
Received 30 May 2022, accepted 21 July 2022, date of publication 29 July 2022, date of current version 25 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3195046

A Cross-Prefetcher Schedule
Optimization Methodology
RĂZVAN NIŢU 1, LINGFENG PEI 2, AND TREVOR E. CARLSON 2, (Senior Member, IEEE)
1Automatic Control and Engineering Faculty, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
2Department of Computer Science, National University of Singapore, Singapore 119077

Corresponding author: Răzvan Niţu (razvan.nitu1305@upb.ro)

ABSTRACT Prefetching offers the potential to significantly improve performance by speculatively loading
application data so that it is available before it is needed. By their very nature, prefetching techniques are
application behavior dependant. This implies that no universal prefetching solution exists. A combination
of prefetching strategies need to be used to target a diverse set of applications. In this work, we develop the
first comprehensive mathematical framework that allows a designer to better understand the prefetching
opportunities of an application. We first use dynamic analysis to study the memory access behavior of
an application and measure a series of metrics to both identify the optimized schedule, and estimate its
achievable performance. To validate our model, we implement and evaluate three different prefetching
strategies: helper threads, software prefetching and FPGA prefetching. We show that, for each individual
scenario, our framework correctly generates the optimized schedule of prefetches and predicts the perfor-
mance improvement with an accuracy of more than 95%. Using our framework, developers can choose the
best prefetching strategy and parameters for their specific workload and use case.

INDEX TERMS Analytical model, computer architecture, FPGA, optimization, prefetching, program
analysis.

I. INTRODUCTION
As the speed gap betweenmodern processors and thememory
system is ever increasing [26], [56], the bottleneck ofmemory
accessing in today’s Von-Neumann machines becomes the
pain-point that inspires various optimizing techniques such
as caching [22] and prefetching [7], [8], [38], [46].

Prefetching is a fundamental technology of most high-
performance systems today [24], [50], [53]–[55]. The goal of
the prefetching is to retrieve, in a timely manner, data from a
high latencymemory, typicallyDRAM, and place it in fast-to-
access cache memory. One key feature of a prefetcher is that
it aims to fetch the data that is needed before the computation
unit accesses and uses it. Prefetching can significantly reduce
the time a CPU needs to wait when accessing data.

Existing prefetchers implemented in hardware [9], [14],
[18]–[20], [28], [30], [31], [33], [38], [46], [47], [49],
[51], [58] provide fixed-function operation and can not

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

fundamentally change to adapt to the application, limiting
attainable performance.

We argue that future prefetchers need to be configurable
to support different strategies, possibly to the extent that
they are configured by software. Memory access patterns
are well known to be application dependent, which makes
it hard to prefetch in an accurate and timely manner. For
example, different prefetching distances, i.e. how far ahead
the prefetcher sends requests, can lead to up to 10× variation
in performance [32]. Therefore, we argue that prefetching
needs to be driven by dynamic application behavior [3], [5],
[32].

This opens up a large design space for the developer:
Which prefetching strategy should be selected? When should
a prefetch request be sent out? Is it worthwhile to keep the
current strategy or is there a benefit to switch to a new one
(while considering the potential overhead of this change)?
Which parameters should one select if the prefetch strategy
is parameterizable? Until now, such questions have not been
possible to address in a systematic way.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 87415

https://orcid.org/0000-0001-9713-2760
https://orcid.org/0000-0002-2953-4650
https://orcid.org/0000-0001-8742-134X
https://orcid.org/0000-0001-9315-1788


R. Niţu et al.: Cross-Prefetcher Schedule Optimization Methodology

In this work, we propose a novel analytical framework that,
based on measurements of application execution, can sug-
gest close-to-optimal prefetcher strategies. Our framework
provides two results. First, for a given prefetching strategy,
the framework outputs an optimized schedule of prefetches
that is both accurate and timely. The prefetching plan can be
used to improve application performance. In our experiments,
we show that the speed-up obtained while using the generated
prefetch schedule is at or near optimal, seeing speed-ups
between 1.16× and 2.05×.
Second, a performance estimate of the application that

uses the mentioned prefetching schedule is computed. This
estimate can be used to select between different prefetching
strategies. In our experiments, the difference between the
estimated and the measured speed-up is less than 5%.

Prior to our work, prefetching has been viewed as a black
box. Developers have been using trial-and-error techniques
for developing prefetchers hoping to meet their performance
targets. In contrast, our framework brings transparency to
prefetching by providing the analytical tools for a devel-
oper to understand the prefetching capabilities, or limitations,
of an application that runs on a given system. Additionally,
it offers the possibility to obtain the information required to
select the best solution from a basket of options.

Below, we list the main contributions of this work.
• We propose a mathematical framework to both under-
stand and predict potential prefetcher performance. The
framework abstracts the technique of prefetching and is
general enough to cover most prefetching scenarios.

• We develop a methodology of evaluating the prefetching
capabilities of an application to allow developers to eval-
uate its suitability for a given hardware configuration.

• We describe how memory-level parallelism (MLP) for
prefetching can close the gap to optimal performance.

• We evaluate the accuracy of our framework in the con-
text of helper threads, software prefetching and FPGA
prefetching.

The remainder of the paper is organized as follows:
Section II details the motivation of this work and provides
a high-level overview of our methodology, Section III exten-
sively describes the analytical model, and Section IV details
the methodology to apply our work. Section V presents our
experimental results, Section VI discusses relevant work, and
we present our conclusions in Section VIII.

II. MOTIVATION AND OVERVIEW
A. MOTIVATION
Though a plethora of prefetching techniques exist, no single
solution can outperform all others in every situation [5], [8].
As such, understanding the applicability of a prefetching
technique in a given scenario is fundamental to choosing the
right solution. To that end we propose an analytical model
that aids the programmer in understanding the prefetching
capabilities of the application on a given system.

Software controlled prefetching techniques, such as soft-
ware prefetching and helper threads, have a better view of

the program in general; thus, they are more flexible and may
adapt to a larger spectrum of applications than traditional
hardware-based solutions [21]. However, up until this point,
the proposed solutions for software controlled prefetching
provide a trial-and-error mechanism of identifying the rele-
vant values for parameters such as prefetch distance. In this
work, we advance the state of the art by developing a math-
ematical framework that computes an optimized schedule of
prefetches and estimates its performance.

B. METHODOLOGY OVERVIEW
Our work is based on the idea that prefetcher timeliness and
the amount of work done between prefetch events are the
two key metrics needed when developing an optimal software
prefetching strategy.

To that end, we measure these characteristics to allow us to
understand the potential prefetching benefits available to an
application on a specific hardware platform (See Section III
for details). These metrics are: (a) the time it takes the
CPU and the prefetcher to access non-cache memory, (b) the
time it takes the CPU to access the cache, (c) the available
computation that is present between two consecutive cache
misses triggered by the same load instruction and (d) the
communication latency between the CPU and the prefetcher.
The cache is typically the first level, but can refer to any
level.

Figure 1 presents a high level overview of our proposed
methodology. We first analyze the application to identify
problematic load instructions and collect the mentioned met-
rics. We then input the designated prefetch technique and,
if necessary, implement the prefetch kernel. A prefetch kernel
is represented by the code that is run to compute the prefetch
addresses and issue the prefetch requests.

We also analyze the data prefetch latency to compute
the time it takes to prefetch a data item. Finally, we apply
our mathematical formula to identify the optimized sched-
ule and compute a performance estimate. Steps (2) to
(4) may be repeated for any number of prefetching tech-
niques to understand which strategy is best for the given
application.

Previous work [3], [5] has used dynamic analysis to iden-
tify problematic loads, however, to the best of our knowledge,
we are the first to push this analysis further by examining
application runtime latencies. The benefit of this proposal is
that we can use this information to both timely and accurately
prefetch the necessary application data. By analyzing these
values, we show that it is possible to understand what per-
centage of the total data accesses can be prefetched in a timely
manner, and what it the best prefetching strategy for a given
application.

III. ANATOMY OF PREFETCHING
A. RELEVANT METRICS
We utilize a set of metrics to describe prefetching and build
ourmathematical framework. For simplicity, wewill consider

87416 VOLUME 10, 2022



R. Niţu et al.: Cross-Prefetcher Schedule Optimization Methodology

FIGURE 1. Methodology to evaluate an application for prefetching capabilities. (1) Analyze binary, (2) Generate prefetch kernel,
(3) Analyze prefetcher, (4) Obtain the performance estimate and the optimized prefetch schedule.

only single program, single threaded workloads. However,
the analytical framework can be extended to multi-program,
multi-threaded applications.
T entityaction is the time for the entity (cpu or pf) to perform an

action (initialization (init), accessing the cache, or mem, and
the latency of compute).
T cpumem denotes the time it takes the CPU to read one data

element from the high latency memory. Similarly, T pfmem rep-
resents the time it takes the prefetching implementation to
perform the same operation. T cpucache represents the time it takes
the CPU to read one element of data from cache. Both Tcache
and Tmem include the time that is necessary to compute the
address for the read request. T pfinit is the start up time for the
prefetching implementation. It represents the time between
the moment when the computation unit issues a prefetch
request and the moment when the prefetching implementa-
tion actually starts running. T cpucompute is used to indicate the
time between 2 consecutive read requests issued by the CPU
that have the same instruction pointer and that tend to miss in
the cache.

B. FORMALIZING PREFETCHING
Given a specific application, we would like to determine an
optimized strategy for prefetching considering T cpumem, T

pf
mem,

T cpucache, T
cpu
compute and T

pf
init .

Assuming that T cpucache + T cpucompute < T cpumem + T cpucompute, i.e.,
accessing data from cache is faster than accessing data from
memory, there are 3 possible scenarios for the prefetching
implementation:

1) T pfmem < T cpucache + T
cpu
compute This case may seem counter

intuitive, however it is possible to achieve this by hav-
ing a large amount of parallelism in the prefetching
implementation or a large amount of computation time
on the CPU side.

2) T cpucache + T cpucompute < T pfmem < T cpumem + T cpucompute This is
the case for current software and hardware prefetching
techniques.

3) T pfmem > T cpumem + T
cpu
compute In this situation the ability to

prefetch is severely limited, however benefits can still
be obtained.

We start by assuming an ideal scenario and incrementally
close the gap between it and real world situations.

1) INFINITE CACHE
We start by assuming that the system has an infinite amount
of fully-associative cache memory, therefore once cache lines
are allocated, they are never evicted. This enables us to
first determine the maximum amount of data that can be
prefetched in a timely manner. We assume that the work-
ing set is known. Next we consider Nmiss, the number of
cache accesses that miss. As the cache is infinitely sized,
in order to avoid paying the communication latency between
the prefetching implementation and the CPU, the CPU will
issue a single request. In turn, the prefetching implementation
will fetch the entire data set required for the application.

Scenario 1: T pfmem < T cpucache + T cpucompute. If it takes the
prefetching implementation less time to access one non-
cached data item than it takes the computation unit to access
a cached data item, then all of the Nmiss data elements that are
missing from the cache can be fetched in one pass. Assuming
the prefetching implementation and the computation unit are
launched at the same time, we pay a minor delay of T pfinit that
can be translated into Nlost number of accesses that are still
going to miss before the CPU starts accessing the prefetched
region of data:

Nlost =
T pfinit
T cpumem

. (1)

VOLUME 10, 2022 87417



R. Niţu et al.: Cross-Prefetcher Schedule Optimization Methodology

Scenario 2: T cpucache + T
cpu
compute < T pfmem < T cpumem + T

cpu
compute.

In this scenario, the prefetching implementation is able to
fetch data ahead of the computation unit when the latter
reads the data from non-cache memory. However, when the
CPU starts accessing cached data it will eventually catch
up. Without any prefetching involved, we can express the
application total run time as:

Nmiss ∗ (T cpumem + T
cpu
compute) (2)

But if prefetching is going to be used, then some of these
accesses are going to be turned in cache hits, therefore the
new application total run time is going to be:

Y ∗ (T cpumem + T
cpu
compute)+ (Nmiss − Y ) ∗ (T

cpu
cache + T

cpu
compute)

(3)

where Y represents the number of cache misses that the CPU
will still produce. During that time the prefetching implemen-
tation should be able to fetch theNmiss-Y data items, therefore,
Equation 3 can also be expressed as:

(Nmiss − Y ) ∗ T pfmem + T
pf
init (4)

Equalising Equations 3 and 4 we are able to deduce Y:

Y =
Nmiss ∗ (T

pf
mem − T

cpu
cache − T

cpu
compute)+ T

pf
init

T pfmem − T
cpu
cache + T

cpu
mem

. (5)

The value of Y is optimal for prefetching. Since the cache is
infinite, the optimal procedure is to start prefetching at the
same time as the CPU starts its processing and fetch Nmiss-Y
data items starting with the Yth missing access.
Scenario 3: T pfmem > T cpumem + T cpucompute. This situation is

similar to the preceding one because there is still the need to
sacrifice some accesses in order to prefetch others. However,
in this case the number of sacrificed accesses is going to be
very large because of the slow access time.

2) FINITE CACHE AND EVICTIONS
In this scenario we take a step closer to the real world.
We assume that the cache has a fixed size, Cachesize, that is
known both to the prefetcher and the computation unit, and
therefore multiple requests should be issued to the prefetch-
ing implementation if the entire prefetchable data does not
fit into the cache. In this situation, we may apply Equa-
tion 5, however, Nmiss is replaced with a divisor of Cachesize.
The occurrence of cache evictions cannot be identified in
a deterministic manner because they depend on the overall
system load, however, in practice,Nmiss can be evaluated with
different values until an optimized one is identified. In our
experiments using Zynq hardware, we have seen that the ideal
value for Nmiss occurs when the prefetched data size for one
prefetch request occupies 1

4 ∗ Cachesize.

3) SPEED-UP
Given the above formulas we are also able to compute the
maximum expected speed-up. The total run time of an appli-
cation without any prefetching is computed using Equation 2.

TABLE 1. FPGA platform.

The run time of the application with prefetching involved
is computed using Equation 3. Therefore, the speed-up is
computed as the division of the two:

S =
Nmiss ∗ (T

cpu
mem + T

cpu
compute)

Y ∗ (T cpumem − T
cpu
cache)+ Nmiss ∗ (T

cpu
cache + T

cpu
compute)

.

(6)

IV. METHODOLOGY
To identify the values for the parameters discussed in
section III-A we take the following steps. We dynamically
analyze the application to identify the number of miss-
ing loads that occur and the responsible loops that cause
them. We collect this information by performing test runs
on real hardware (although, simulation techniques can also
be employed). Next, we work to understand the application
source code to identify the memory access patterns of the
application. We ask the following questions: how many itera-
tions does the loop have? How many cache misses occur per
iteration? This step can be done manually or automatically
as discussed by Ayers et. al [5]. By combining the knowledge
obtained in the previous steps, we differentiate between loads
that are part of the address generation of another load and
loads that fetch actual data needed for the computation. After
this step, we can divide the total execution time of the loop to
the number of data loads to obtain the approximate value of
T cpumem+T

cpu
compute. To identify the value of T

cpu
cache+T

cpu
compute we

apply the same procedure, except that we populate the cache,
in advance, with the otherwise missing data. An alternative
is to use simulation to obtain this information. Dividing the
resulting runtime by the number of cache misses that we
obtained earlier, we arrive at the value of T cpucache + T cpucompute.
Note that it is not necessary to separate the compute value
from the access latency because they are both present together
in all formulas. Next, we implement the prefetch kernel,
according to the chosen prefetching strategy, that performs
prefetch requests for the faulting loads. We measure the
runtime of the prefetching implementation and we divide it
by the same number of cache misses that we used earlier.
This operation will result in identifying the value of T pfmem.
The value of T pfinit is identified by measuring the runtime of a
prefetcher implementation that does not perform any opera-
tion. In the case of software prefetching and helper threads,
we consider this value to be negligible. After we identify the
corresponding values of the relevant metrics, we update the
original program to issue prefetch requests using the derived
parameters. In this work, we tackle single process, single

87418 VOLUME 10, 2022



R. Niţu et al.: Cross-Prefetcher Schedule Optimization Methodology

FIGURE 2. Zynq architecture. The FPGA can perform L2 cache coherent
requests.

program workloads that have a deterministic memory access
behavior (i.e. the work set is known in advance).

V. EVALUATION
To apply our analysis, we use a Xilinx Zynq Z1 board [29].
Figure 2 highlights the architecture of the board and Table 1
presents component details. The Application Processing
Unit (APU) consists of two cores, each with its private L1
cache. The processors share the L2 cache and the On Chip
Memory (OCM). The FPGA has a direct link to the L2 cache
memory through the accelerator coherency port (ACP).

This architecture is flexible enough to support multiple
prefetching strategies: (1) helper threads by using a core to
prefetch data for the other core, (2) software prefetching
by using the processors’ preload instruction and (3) FPGA
prefetching by using the FPGA to prefetch data for one
(or both) of the CPUs.

We analyze and optimize three micro-benchmarks and two
realistic applications. The selection of applications covers
the most common memory access patterns and the relevant
aspects presented in Section III-B.

A. BENCHMARK DESCRIPTION
Simple stride andComplex stride represent two demonstra-
tion micro-benchmarks developed by us. Both have T cpucompute
close to 0 and compute the sum of a number of array elements.
Simple stride exhibits the a[i] pattern, whereas complex
stride is of the form a[4*i*(i+1)]. While hardware stride
prefetching can handle simple stride, it has difficulty with
complex stride.

IntSort is part of the NAS Parallel Benchmark suite [6].
The main computation path is formed by a loop containing
an indirect memory access and almost no extra computation
besides the address calculation.

LBM is part of the SPEC CPU2006 [27] suite and features
stride array accesses with large amounts of compute. In this
situation, even if prefetching is perfect, the speed-up is lim-
ited by the amount of compute present in the loop.

Linked list. To increase the memory level parallelism in
this benchmark, we have implemented a linked list by using
jump pointers similar to previous work [47]. By using jump
pointers, we are effectively introducing MLP.

To obtain the baseline performancemeasurements, we sim-
ply measure the runtime of the mentioned applications with-
out performing any type of prefetching.

FIGURE 3. Helper threads and FPGA prefetching speed-up over no
prefetching. The difference between the predicted and the obtained
speed-ups is less than 5%.

TABLE 2. Helper thread metrics (latencies in microseconds).

B. HELPER THREADS
For each of the benchmarks, we have implemented an addi-
tional prefetch helper thread using the pthreads library (the
Zynq processor has two cores). In this scenario, prefetching is
done into the L1 cache of the other processor. Themain thread
occasionally sends prefetching requests to the prefetcher
thread by specifying the start address and the chunk size.

C. SOFTWARE PREFETCHING
We perform software prefetching for each of the benchmarks
by introducing a preload instruction in the loop bodies of
our experimental applications. The data is prefetched into
the L1 cache of the CPU. We have determined the baseline
prefetch distance by using a trial-and-error strategy. We use
software prefetching only to synthetically add compute - see
Section V-F - because the nature of software prefetching
does not permit the issuance of multiple prefetch requests
per iteration. This limitation arises from the fact that address
computation instructions are still executed by the processor,
consuming pipeline slots. For tight loops, these instructions
may require more time to compute than the original work
performed inside the loop. However, our framework may still
accurately predict the speed-up for this scenario, as seen in
Figure 4.

D. FPGA PREFETCHING
We implement FPGA prefetchers using Vivado HLS and
Design 2019.1 for each of the mentioned benchmarks. The
FPGA prefetcher is able to fetch the data into the shared L2
cache of the Zynq processor. Alternatively, the OCM could
be used for prefetching, however, the OCM exhibits the same
access latency as the L2 cache [43], [48], but is non-coherent.
Similar to the helper thread implementation, the application
running on the CPU triggers the FPGA prefetcher.

VOLUME 10, 2022 87419



R. Niţu et al.: Cross-Prefetcher Schedule Optimization Methodology

TABLE 3. FPGA prefetching - metrics for each benchmark (latencies are
measured in microseconds).

E. PERFORMANCE RESULTS
Table 2 and Table 3 present the values of the observedmetrics.
It can be seen that the FPGA has a high latency link to DRAM
through the L2 cache controller of the CPU. Although we
have utilized the full parallelism potential in the FPGA, the
architectural constraints, such as total number of outstanding
memory requests, severely limit the prefetching capabilities.
As a result, only a small percentage of the total data items can
be prefetched. In contrast, the helper thread implementation
benefits from a shorter DRAM access latency and therefore
is able to prefetch a larger portion of the data accesses.

Figure 3 highlights the obtained speed-up by applying the
optimized schedule of prefetches obtained from our frame-
work and compares it to the expected value that is computed
by using our formulas. Since the helper thread implementa-
tion has a smaller time to access the non-cached memory,
it performs better in all of the tested scenarios. It can also
be observed that in all situations the difference between the
expected speed-up and the measured one is less that 5%.

F. COMPUTE
To test our assumption that the best scenario for prefetching is
obtained when T pfmem <= T cpucache + T

cpu
compute we have synthe-

tically added compute to the benchmarks and observed the
effect on performance.

Figure 4 highlights the impact of synthetically adding
compute to the applications on ideal and measured speed-
up. The ideal speed-up is computed by using our frame-
work and represents the speed-up that would be obtained
if all of the accessed data items would be present in the
cache when the processor needs them. While the amount of
compute increases per iteration, the ideal speed-up decreases
because the benefits of prefetching are overshadowed by
the added compute. However, there is more time for the
prefetching implementation to bring the needed data into
the cache. Therefore, we observe that in order to be able
to prefetch all of the data elements, it is necessary that
T pfmem <= T cpucache + T

cpu
compute. Theoretically, this can be achie-

ved either by increasing the amount of compute per loop
iteration or by issuing additional prefetch requests in parallel.
For example, by adding another prefetcher helper thread, it is
expected that the T pfmem will decrease, ideally, by a factor of
2. The implication for systems is that, by improving the
memory-level parallelism (MLP) available to prefetchers,
one can reduce the gap between achievable and optimal
prefetching performance.

TABLE 4. Memory access patterns.

Our experiments show that by looking at the runtime laten-
cies of data accesses, it is possible to understand the amount
of prefetching available in a given scenario and how to
schedule the prefetch requests. Moreover, using this informa-
tion it is possible to compute a performance estimate of the
prefetch-enhanced application.

VI. RELATED WORK
Prefetching is a standard technique that has been used inmany
different ways and in many situations. We briefly outline
relevant work and elaborate, further, our approach.

For prefetcher performance it is important to understand
the memory access patterns of algorithms and applications.
Ayers et al. [5] have recently reinforced this and they devel-
oped a classification of memory access patterns, highlighted
in Table 4, that can be used to express most memory access
types. This classification offers insights into whether a spe-
cific type of prefetching is suitable for a specific workload.
We note that the same algorithm and indeed application
can exhibit different access patterns in different phases of
execution.

Prefetching can be implemented in hardware, software, as
well as a combination of hardware and software. Table 5
groups similar prefetching techniques into categories and
highlights the relevant attributes of each technique.

Hardware prefetching techniques require a specialized
physical unit that handles the monitoring of memory accesses
and automatically generates prefetch requests. This unit is
commonly tightly coupled to the execution unit, normally
a processor core. This allows for low latency communica-
tion between the core and the prefetch hardware unit. The
hardware units tend not to support anything but a general
prefetch method which may not be optimal for all algorithms
or applications. In our work and in this paper, we show that
latency is not crucial for performance allowing a loosely-
coupled and program controlled accelerator to carry out
prefetching effectively. This also allows the prefetchers in
our approach to implement specialized and more complicated
prefetch methods.

There exist several different types of methods commonly
implemented by hardware prefetch units. This includes stride,
history based and irregular prefetchers.

Stride prefetchers [14], [20], [28], [30], [38], [49] represent
the most common form of hardware prefetcher employed
in current systems. Simple and easy to implement, stride
prefetchers benefit a subset of memory access patterns [35],
namely, regular streaming access patterns. For other types,
the stride prefetcher may actually worsen performance by
replacing useful data with prefetched data that is not used.

87420 VOLUME 10, 2022



R. Niţu et al.: Cross-Prefetcher Schedule Optimization Methodology

FIGURE 4. The effect of adding synthetic compute on the ideal speed-up vs. the measured
speed-up. The x-axis represents the added compute, measured in microseconds. The y-axis
represents the speed-up obtained. The best performing configuration for prefetching is
represented as the convergence point of the ideal (orange) and real speed-up (blue).

History based prefetchers [31], [33], [46], [51] have the
ability to prefetch more complex access patterns by storing
a sequence of prior accesses and predict future accesses
based on it. However, to achieve good performance, history
based prefetchers require a large amount of memory, up to
megabytes, to store the necessary information. In addition,
pointer-chasing and indirect memory patterns are not sup-
ported because of their irregular nature.

Irregular prefetchers target complex access patterns
(pointer chasing and indirect) and can be divided into 2 cate-
gories: specialized and general.

Specialized irregular hardware prefetching units target a
single access pattern. Multiple solutions have been proposed
for both pointer-fetching prefetchers [18], [19], [47] and indi-
rect access prefetchers [9], [58]. Although these units provide
significant performance benefits, they lack generality.

Run-ahead execution prefetchers [25], [44], [45] may
prefetch many types of memory access patterns by specu-
latively pre-executing the program’s own code. By closely
mimicking the access patterns of the application, this tech-
nique is highly general, supporting many types of memory
access patterns. However, this approach requires prohibitive
amounts of analysis hardware to identify the instruction

streams that cause cache misses. Once identified, the instruc-
tion stream is executed ahead of time on a separate core. This
leads to the inability of prefetching data for loads that contain
a long latency load in their address computation.

Although hardware prefetching techniques may prove
beneficial in certain scenarios, they lack the flexibility
required to adapt to any kind of access pattern. We over-
come this limitation by dynamically analyzing the application
before execution and specifically targeting the long latency
loads.

Software prefetching techniques rely on prefetch hints
or instructions that are inserted in the source code. These
generate pre-load instructions that are executed before the
actual load. These instructions are committed immediately
and therefore do not stall the pipeline. This approach has the
advantage that it does not require extra hardware since most
architectures implement a form of prefetch instruction. How-
ever, software prefetching techniques suffer from two major
shortcomings: (1) inserting prefetch instructions that accu-
rately target long latency loads is difficult and (2) accesses
that involve multiple long latency loads will continue to stall
the pipeline and therefore require extra computation that
masks the prefetch.

VOLUME 10, 2022 87421



R. Niţu et al.: Cross-Prefetcher Schedule Optimization Methodology

TABLE 5. Prefetching techniques.

Static analysis prefetching relies on the compiler to
(1) identify memory accesses that will cause a cache miss and
(2) automatically insert prefetch instructions. Due to the static
nature of the analysis, the set of patterns identified is limited
to simple stride [23], [52] and indirect [2] accesses. However,
in most cases, the speed-up resulted from static analysis
prefetching is inferior to manually inserted prefetching code.

Dynamic analysis prefetching [40], [42] [5] leverages run-
time information with regard to the last level cache miss of
each load instruction request to appropriately target them
for software prefetching. The prefetch instructions are then
manually inserted in the source code. This approach offers
the benefit of accurately identifying the problematic loads at
the cost of extra upfront dynamic analysis.

In this work, we adopt dynamic analysis and manually
insert prefetch triggers and allow for multiple accesses to
occur in parallel. Our model can be used to identify the
roofline speed-up for ideal software prefetching.

Helper threads [11]–[13], [16], [17], [34], [36], [37],
[41] tackle prefetching by statically extracting the code for
delinquent loads and running it on a spare thread context. This
approach can optimally target any access pattern by increas-
ing the number of helper threads. Furthermore, it is flexible
enough to be implemented both in hardware [12], [13], [16],
[17], [41] and software [11], [34], [36], [37]. However, even
using a single extra thread comes at an increased energy
penalty on high performance cores. Moreover, accesses that
require loads in their address computation will stall, and in

the absence of a hardware event queue, the synchronization
of loads becomes costly in terms of both implementation and
performance.

Programmable hardware techniques employ specialized
hardware units that are able to run specific address computa-
tion instructions. Jones et al. have proposed a programmable
prefetcher specifically designed for graph workloads that
targets specific traversals [1]. Yi et al. have designed a hybrid
prefetcher that targets indirect memory accesses [10]. Several
approaches have targeted linked list data structures [4], [15],
[39], [57]. A more general approach has been developed by
Ainsworth and Jones [3] that uses multiple small in-order
cores to run prefetch kernels that are indicated in software.
This work has shown significant speed-ups for load-intensive
applications, however, the design is not able to deal with the
pointer chasing pattern and the prefetch kernel size is limited
to only a few instructions, whereas previous work [5] reports
prefetch kernels that require up to 80 instructions.

Summary. Prefetching is a well studied technique and a
large range of solutions have been proposed, both general
and pattern specific. Each technique has its strengths and
weaknesses as highlighted in Table 5.

To better the prefetching potential of an application, we
have devised an analytical framework that evaluates prefetch-
ing in a given scenario and helps computer architects under-
stand what are the optimal conditions for prefetching.

Our approach uses dynamic analysis to (1) identify the
instructions that cause long latency loads and (2) to determine

87422 VOLUME 10, 2022



R. Niţu et al.: Cross-Prefetcher Schedule Optimization Methodology

what are the access latencies for both cached and non-cache
accesses. Using this information, we determine the optimal
schedule of prefetches for a given prefetching technique,
taking into account hardware limitations.

VII. DISCUSSION
In this work we have demonstrated that prefetching per-
formance can be predicted and we have tested our model
for single program, single processor applications. We have
performed our measurements both on top of an operating
system and on the baremetal hardware. However, we have
not experimented with various degrees of system utilization.
Since an application’s optimal prefetch schedule depends on
the load of the system at a specific point, this aspect remains
to be investigated in future work. One idea that could be used
to improve the current status is to simulate the application
in a maximally utilized system and deduce the worst case
scenario values for the metrics. By using these worst case
values, it is possible to tune our prefetch schedule so that it
performs optimally irrespective of the system load.

VIII. CONCLUSION
Some might see prefetching as a black-box, where one
attempts to optimize the strategy in a trial-and-error fashion.
As an alternative, this work has taken the first steps toward
a rigorous analysis of prefetching, opening the door to new
possibilities for both hardware and software systems.

In this work, we propose a novel mathematical framework
to abstract prefetching into its fundamental components.With
this understanding, one can now, in an up-front manner,
determine how much prefetching can improve the perfor-
mance of keyworkloads. Ourmethodology applies to specific
hardware/software pairs under study to present a variety of
potential prefetching solutions.

In addition to presenting a new analytical understanding
of prefetching, in this work we present how one can opti-
mize FPGA, helper-thread and software-prefetching-based
systems to maximize performance. The result is a significant
speed-up for a set of applications that are among the most
difficult to optimize (those without a significant amount of
compute that can be used to hide thememory latency). Under-
standing the system requirements with prefetching can also
lead to improved hardware designs that can take advantage
of the level of optimization provided by our methodology.

This work presents a hardware-validated model and
methodology that can accurately predict high-performing
prefetching schedules.

ACKNOWLEDGMENT
The authors would like to express their gratitude to
Dr. Sven Karlsson and Udaree Kanewala for their valuable
and constructive suggestions during the planning and con-
struction of this work. This work was supported by Singapore
MoE AcRF grants T1-251RES1705 and T1-251RES2102.

REFERENCES
[1] S. Ainsworth and T. M. Jones, ‘‘Graph prefetching using data structure

knowledge,’’ in Proc. Int. Conf. Supercomputing, Jun. 2016, pp. 1–11.

[2] S. Ainsworth and T. M. Jones, ‘‘Software prefetching for indirect memory
accesses,’’ in Proc. IEEE/ACM Int. Symp. Code Gener. Optim. (CGO),
Feb. 2017, pp. 305–317.

[3] S. Ainsworth and T. M. Jones, ‘‘An event-triggered programmable
prefetcher for irregular workloads,’’ in Proc. 23rd Int. Conf. Architec-
tural Support Program. Lang. Operating Syst. (ASPLOS), Mar. 2018,
pp. 578–592.

[4] H. Al-Sukhni, I. Bratt, and D. A. Connors, ‘‘Compiler-directed content-
aware prefetching for dynamic data structures,’’ in Proc. Oceans Conf.
Exhib. Conf., Sep./Oct. 2003, pp. 91–100.

[5] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, ‘‘Classifyingmemory
access patterns for prefetching,’’ in Proc. 25th Int. Conf. Architectural Sup-
port Program. Lang. Operating Syst. (ASPLOS), Mar. 2020, pp. 513–526.

[6] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, D. Dagum,
R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and K.Weeratunga, ‘‘The NAS parallel benchmarks,’’
Int. J. High Perform. Comput. Appl., vol. 5, no. 3, pp. 63–73, 1991.

[7] M. Bakhshalipour,M. Shakerinava, P. Lotfi-Kamran, andH. Sarbazi-Azad,
‘‘Bingo spatial data prefetcher,’’ in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2019, pp. 399–411.

[8] M. Bakhshalipour, S. Tabaeiaghdaei, P. Lotfi-Kamran, and
H. Sarbazi-Azad, ‘‘Evaluation of hardware data prefetchers on server
processors,’’ ACM Comput. Surveys, vol. 52, no. 3, pp. 1–29, May 2020.

[9] M. Cavus, R. Sendag, and J. J. Yi, ‘‘Array tracking prefetcher for indi-
rect accesses,’’ in Proc. IEEE 36th Int. Conf. Comput. Design (ICCD),
Oct. 2018, pp. 132–139.

[10] M. Cavus, R. Sendag, and J. J. Yi, ‘‘Informed prefetching for indirect
memory accesses,’’ ACM Trans. Archit. Code Optim., vol. 17, no. 1,
pp. 1–29, 2020.

[11] C. Jung, D. Lim, J. Lee, and Y. Solihin, ‘‘Helper thread prefetching for
loosely-coupled multiprocessor systems,’’ in Proc. 20th IEEE Int. Parallel
Distrib. Process. Symp. (PDPS), 2006, pp. 1–10.

[12] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt, ‘‘Microarchitectural
support for precomputationmicrothreads,’’ inProc. 35th Annu. IEEE/ACM
Int. Symp. Microarchitecture (MICRO), 2002, pp. 74–84.

[13] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt,
‘‘Simultaneous subordinate microthreading (SSMT),’’ in Proc. 26th Int.
Symp. Comput. Archit. (ISCA), 1999, pp. 186–195.

[14] T.-F. Chen and J.-L. Baer, ‘‘Reducing memory latency via non-blocking
and prefetching caches,’’ in Proc. 5th Int. Conf. Architectural Support
Program. Lang. Operating Syst. (ASPLOS), 1992, pp. 51–61.

[15] S. Choi, N. Kohout, S. Pamnani, D. Kim, and D. Yeung, ‘‘A general frame-
work for prefetch scheduling in linked data structures and its application
to multi-chain prefetching,’’ ACM Trans. Comput. Syst., vol. 22, no. 2,
pp. 214–280, May 2004.

[16] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery,
and J. P. Shen, ‘‘Speculative precomputation: Long-range prefetching of
delinquent loads,’’ in Proc. 28th Annu. Int. Symp. Comput. Archit. (ISCA),
2001, pp. 14–25.

[17] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen, ‘‘Dynamic specula-
tive precomputation,’’ in Proc. 34th ACM/IEEE Int. Symp. Microarchitec-
ture (MICRO), 2001, pp. 306–317.

[18] J. Collins, S. Sair, B. Calder, and D. M. Tullsen, ‘‘Pointer cache assisted
prefetching,’’ in Proc. 35th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), 2002, pp. 62–73.

[19] R. Cooksey, S. Jourdan, and D. Grunwald, ‘‘A stateless, content-directed
data prefetching mechanism,’’ in Proc. 10th Int. Conf. Architectural Sup-
port Program. Lang. Operating Syst. (ASPLOS), 2002, pp. 279–290.

[20] F. Dahlgren and P. Stenstrom, ‘‘Effectiveness of hardware-based stride and
sequential prefetching in shared-memory multiprocessors,’’ in Proc. 1st
IEEE Symp. High Perform. Comput. Archit. (HPCA), Jan. 1995, pp. 68–77.

[21] B. Falsafi and T. F. Wenisch, ‘‘A primer on hardware prefetching,’’ Synth.
Lectures Comput. Archit., vol. 9, no. 1, pp. 1–67, May 2014.

[22] A. Farshin, A. Roozbeh, G. Q. Maguire, and D. Kostić, ‘‘Make the most
out of last level cache in Intel processors,’’ in Proc. 14th EuroSys Conf.,
Mar. 2019, pp. 1–17.

[23] E. H. Gornish, E. D. Granston, and A. V. Veidenbaum, ‘‘Compiler-directed
data prefetching inmultiprocessors withmemory hierarchies,’’ inProc. Int.
Conf. Supercomput. 25th Anniversary, 1990, pp. 128–142.

[24] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield,
K. Sugavanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski,
A. Gara, G. Chiu, P. Boyle, N. Chist, and C. Kim, ‘‘The IBM Blue Gene/Q
compute chip,’’ IEEE Micro, vol. 32, no. 2, pp. 48–60, Mar./Apr. 2012.

[25] M. Hashemi, O. Mutlu, and Y. N. Patt, ‘‘Continuous runahead: Trans-
parent hardware acceleration for memory intensive workloads,’’ in Proc.
49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2016,
pp. 1–12.

VOLUME 10, 2022 87423



R. Niţu et al.: Cross-Prefetcher Schedule Optimization Methodology

[26] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quantitative
Approach. Amsterdam, The Netherlands: Elsevier, 2011.

[27] J. L. Henning, ‘‘SPEC CPU2006 benchmark descriptions,’’ ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[28] I. Hur and C. Lin, ‘‘Memory prefetching using adaptive stream detection,’’
in Proc. 39th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Dec. 2006, pp. 397–408.

[29] Digilent. PYNQ-Z1. Accessed: Feb. 29, 2022. [Online]. Available:
https://reference.digilentinc.com/reference/programmable-logic/pynq-
z1/start

[30] Y. Ishii, M. Inaba, and K. Hiraki, ‘‘Access map pattern matching for
data cache prefetch,’’ in Proc. 23rd Int. Conf. Supercomput. (ICS), 2009,
pp. 499–500.

[31] A. Jain and C. Lin, ‘‘Linearizing irregular memory accesses for improved
correlated prefetching,’’ in Proc. 46th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Dec. 2013, pp. 247–259.

[32] S. Jamilan, T. A. Khan, G. Ayers, B. Kasikci, and H. Litz, ‘‘APT-GET:
Profile-guided timely software prefetching,’’ in Proc. 17th Eur. Conf.
Comput. Syst., Mar. 2022, pp. 747–764.

[33] D. Joseph and D. Grunwald, ‘‘Prefetching using Markov predic-
tors,’’ in Proc. 24th Annu. Int. Symp. Comput. Archit. (ISCA), 1997,
pp. 252–263.

[34] M. Kamruzzaman, S. Swanson, and D. M. Tullsen, ‘‘Inter-core prefetching
for multicore processors using migrating helper threads,’’ in Proc. 16th Int.
Conf. Architectural Support Program. Lang. Operating Syst. (ASPLOS),
2011, pp. 393–404.

[35] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, ‘‘Profiling a warehouse-scale computer,’’
in Proc. 42nd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2015,
pp. 158–169.

[36] D. Kim and D. Yeung, ‘‘Design and evaluation of compiler algorithms for
pre-execution,’’ in Proc. 10th Int. Conf. Architectural Support Program.
Lang. Operating Syst. (ASPLOS), 2002, pp. 159–170.

[37] D. Kim and D. Yeung, ‘‘A study of source-level compiler algorithms for
automatic construction of pre-execution code,’’ ACMTrans. Comput. Syst.,
vol. 22, no. 3, pp. 326–379, Aug. 2004.

[38] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson, and
Z. Chishti, ‘‘Path confidence based lookahead prefetching,’’ in Proc.
49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2016,
pp. 1–12.

[39] N. Kohout, S. Choi, D. Kim, and D. Yeung, ‘‘Multi-chain prefetch-
ing: Effective exploitation of inter-chain memory parallelism for pointer-
chasing codes,’’ in Proc. Int. Conf. Parallel Architectures Compilation
Techn. (PACT), 2001, pp. 268–279.

[40] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew, and
D.-Y. Chen, ‘‘The performance of runtime data cache prefetching in a
dynamic optimization system,’’ in Proc. 36th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Dec. 2003, pp. 180–190.

[41] J. Lu, A. Das, W.-C. Hsu, K. Nguyen, and S. G. Abraham, ‘‘Dynamic
helper threaded prefetching on the sun UltraSPARC CMP processor,’’
in Proc. 38th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Nov. 2005, pp. 1–12.

[42] C.-K. Luk, R. Muth, H. Patil, R. Weiss, P. G. Lowney, and R. Cohn,
‘‘Profile-guided post-link stride prefetching,’’ in Proc. 16th Int. Conf.
Supercomput. (ICS), 2002, pp. 167–178.

[43] S. W. Min, S. Huang, M. El-Hadedy, J. Xiong, D. Chen, and W.-M. Hwu,
‘‘Analysis and optimization of I/O cache coherency strategies for
SoC-FPGA device,’’ in Proc. 29th Int. Conf. Field Program. Log. Appl.
(FPL), Sep. 2019, pp. 301–306.

[44] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, ‘‘Runahead execution: An
alternative to very large instruction Windows for out-of-order processors,’’
in Proc. 9th Int. Symp. High-Perform. Comput. Archit., (HPCA), 2003,
pp. 129–140.

[45] O. Mutlu, H. Kim, and Y. N. Patt, ‘‘Techniques for efficient processing
in runahead execution engines,’’ in Proc. 32nd Int. Symp. Comput. Archit.
(ISCA), 2005, pp. 370–381.

[46] S. Pakalapati and B. Panda, ‘‘Bouquet of instruction pointers: Instruction
pointer classifier-based spatial hardware prefetching,’’ in Proc. ACM/IEEE
47th Annu. Int. Symp. Comput. Archit. (ISCA), May 2020, pp. 118–131.

[47] A. Roth and G. S. Sohi, ‘‘Effective jump-pointer prefetching for linked
data structures,’’ in Proc. 26th Int. Symp. Comput. Archit. (ISCA), 1999,
pp. 111–121.

[48] M. Sadri, C. Weis, N. Wehn, and L. Benini, ‘‘Energy and performance
exploration of accelerator coherency port using Xilinx ZYNQ,’’ in Proc.
10th FPGAworld Conf. (FPGAworld), 2013, pp. 1–8.

[49] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson,
S. H. Pugsley, and Z. Chishti, ‘‘Efficiently prefetching complex address
patterns,’’ in Proc. 48th Int. Symp. Microarchitecture (MICRO), Dec. 2015,
pp. 1–12.

[50] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. Liu, ‘‘Knights landing: Second-generation
Intel Xeon Phi product,’’ IEEE Micro, vol. 36, no. 2, pp. 34–46,
Mar./Apr. 2016.

[51] Y. Solihin, J. Lee, and J. Torrellas, ‘‘Using a user-level memory thread for
correlation prefetching,’’ in Proc. 29th Annu. Int. Symp. Comput. Archit.
(ISCA), May 2002, vol. 30, no. 2, pp. 171–182.

[52] S. W. Son, M. Kandemir, M. Karakoy, and D. Chakrabarti, ‘‘A compiler-
directed data prefetching scheme for chip multiprocessors,’’ in Proc. 14th
ACM SIGPLAN Symp. Princ. Pract. Parallel Program. (PPoPP), 2008,
pp. 209–218.

[53] D. Suggs, M. Subramony, and D. Bouvier, ‘‘The AMD ‘Zen 2’ processor,’’
IEEE Micro, vol. 40, no. 2, pp. 45–52, Mar./Apr. 2020.

[54] J.M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy, ‘‘POWER4
system microarchitecture,’’ IBM J. Res. Develop., vol. 46, no. 1, pp. 5–25,
Jan. 2002.

[55] K. Viswanathan, Disclosure of Hardware Prefetcher Control on
Some Intel Processors. [Online]. Available: https://software.intel.
com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-
control-on-some-intel-processors.html

[56] W. A. Wulf and S. A. McKee, ‘‘Hitting the memory wall: Implications
of the obvious,’’ ACM SIGARCH Comput. Archit. News, vol. 23, no. 1,
pp. 20–24, Mar. 1995.

[57] C.-L. Yang and A. Lebeck, ‘‘A programmable memory hierarchy for
prefetching linked data structures,’’ inHigh Performance Computing (Lec-
ture Notes in Computer Science). Berlin, Germany: Springer, 2002.

[58] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, ‘‘IMP: Indirect mem-
ory prefetcher,’’ in Proc. 48th Int. Symp. Microarchitecture (MICRO),
Dec. 2015, pp. 178–190.

RĂZVAN NIŢU received the B.Sc. and M.Sc.
degrees in computer science and engineering
from the University POLITEHNICA of Bucharest
(UPB), Bucharest, Romania, where he is currently
pursuing the Ph.D. degree in programming lan-
guages and security. His research interests include
programming languages, security, computer archi-
tecture, and education techniques.

LINGFENG PEI received the B.S. degree from the
Huazhong University of Science and Technology,
majoring in the IoT engineering, and the M.Sc.
degree in computer science from the National Uni-
versity of Singapore (NUS), where she is currently
pursuing the Ph.D. degree in computer science.
Her current research interests include prefetching,
hardware security, and FPGAs.

TREVOR E. CARLSON (Senior Member, IEEE)
is currently an Assistant Professor at the National
University of Singapore working to develop
high-efficiency microarchitectures that can meet
the performance and needs of the future IoT and
server applications. He also co-develops the Sniper
Multi-Core Simulator.

87424 VOLUME 10, 2022


