space is empty,
the larvae simply occupies it, but if another coral preoccupies
the square then the one with a better fitness value gets the
space. A larva is given k attempts to search and settle in a
square in the grid. The larvae perishes if it fails in k attempts.

6) ASEXUAL REPRODUCTION
In Budding, firstly, all the corals are sorted based on their
fitness values out of which a fraction Fa imitates itself to form
new larvae that again try to settle in the grid.

7) DEPREDATION
The depredation process involves the elimination of weaker
solutions in the group. After the reproduction process is com-
pleted, a fraction Fd of the corals in the reef are depredated
and fresh empty spaces are formed.

The above mentioned process is repeated until the stopping
criteria satisfies. The algorithm for the complete method is
given below.

8) ALGORITHM
Step 1. Initialization

Initially, parameters of both CRO and PSO are initialized.
Size of the reef is selected as per the problem’s requirement
and the corals (feasible solutions) are randomly initialized
and settled into the reef.

Step 2. Fitness evaluation
Fitness for each coral in the reef is evaluated by substituting

the value of each individual set of solutions in the objective
function.

Step 3. Gbest Updation
The solution that has best fitness value is stored in the gbest

variable.
Step 4. Broadcast Spawning
Randomly selected corals depending on the value of Fb are

selected as the spawners. Amongst these spawners pairing is
done for the crossover process, and a spawner is allowed to
parent a larva only once in an iteration. The couple selection
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FIGURE 4. Pseudocode for the proposed PSO-CRO Method.

FIGURE 5. Pseudocode for Broadcast Spawning.

is done using the roulette-wheel selection approach. The
pseudocode code for this is given in the Fig. 5 below.
Step 5. Reef Brooding
The (1 − Fb) corals reproduce asexually by means of a

randommutation process. These larvae then fit for settlement
in the reef.

The pseudocode code for Reef Brooding is given in the
Fig. 6 below.

The larvae are then updated through the gbest information
as well to enhance their quality.

Step 6. Fitness evaluation
The fitness for each larva formed either by broadcasting or

by brooding is evaluated.
Step 7. Larvae setting
Randomly selecting a position in the reef, the larvae try to

settle in the reef. If the (n, m) square is empty the larva will
settle irrespective of its fitness value. If the (n, m) is already
occupied, the larva can only settle, if it has a better fitness

FIGURE 6. Pseudocode for the proposed Reef Brooding.

FIGURE 7. Pseudocode for larvae setting.

FIGURE 8. Pseudocode for Reef Budding.

FIGURE 9. Pseudocode for Depredation.

value than the coral residing there. A maximum of k attempts
is given to a larva to try to occupy a space in the reef, in case
of failure the larva perishes.

The pseudocode for larvae setting is shown in the Fig. 7
below.
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FIGURE 10. Convergence characteristic comparison of PSO-CRO, CRO & PSO on linear scale for dimension D=5 (a) Sphere, (b)
Rosenbrock, (c) Rastrigin, (d) Ackley, (e) Griewank.

Step 8. Reef Budding In budding all the corals in the reef
are sorted as a function of their fitness value, and a fraction
Fa duplicates itself and tries to settle in a different position in
the reef by following the larvae setting process.

The pseudocode for reef budding is shown in the Fig. 8
below.

Step 9. Depredation
At the end of each reproduction stage, Fd fraction of corals

get eliminated, generally that have theworst health in the reef.
The pseudocode for depredation is shown in the Fig. 9

below.
If the stopping criteria is met the processmay be terminated

else, it is repeated from step 3.
To inspect the performance of the metaheuristic techniques

the standard test functions are used. Few of them with mathe-
matical equations are shown in [40]. In accordance authors
have selected five standard test function listed in Table 2
to assess the performance of proposed algorithm in respect
of quality and convergence: Sphere (F1), Rosenbrock (F2),
Rastrigin (F3), Ackley (F4) and Griewank (F5).
Numeric value-based approach is used to inspect the com-

parative performance assessment of proposed algorithm as
compared with PSO and CRO techniques. In this way quality
of the solution is measured by mean/average and standard
deviation (SD) values. Table 3 sum up the convergence pro-
file of the three optimization techniques (PSO-CRO, PSO
and CRO) for five different test functions. The proposed
PSO-CRO approach is better as compared to CRO and PSO,
irrespective of all test function due to lower value of mean and
SD values. To assess the search capability of the proposed

TABLE 2. Representation of test functions.

TABLE 3. Comparative performance assessment of proposed algorithm
on test functions.

approach over PSO and CRO, simulations are carried out
for dimension (D=5) and is shown in Fig. 10. The result
shows that the proposed algorithm has better convergence
characteristic over PSO and CRO.

V. RESULT AND DISCUSSION
A. 33-BUS IEEE NETWORK
The first test system is the 33-bus IEEE network on which
the proposed approach and other optimization algorithms
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FIGURE 11. 33 bus IEEE network.

FIGURE 12. Box plot for Type-1 DG.

are tested for the problem optimal siting and sizing of
individual Type-1, Type-2 & Type-3 DG. This system is
loaded with 3.72 MW of real power, 2.3 MVAr of reac-
tive power. It has 33 buses and 32 branches as shown in
Fig 11. On performing the load flow, the real and reactive
power loss is 210.9983 kW and 135.14 kVAr, respectively
[32]. Table 4 presents the median for 50 runs of optimal
allocation and sizing problem using PSO-CRO, PSO, CRO,
GSA, PSO-GSA, PSO-GWO and CONOPT SOLVER of
GAMS for Type-1, Type-2 & Type-3 DG. Also, various
other methods in literature are compared with the proposed
approach.

The proposed PSO-CRO approach gives better optimal
solution than PSO, CRO, GSA, PSO-GSA, PSO-GWO &
CONOPT SOLVER etc. Also, the median value of opti-
mal size of DGs for 50 runs computed through PSO-CRO
approach is near to the exact solution. The statistical analysis
over optimal solutions by PSO, CRO&PSO-CRO techniques
is discussed in the further subsection.

1) STATISTICAL ANALYSIS
Statistical analysis has been applied to further validate the
approach. Fig. 12, 13 & 14 depict the box plot of 50 runs
for optimal DG size in 33 bus IEEE network with respect to
Type-1, Type-2 & Type-3 DG, respectively.

In context to the Fig. 12, 13 & 14 it is observed that the
proposed method has the best performance as, the median
(shown in Table 5) of the method is closest to the exact
solution (shown in Table 6) of the problem. Additionally,
there are no outliers for the proposed method in any case,
which indicates that it very rarely gets trapped into the local

FIGURE 13. Box plot for Type-2 DG.

FIGURE 14. Box plot for Type-3 DG.

FIGURE 15. Optimal size of DGs at each bus in 33-bus IEEE network using
PSO-CRO.

minima. Also, the Q1 and Q3, boundaries of the box, are
very near to Q2 (median) which indicates that the proposed
method gives the answer with minimum deviation when not
able to converge onto the exact solution.

Table 5 shows the first quartile (i.e. Q1), second quar-
tile/median (i.e. Q2) and third quartile (i.e. Q3) values with
respect to PSO, CRO and PSO-CRO algorithm for Type-1,
Type-2 & Type-3 DG.

Table 6 shows the exact DG size for each type (i.e. type-1,
type-2 & type-3) in 33 bus IEEE network. The exact size of
each DG type is calculated through bisection method.

2) SIMULATION RESULTS
The power loss minimization analysis with the help of PSO-
CRO algorithm, Fig. 15 presents the optimum DG size
of Type-1, Type-2 & Type-3 DGs at each bus in 33 bus
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TABLE 4. Performance analysis of optimal DG integration in 33 bus IEEE network.

FIGURE 16. System power loss for optimal DG size at each bus in 33-bus
IEEE network using PSO-CRO.

FIGURE 17. Voltage profile of 33-bus RDS with and without DGs using
PSO-CRO.

TABLE 5. First quartile (i.e. Q1), second quartile/median (i.e. Q2) and
third quartile (i.e. Q3) values for 33 RDS.

IEEE network. Figure 16 gives the system power loss cor-
responding to optimal DG size of Type-1, Type-2 & Type-
3 DGs at each bus in 33 bus IEEE network. Among the

TABLE 6. Exact DG size.

all-optimum DG sizes, the most suitable value is the one
which corresponds to minimum system power loss. At 6th

bus the system power loss is found minimum for Type-1 and
Type-3 DGs but for Type-2 DG at bus number 30, the system
power loss is found minimum. After individual integration of
various type of DGs with optimal value at appropriate bus,
Fig. 17 shows improved voltage scenario as compared to the
case when there is no DG present in the system. Fig. 17 shows
that by optimal integration of Type-3 DG in the system gives
better improvement in the voltage profile as compared to the
rest of the DGs types.

The average computational time for 50 runs for each
case for 33 bus IEEE network is computed and displayed
in Table 7. It is observed from Table 7 that proposed
PSO-CRO based optimization approach results in least com-
putational time over some existing metaheuristic optimiza-
tion approaches under optimal integration of all the three
types of DGs considered in this work.

B. 69-BUS RADIAL DISTRIBUTION SYSTEM
The second test bed is 69 bus IEEE network on which the pro-
posed approach and other optimization algorithms are tested
for optimal siting and sizing of individual Type-1, Type-2 &
Type-3 DGs. This system is loaded with 3.80 MW of real
power, 2.69 MVAr of reactive power (Fig. 18). Power flow
study shows that the real and reactive power is 225.002 kW
and 102.525 kVAr, respectively [32]. Table 8 presents the
median for 50 runs obtained from the proposed approach

80632 VOLUME 10, 2022



L. K. Yadav et al.: Novel Real Valued Improved Coral-Reef Optimization Algorithm

FIGURE 18. 69 bus IEEE network.

TABLE 7. Average computational time for 33 bus IEEE network.

FIGURE 19. Box plot for Type-1 DG.

PSO-CRO, PSO, CRO, GSA, PSO-GSA, PSO-GWO and
CONOPT SOLVER of GAMS for Type-1, Type-2 & Type-
3DGs. Also, various other methods in literature are compared
with the proposed approach.

The proposed PSO-CRO approach gives better results
than PSO, CRO, GSA, PSO-GSA, PSO-GWO & CONOPT
SOLVER etc. Also, the median value of optimal size of DGs
for 50 runs computed through PSO-CRO approach is nearest
to the exact solution. The statistical analysis over optimal
solutions by PSO, CRO&PSO-CRO techniques is elaborated
further in the following subsection.

1) STATISTICAL ANALYSIS
Fig. 19, 20 & 21 depict the box plot of 50 runs for optimal DG
size in 69 bus IEEE network with respect to Type-1, Type-2
& Type-3 DGs, respectively.

In context to the Fig. 19, 20 & 21, it is observed that the
proposed method has the best performance. As the median

FIGURE 20. Box plot for Type-2 DG.

FIGURE 21. Box plot for Type-3 DG.

(shown in Table 9) of the proposedmethod is nearest the exact
solution (shown in Table 10) of the problem.
Table 9 shows the first quartile (i.e. Q1), second quar-

tile/median (i.e. Q2) and third quartile (i.e. Q3) values with
respect to PSO, CRO and PSO-CRO algorithm for Type-1,
Type-2 & Type-3 DGs.

Table 10 shows the exact DG size for each type (i.e. type-1,
type-2 & type-3) in 69 bus IEEE network. The exact size of
each DG type is calculated through bisection method.

2) SIMULATION RESULTS
By the power loss minimization analysis with the help of
PSO-CRO algorithm, Fig. 22 presents the optimum DG size
of Type-1, Type-2 & Type-3 DGs at each bus in 69 bus IEEE
network. Fig. 23 gives the system power loss corresponding to
optimal DG size of Type-1, Type-2 & Type-3 DGs at each bus
in 69 bus IEEE network. At 61st bus the system power loss
is found minimum for Type 1, Type 2 and Type 3 DGs. After
individual integration of various type of DGs with optimal
value at appropriate bus, Fig. 24 shows improved voltage
scenario as compared to the case when there is no DG present
in the system. Fig. 24 shows that by optimal integration of
type 3 DG in the system gives better improvement in the
voltage profile as compared to the rest type of the DGs.

The average computational time for 50 runs for each
case for 69 bus IEEE network is computed and displayed
in Table 11. It is observed from Table 11 that proposed
PSO-CRO based optimization approach results in mini-
mum computational time compared to some other existing
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TABLE 8. Performance analysis of optimal DG integration in 69 bus IEEE network.

TABLE 9. First quartile (i.e. Q1), second quartile/median (i.e. Q2) and
third quartile (i.e. Q3) values for 69 RDS.

TABLE 10. Exact DG size.

TABLE 11. Average computational time for 69 bus IEEE network.

metaheuristic optimization approaches under placement of all
the three types of DGs considered in the work.

C. 118-BUS RADIAL DISTRIBUTION SYSTEM
The third test bed is 118 bus IEEE network on which the pro-
posed approach and other optimization algorithms are tested
for optimal siting and sizing of individual Type-1, Type-2 &
Type-3 DGs. This system is loaded with 22.709 MW of real
power, 17.041 MVAr of reactive power (Fig. 25). Load flow
shows that the real and reactive power loss is 1298.0916 kW
and 978.736 kVAr, respectively [48]. Table 12 presents the

FIGURE 22. Optimal size of DGs at each bus in 69-bus IEEE network using
PSO-CRO.

FIGURE 23. System power loss for optimal DG size at each bus in 69-bus
IEEE network using PSO-CRO.

FIGURE 24. Voltage profile of 69-bus RDS with and without DGs using
PSO-CRO.

median for 50 runs obtained from the proposed approach
PSO-CRO, PSO, CRO, GSA, PSO-GSA, PSO-GWO and
CONOPT SOLVER of GAMS for Type-1, Type-2 & Type-3
DGs. Also, various other methods in literature are compared
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TABLE 12. Performance analysis of optimal DG integration in 118 bus IEEE network.

FIGURE 25. 118 bus IEEE network.

FIGURE 26. Box plot for Type-1 DG.

with the proposed approach for Type-1, Type-2 & Type-
3 DGs. The proposed PSO-CRO approach gives better objec-
tive value than PSO, CRO, GSA, PSO-GSA and PSO-GWO.
Besides, the median value of optimal size of DGs for 50 runs
computed through PSO-CRO approach is near to the exact
solution. The statistical analysis over optimal solutions by
PSO, CRO&PSO-CRO techniques is discussed in the further
subsection.

1) STATISTICAL ANALYSIS
Fig. 26, 27 & 28 depict the box plot of 50 runs for optimal DG
size in 118 bus IEEE network with respect to Type-1, Type-2
& Type-3 DGs respectively.

FIGURE 27. Box plot for Type-2 DG.

FIGURE 28. Box plot for Type-3 DG.

TABLE 13. First quartile (i.e. Q1), second quartile/median (i.e. Q2) and
third quartile (i.e. Q3) values for 118 RDS.

In context to the Fig. 26, 27 & 28, it is observed that the
proposed method has the best performance. As the median
(shown in Table 13) of the proposed method is nearest to the
exact solution (shown in Table 14) of the problem.
Table 13 shows the first quartile (i.e. Q1), second quar-

tile/median (i.e. Q2) and third quartile (i.e. Q3) values with
respect to PSO, CRO and PSO-CRO algorithm for Type-1,
Type-2 & Type-3 DGs.
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TABLE 14. Exact DG size.

TABLE 15. Average computational time for 118 bus IEEE network.

FIGURE 29. Optimal size of DGs at each bus in 118-bus IEEE network
using PSO-CRO.

FIGURE 30. System power loss for optimal DG size at each bus in 118-bus
IEEE network using PSO-CRO.

Table 14 shows the exact DG size for each type (i.e.
type-1, type-2 & type-3) in 118 bus IEEE network. The
exact size of each DG type is calculated through bisection
method.

2) SIMULATION RESULTS
The power loss minimization analysis with the help of PSO-
CRO algorithm, Fig. 29 presents the optimum DG size of
Type-1, Type-2 & Type-3 DGs at each bus in 118 bus IEEE
network. Fig. 30 gives the system power loss corresponding

FIGURE 31. Voltage profile of 118-bus RDS with and without DGs using
PSO-CRO.

to optimal DG size of Type-1, Type-2 & Type-3 DGs at
each bus in 118 bus IEEE network. At 71st bus the system
power loss is found minimum for type 1 and type 3 DGs.
The optimal solution for type 2 DG is found at 110th bus.
After individual integration of various type of DGs with
optimal value at appropriate bus, Fig. 31 shows improved
voltage scenario as compared to the case when there is no
DG present in the system. Fig. 31 shows that by optimal
integration of type 3 DG in the system gives better improve-
ment in the voltage profile as compared to the rest types
of the DGs.

The average computational time for 50 runs for each case
for 118 bus IEEE network is computed and displayed in
Table 15.

VI. CONCLUSION
This manuscript proposes a novel optimization algorithm
that hybridizes PSO and CRO to overcome the disadvan-
tages of classical non-linear optimization techniques. High
exploration capability of PSO and excellent exploitation pro-
ficiency of CRO has been utilized to develop the novel
optimization method. It enables the proposed metaheuristic
approach not to get trapped at local minima (i.e. the main
drawback of classical non-linear optimization techniques)
and gives global optimal solution. The proposed method is
tested for its convergence rate on various standard test func-
tions. Convergence rate of the proposed approach is found
better as compared to PSO and CRO method.

Investigations for optimal placement of Type-1, Type-2 and
Type-3 DGs on IEEE 33, 69 and 118 bus test systems have
been carried out in the paper and showed proposed approach
to be more effective compared to existing approaches. Sta-
tistical results showed that the proposed method has the best
performance, as the median of the proposed method is nearest
to the exact solution of the problem. Additionally, there are no
outliers for the proposed method in any case, which indicates
that it very rarely gets trapped into the local minima. Also,
the Q1 and Q3, boundaries of the box, are very near to Q2
(median) which indicates that the proposed method gives the
answer with minimum deviation when not able to converge
onto the exact solution.
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Simulation of PSO-CRO has been carried out in the MAT-
LAB software. Simulation results of the proposed approach
present the optimal DG size and location for which system
power loss is minimum. In IEEE 33 bus system the optimal
solution (i.e. location and size) for Type-1, Type-2 and Type-
3 DGs are 6th bus (2.5751 MW), 30th bus (1.2559 MVAr)
and 6th bus (3.0985 MVA), respectively. In IEEE 69 bus
system the optimal solution (i.e. location and size) for Type-
1, Type-2 and Type-3 DGs are 61st bus (1.8666 MW), 61st

bus (1.3285 MVAr) and 61st bus (2.2396 MVA), respec-
tively. In IEEE 118 bus system the optimal solution (i.e.
location and size) for Type-1, Type-2 and Type-3 DGs are
71st bus (3.0073 MW), 110th bus (2.3000 MVAr) and 71st

bus (3.4861 MVA), respectively.
The proposed method is found better based on accuracy,

computational time and convergence rate as compared to
PSO and CRO. The proposed method is compared and tested
on 33, 69 and 118-bus IEEE networks against metaheuristic
algorithms, namely, CRO, PSO, GSA, PSO-GSA & PSO-
GWO as well as on the GAMS/CONOPT commercial solver,
and some other existing approaches. It is observed that pro-
posed approach yields better results for optimal DGs place-
ment compared to existing approaches considered in this
work. In future research, the PSO-CRO approach might be
tested on multi-objective function for optimal DG integration
in radial distribution network as well as meshed system.
Further research may also consider placement of Type-4 DGs
using proposed PSO-CRO based approach.
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