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ABSTRACT With the ever-increasing importance of dairy and meat production, precision livestock farm-
ing (PLF) using advanced information technologies is emerging to improve farming production systems.
The latest automation, connectivity, and artificial intelligence developments open new horizons to monitor
livestock in the pasture, controlled environments, and open environments. Due to the significance of livestock
detection and tracking, this systematic review extracts and summarizes the existing deep learning (DL)
techniques in PLF using unmanned aerial vehicles (UAV). In the context of livestock recognition studies,
UAVs are receiving growing attention due to their flexible data acquisition and operation in different
conditions. This review examines the implemented DL architectures and scrutinizes the broadly exploited
evaluation metrics, attributes, and databases. The classification of most UAV livestock monitoring systems
using DL techniques is in three categories: detection, classification, and localization. Correspondingly, this
paper discusses the future benefits and drawbacks of these DL-based PLF approaches using UAV imagery.
Additionally, this paper describes alternative methods used to mitigate issues in PLF. The aim of this work
is to provide insights into the most relevant studies on the development of UAV-based PLF systems focused
on deep neural network-based techniques.

INDEX TERMS Livestock monitoring, deep learning, detection, localization, UAVs.

I. INTRODUCTION

The livestock sector is one of the fastest-growing sectors
supporting the food safety of 1.3 billion people and con-
tributing 40% of the global value of agricultural output.
Protecting livestock is a practical risk mitigation approach
for small communities and a rapidly growing demand for
livestock products [1]. To output reliable, healthy, cost-
effective, welfare, and environmentally safe dairy products
in an increasingly complex international agricultural market,
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timely production-related data must be accessible to livestock
producers. Various information communication technologies
(ICT) have helped the continuous expansion of precision live-
stock farming (PLF), through which the livestock sector has
implemented welfare breeding to meet the quality of livestock
products [2]. Long-term livestock monitoring can produce
meaningful information for researchers and engineers devel-
oping PLF technologies. The general information acquisition
on several farm animals is the visual data that is effective
but expensive and tedious. Other existing systems tag every
animal using either Radio-Frequency Identification (RFID)
[3], [4], ear tags [5], and global positioning system (GPS)

80071


https://orcid.org/0000-0002-5086-4013
https://orcid.org/0000-0001-5522-5096
https://orcid.org/0000-0003-1152-2704
https://orcid.org/0000-0003-0961-8758

IEEE Access

D. B. M. Yousefi et al.: Systematic Literature Review on the Use of DL

collars [6]. These tags identify and pinpoint the location of
livestock, thereby avoiding extortion. However, these tech-
nologies’ implementation and setup are constrained by high
power consumption, physical size, cost, and local commu-
nication networks, specifically in vast geographic ranges
and remote environments [7]. Other implemented monitoring
methods like camera traps [8], thermal cameras [9], and
surveillance cameras typically require significant time and
investment. Also, these devices are expensive to implement
and have flexibility issues of ranges and disturbance from
surroundings. The image sequences obtained from the above
methods comprise highly cluttered images that result in low
detection rates.

In recent years, object detection and localization architec-
tures based on deep learning (DL) techniques have found
extensive applications to resolve the issues with the meth-
ods mentioned above. For example, using a camera trap
database, Verma et al. [10] proposed an animal detection
model based on a self-learned Deep Convolutional Neu-
ral Network (DCNN). The work done by [11] found that
Convolutional Neural Networks (CNNs) are used widely
for livestock identification. However, the current few com-
mercialized PLF techniques depend on integrating other
advanced information and sensory technologies.

The accessibility of UAVs offers a feasible solution to
solve these challenges by reducing cost owing to extended
endurance and practical flight planning autonomously almost
everywhere [12]. The advancement of new technologies like
UAVs and artificial intelligence techniques have alluded to
promising results to support livestock farming. Livestock
precision farming exploits these techniques for different
purposes, such as the animals’ identification and count-
ing. The efficient monitoring of livestock welfare demon-
strated by industrious farming techniques has shown the
effective implementation of UAVs for constant real-time
data (e.g., image, video) acquisition. However, visual species
detection is challenging, and counting in real-world scenarios
is difficult. This difficulty is due to imaging the animal con-
cerning the environment. The differences in illumination, the
livestock’s natural camouflage, overlapping vegetation, other
animals, and terrain obstacles can hinder machine vision
systems. Despite these limitations, the recent advancement
of DL-based object detection [13], [14] encourages animal
detection and classification solutions.

Furthermore, recent studies extended to extract the fea-
tures of acoustic sounds using audio-visual learning tech-
niques. In this technique, the audio and visual modalities
are introduced to overcome the limits of perception tasks in
each modality. The audio and visual modalities represented
by electrical voltage and RGB colour space are designed
to be perceived by humans. However, the major challenge
is to learn the mapping of the audio and vision and find
constraints. Therefore, unsupervised learning methods pro-
vide a well-perceived solution while finding correct implicit
supervision [137]. A perceived audio-visual learning sys-
tem processes information captured by UAVs to recognize
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and identify livestock precisely and automatically essential
for livestock population, behaviour, and health monitoring.
Recently, [15] employed a UAV with onboard radar motion
sensors to identify COVID-19 patients from their breathing
patterns. This exploratory work has the potential for life
health sensing applications by sensing variations in breathing
rate and depth in COVID-19 patients.

Different machine learning (ML) methods have histori-
cally played a central role in agricultural and farming remote
sensing research. Garcia et al. [16] conducted a review study
assessing the current research on ML application in PLF,
aiming only at animal health and grazing issues. A sig-
nificant challenge with commonly applied ML methods
(e.g., k nearest neighbour (kNN), random forest (RF), support
vector machine (SVM)) is feature engineering (i.e., feature
extraction, labelling, and determining the relevant features).
In another systematic literature review by [17] for livestock
body weight measurement, linear regression was the most
applied algorithm, and DL application is minimal. However,
UAVs have been extensively deployed in agricultural remote
sensing over the last decade, leading to an increasing amount
of UAV-based data.

In contrast with the ML models, DL techniques have
often found applications with larger datasets. In particular,
the UAV-based data (e.g., images) usually provide richer
spatiotemporal-spectral information; they have more com-
plicated and diverse patterns, thus imposing higher require-
ments on the processing ways of remotely sensed data [18].
The DL’s strong ability in feature representation, multi-layer
learning, and great superiorities in multilevel and multi-scale
feature extraction contribute to high performance in image
processing and classification problems [19]. DL-based live-
stock detection and localization received much attention in
the PLF field due to their ability to extract high-quality fea-
tures from raw data. As a result, long-term livestock monitor-
ing can produce meaningful information for both researchers
and engineers developing PLF technologies. Most publica-
tions centre on monitoring the animals using classical ML
classification techniques, but more work is needed to explore
the DL technologies in this domain.

The above discussion on the several published informative
and original articles on livestock detection and localization
reveals that a comprehensive review article is needed to
address the lack of existing methods. In this sense, the most
important contributions of this research contributions are as
follows:

o Describe the fundamental principles of DL-based pre-

diction algorithms for object recognition.

o Discuss the current state of deep neural networks
(DNNs) in PLF and give a broad description of the
extensively applied evaluation metrics and UAV-based
databases.

« Provide an extensive critical review of the DNN algo-
rithms in UAV-based livestock monitoring; examination
of used features in PLF; comparable assessment of the
relevant documents.
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« Give an exhaustive analysis of DL algorithms in UAV-
based livestock farming, classified into three categories
of (1) detection, (2) classification, and (3) localization.

« Expand on the prospective research scopes on DL-based
livestock detection and localization from UAV imagery.
The motivation here is to discover and present expected
difficulties and opportunities.

« To capture the various features and DL techniques in the
PLF to support and advance the current adaptation of
DL-based livestock detection, classification, and local-
ization. algorithms in the livestock production industry.

This review is a precursor to the design of an intelligent

system to detect, classify, and localize a target. Hence, the
following sections scrutinize those methods employed to
achieve that objective.

Il. METHODOLOGY
In this context, the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) [20] is used to deter-
mine the current status of PLF relevant to computer vision.
With a specific focus on current DL methods used in UAV-
based PLF and identify the potential gaps for the subsequent
researchers. The PRISMA comprises five phases:

1. Study guides and scope of the study

2. Identification of the need for vision (research

questions)

3. Article selection process
Performing the review
5. Deficiencies and new perspectives in the knowledge of

the problem

&

The first phase describes the research objectives and the
need for a comprehensive review in this domain. The next
step specifies the questions that lead the research and the
research methods; the article selection method (i.e., the cri-
teria for documents identification, screening, exclusion, and
inclusion). Further, performing a comprehensive review of
the included documents to answer the research questions.
Lastly, to present the state of the knowledge, deficiencies, and
future opportunities.

A. RESEARCH OBJECTIVES

There have been several published review articles on the
computer vision-based PLF. These surveys on PLF sys-
tems mainly focused on a few aspects of animal behaviour
monitoring (grazing or health) using sensor data. A review
by [21] investigated existing knowledge about livestock iden-
tification and counting-based computer vision techniques
using data captured by UAVs. Table 1 lists the recent
related review papers; it shows that a comprehensive review
article is required to address the lack of current stud-
ies. This paper distinguishes itself from other works as
it focuses on various livestock detection and localization
approaches based on DL algorithms using different data types
captured by UAVs.
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TABLE 1. Evaluation of the existing review articles on DL-based livestock

farming.

?eferenc Objectives Limitations of the review

[17] Computer vision-based  This study is limited to the
livestock body weight  livestock body  weight
estimation techniques, the estimation and avoids UAV
features of models, underlying and DL methods
approaches, performance
evaluation metrics,
challenges, and the
recommendation for future
research.

[16] Listed the potential ~ This review lacks the
applications of ML algorithms  critical evaluation of DL
in precision livestock farming,  algorithms for different
particularly for the analysis of PLF applications, their
grazing and animal health, ability, and the potential of
and the main form of data UAVs for data acquisition.
acquisition in PLF

[21] It presents the computational ~This review lacks the
vision technologies and tools critical evaluation, existing
used for livestock  research gaps, and future
identification and counting search opportunities
using data captured by UAVs

[22] This review presents the However, it lacks the ML
livestock farming digitization ~ algorithms, automation of
research focusing on livestock activities, data
biometric sensors, big data, acquisition
and blockchain technologies
in PLF

[23] This review summarized the This review lacks the
precision  cattle  farming  critical examination of DL
technologies ~ focusing on  algorithms for a wide range
identification, body condition of livestock identification
score evaluation, and live tasks, especially those
weight estimation performed using UAVs

[24] It presents a detailed analysis This review lacks the

critical evaluation of the
DL algorithm's
performance using data
captured by UAVs for
livestock detection and
counting, analysis of
commonly used features,
and data

of the existing hardware-and
software-based livestock
counting tasks, the UAV-
based systems compared to
traditional methods of
monitoring, and object
detection algorithms from
images and videos

B. RESEARCH QUESTIONS

The research is performed by including the outlined concepts
related to the outlook of this review. The article uses the
selection process of preferred reporting items for PRISMA
methods demonstrated in Figure 1.

The most well-established search engines, namely Google
Scholar, IEEE explorer, and ScienceDirect, were exploited
to extract the matched articles. We filtered our search using
the following strings: Keywords= (livestock detection, Deep
Learning, precision farming, classification, localization, and
UAV). Ultimately, we searched these keywords together or
in combination with other keywords comprising ‘‘audio-
visual”, “features and databases,” ‘“‘livestock detection”,
“photogrammetry or sensors”, “‘animals or wildlife”’, and
“remote sensing”’. The restriction of the search results is
those that qualified the following criteria in the reviewing
process.
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Number of records identified through
database screening: Number of records

Google Scholar: 15, ScienceDirect; 87, IEE | | identified through
Explorer: 63 other sources: 28

Identification

Repeated records
> excluded
(n=100)

Total no. of records identified through database search
(n=333)

After screening no.
= |0f records excluded
(n=66)

The main focus on
DL-hased livestock
L detection and
Full text articles assessed for eligibility L, loc:ll.ezca;i%l;{l?gmg
(n-167) UAVs, detailed
explanation of
methods used and
sound results are

Articles included in map of the field WP_DTtEd
(n=148) (n=19)

Title, keywords, abstract, and conclusion are screened
(n=233)

F.ligibﬂiryl Iscreeningl [

I Included

FIGURE 1. Flow diagram of article selection setup.

o Documents published in peer-reviewed journals, peer-
reviewed conferences, review articles, book chapters,
and research articles from computer science and engi-
neering organizations

o Documents published in English

o Documents published between 2011 and 2021 (both
years inclusive)

The first round of review involved inclusion criteria based
on the title, abstract, conclusion, and keywords of a given
document. Then further the examination of papers that sat-
isfied the scope of this study, i.e., articles that investigated
DL-based livestock detection and localization solutions
applied to the precision farming environment and livestock
industry. Finally, the documents were separated and reviewed
concerning their applications in UAV-based livestock detec-
tion, classification, and localization in DL techniques. After
restricting search papers, it resulted in a total number of
screened 148 documents. Consequently, the following infor-
mation led to dataset-related information, extensively exam-
ined feature sets, and evaluation metrics, and each source
drives prediction algorithms. Considering the total number of
included articles, those classified as journal articles comprise
77%, conference proceedings were 22%, and book chapters
only 1%, as outlined in Figure 2.

Ill. FUNDAMENTAL OF DEEP LEARNING-BASED

OBJECT RECOGNITION

Deep learning object recognition approaches comprise sev-
eral phases, namely data collection, learning networks, and
output. Well-established object detection techniques based
on manually extracted features and shallow trainable archi-
tectures performance deteriorates by building deep ensem-
bles with complex contexts from scene classifiers and
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Conference
proceedings

790
22%

Book
chapter
1%

Journal
articles
77%

FIGURE 2. Number of journal articles, conference proceedings, and book
chapters.

object detectors. For instance, feature-detection algorithms,
including speeded-up robust features (SURF) [25] or scale-
invariant feature transform (SIFT) [26], are applied on PLE.
However, the biggest drawback of computational complexity
associated with costly computations needed for SIFT fea-
ture calculation and matching limits their application. The
development of more powerful DNN object detection meth-
ods capable of learning semantic and deep features resolved
the drawbacks of conventional methods. Figure 3 shows the
architecture of the DNN object recognition structure.

Recent results in CNNs have shown them outperform
computer vision methods (e.g., classical classifiers) in object
detection [28]. CNN-based feature extraction solutions are
developing extensively, especially in PLF detection, classi-
fication, and localization issues, since these networks can
input the original images directly with lower pre-processing
complexity. The CNN-based architecture contains at least one
layer of convolution to process input images. This layer com-
prises several feature maps designed as a plane with equal-
weighted neurons on each plane [29]. Next, the pooling layer
minimizes the number of training variables while keeping
valuable knowledge regarding the input through a down-
sampling operation.

Consequently, this leads to a final prediction output, such
as classification generated for a fully connected layer [30].
The fully configured CNN integrates the series of base layers,
multiple filters in each layer, and other tunning parameters
selected by the network architecture [31]. Essentially, CNNs
combine base layers and networks, each of which demon-
strates specific application scenes and characteristics.

Livestock DL-based detection, classification, and localiza-
tion have been recognized over the years to establish recog-
nition and localization techniques with the ever-increasing
diverse sets of records. For this purpose, two categories
of DL architectures consisting of one-stage, and two-stage
detectors, have been assessed. Examples of the one-stage
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(a) Input data/database Learning network Output

|

1

I

| | Classification

| or
Regression

Classifier Feature
Map

Feature extraction

Ground-based images/video

|
|
|
Aerial images/video |
|
|
|

Input layer

Convolutional layer Pooling layer Fully connected layer Output layer

FIGURE 3. The general framework of (a) deep neural network and
(b) convolutional neural network-based object recognition [27].

detector include “You Only Look Once” (YOLO) [32] and
a single-shot multi-box detector (SSD) [13] that predicts the
bounding boxes and their probabilities. In comparison, the
two-stage detectors such as CNN [33], CRNN [34], CNN,
and region-based convolutional neural networks (R-CNN)
use regional proposal networks. The former produce class-
agnostic regions from input images before bounding boxes
classification and regression. While the latter is fast with
reduced elements for object detection, classification, and
localization tasks without a region proposal classification,
they tend to achieve lower accuracy when dealing with small
objects. Moreover, they are computational time and cost-
intensive for precise image annotation.

Despite the differences between the two object detectors
(one or two-stage) categories, both deal with a class imbal-
ance issue that can reduce training accuracy [35]. In addition,
the choice of architecture could depend on multiple features
(e.g., training methodology, speed, and inference time), and
thus there is no determined winner. Breed recognition tasks
with imbalanced datasets used the YOLOV3 [36], RetinaNet
[37], and Faster R-CNN [14]. Redmon et al. [38] introduced
the YOLO to perform classification and localization tasks
simultaneously in its network by estimating the probability
distribution over image grids, the bounding boxes, and the
confidence scores of every grid.

DL-based modelling for livestock detection includes four
main techniques [39]:

1. Semantic segmentation focuses on labelling every pixel
belonging to a particular class

2. Instance segmentation performs object detection and
localization by creating segmentation maps for every
detected instance.

3. Detection that defines the object of the interest bound-
ing box

4. Heat mapping or probability distribution using CNNs
that display the position of the herds in an image
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CNNs’ ability to recognize patterns is essential for live-
stock detection and localization applications, where livestock
exhibit immense visual diversity due to their colour, species,
posture changes, and other external conditions like blurriness
effect due to motion and sensor changes in various illumina-
tion backgrounds. Hence, most object detection approaches
create bounding boxes for every object and then classify
them. For instance, the R-CNN combines the two functions
of candidate object localization and object proposals clas-
sification through region proposals networks (RPNs) [40].
In Faster R-CNN, RPNs and Fast R-CNN extract high-level
features from the images. It combines the bounding boxes
and classification to achieve multi-task learning for classifi-
cation and regression problems [41]. These methods aim to
characterize the object of interest at the pixel-wise structure.
Semantic segmentation techniques developed from object
detection distinguish the class of objects at the pixel level by
drawing regions around the boundary of an object. However,
this technique cannot distinguish objects in the same class as
every pixel is labelled uniquely [42]. The CNN variant, fully
convolutional networks (FCN), transforms image pixels into
pixel categories extensively used in semantic segmentation
models to hold the position data discarded in the pooling
layer. This method can control pixel labelling in dense images
used in livestock recognition.

On the other hand, blurred hidden features cause the net-
work to ignore the specifics of an image and fail to dis-
tinguish the link between the local and the whole. Most
remote sensing applications have benefited from pixel-wise
semantic segmentation and object detection algorithms like
DNN networks. However, these approaches require large,
labelled datasets to draw multiple objects bounding boxes
in an image, unlike scene-wise classification requiring only
the class labels’ annotation. Henceforth, the Faster R-CNN
model with the RPN shares convolutional features with the
detection network was proposed [43]. The authors of [44]
used A CNN-based algorithm to process an immense amount
of image data, comprising objects’ size, location, and posture.
In dense environments, most studies utilized CNN as the
framework [45]. Overall, image recognition and computer
vision applications commonly use CNN approaches [46].
Figure 4 presents the CNN-based object detection pipeline
for livestock monitoring tasks.

VAV VideoImage Detectors
4‘ Qutpu:
3 Detection
Classfication
Localization
Counfing

FIGURE 4. Livestock recognition pipeline.

UAVs provide recorded data in video or image for-
mats for object detection in PLF; this happens by applying
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state-of-the-art object detectors like YOLO and R-CNN.
Those architectures can detect individual or multiple objects
of various sizes and scales overlapping UAV-based images or
video records.

A. PERFORMANCE EVALUATION METRICS

As each research uses various datasets, data mining mod-
els, and metrics, performance comparisons between existing
techniques become difficult without clear evaluation met-
rics. Evaluation metrics measure the model’s performance
by differentiating the outcomes of different learning models
and, in practice, help researchers select the optimal solu-
tion. Several metrics compare and evaluate the DNN models’
prediction performance. First, construct a confusion matrix
table for each algorithm to examine the distribution of correct
and incorrect prediction rates and evaluate a given classi-
fier’s performance to identify tuples of various classes [47].
In [48], a confusion matrix evaluates the CNN visual classi-
fication accuracy trained by the augmented UAV-based data
for cattle counting. Next, they measured the mean pixel accu-
racy (MPA) and average distance error (ADE) to examine the
performance of cattle segmentation and contour extraction
results. MPA is a standard measurement tool for evaluating
image segmentation acquired from precisely segmented pix-
els. Finally, average distance error is measured to evaluate
the derived contour line [49]. In [50], the authors selected
the mean average precision (mAP) to compare three detec-
tion algorithms (i.e., YOLOV3, Faster R-CNN, RetinaNet)
performance applying the area under the curve (AUC) for
generated precision-recall curves over every cross-validation
fold. It measures the average precision (AP) value for recall as
the region covered by the precision-recall curve at the various
intersection over union (IoU) thresholds (from O to 1). If the
IoU value exceeds a certain threshold ranging from O to 1 is
considered true positive (TP) or else false positive (FP) [51].
Another study by [30] performed IoU to compare predicted
bounding box regions and ground truth denoted as ““bbox;,”
and “’bboxg *“, respectively shown in Table 2.

The appropriate threshold selection is crucial for the per-
formance evaluation of cattle or sheep detection networks.
Such systems will be weak if a threshold is incorrectly
selected, indicating overlapping bounding boxes and miss-
ing objects. Nonetheless, determining the optimal value
requires evaluating the performance over different IoU
thresholds [52]. Specific confidence score threshold metrics,
such as Non-Maximum Suppression (NMS) and IoU, are
commonly used to evaluate DL-based object detection and
localization techniques [11]. In object detection methods
where an intense set of duplicate predictions appear, NMS
removes these duplicate FPs. To evaluate a cattle detection
framework trained by YOLOv2, [53] calculated the IoU
between bounding boxes and ground truth, and the selected
threshold values were 0.5 and 0.2, respectively. Favourably,
precision and recall are applied using the values of TP, FP, and
False Negatives (FN). Weighted mean classification accuracy
is another evaluation measure used to evaluate the CNN
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TABLE 2. Threshold metrics for object detection algorithms.

Metrics Formula Evaluation focus

Intersection ~ bboxg, N bbox, Measures the overlap between

over Union  phg 2 U bbox, two boundaries, the overlap

(IoU) between the ground truth and
predicted box regions

Mean Pixel 1% Pii Commonly used to evaluate the
Accuracy EZf:n TE B image segmentation models
(MPA) and it’s measured from
correctly segmented pixels
Average Aynion — ADL‘PE’[E;J To evaluate the obtained
Distance T ontour contour line
Error
(ADE)
Precision Nra Measures the percentage of
Nrp + Nip correct prediction
Mean LZ P Is widely applied to measure
Average N Lire (0,01} interpt") the accuracy of object
Precision detectors, such as Faster R-
(mAP) CNN A popular metric used to
measure the accuracy of object
detectors like Faster R-CNN
etc.
F-measure Recall % Precision  F1Score or F-measure is
(FM) 2% Recall + Precision  calculated as a harmonic mean
of precision and recall
Recall Nrp It measures the percentage of
Nrp 4 Ney true positives over all possible
positives
Accuracy Calculates the ratio between
(TP +TN) the sum of correct predictions
(TP +TN + FP +FN) (TP and TN) to the total
number of values in the matrix
Mean L. $) = lz"" . Used to quantitatively compare
Square Y=L ,-=,,(J '¥) the performance of the
Error resultant segmented image of
(MSE) different methods estimates to

actual values

performance on aerial UAV datasets [54]. The precision,
recall, and F-measure commonly derives from TP, FP, and FN
using a confusion matrix. However, recall is more important
in the counting context, indicating the number of detected
objects (e.g., sheep, cattle). Precision measures the relevancy
of the correctly classified instances, while recall indicates the
model’s percentage of all correctly classified instances.

The precision-recall curve [53] evaluates the accuracy of
cattle detection at various input resolutions. Moreover, its
area under the curve (AUC) shows the effect of input res-
olution resize when the aim is the resolution optimization.
In [55], they evaluate the performance of the CNN-based
detection models using the precision-recall curve showing the
disjoint of the actual centroids and the estimated centroids
of the sheep. Similarly, [39], [56] assessed fifteen different
CNN architectures using four global performance metrics,
accuracy, precision, recall, and F1Score. For livestock clas-
sification and counting approaches, [52] evaluated the per-
formance of the Mask R-CNN model using the precision,
recall, F-measure, confusion matrix, and mAP and another
cattle detection framework using IoU, precision, recall, and
F-measure [53]. The F-measure combines the trade-off of
recall and precision, indicating the prediction performance
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fits a classifier with imbalanced classes [57], [58]. ““Overall
accuracy” is a classic metric evaluated based on correct
predictions over total predictions from the confusion matrix.
Aside from classification problems, the study by [59] uses
Mean Square Error (MSE) as a loss function to alleviate
image segmentation problems. The study [60] proposes eval-
uation methods to assess animal detection models by com-
paring the number of detections to the actual number of
objects with fewer restrictions on the positional accuracy
of predictions. Table 2 summarizes PLF studies’ most used
evaluation metrics for object detector evaluations.

IV. ARCHITECTURE OF UAV SYSTEMS

Modern PLF requires continuous monitoring to ensure opti-
mal functioning. UAVs or drones with mainly audio-visual
sensors provide sufficient data within a short period. Accord-
ing to [61], UAVs are typically equipped with cameras,
LiDAR, multi-spectral, and obstacle avoidance sensors to
provide a live feed for livestock monitoring. A UAV hardware
classifies into two groups: fixed-wing and multi-rotor aerial
vehicles. The fixed-wing UAVs require flight planning and
control using GPS digital map navigation. Fixed-wing UAVs
have a mounted gateway to collect data from the sensors and
a greater load-bearing capacity, speed, and longer flight time,
and can carry many sensors.

On the other hand, Multirotor UAVs have slower flight
speeds and smaller payloads, and their maximum flight time
is approximately half that of fixed-wing ones. However, they
are most suited for smaller spaces that are not easily accessi-
ble and are considerably cheaper than fixed-wing ones [62].
In general, flight time and range, initial cost (e.g., imag-
ing sensors, hardware, software, and tools), national laws,
connectivity, weather dependency, and the need for special-
ized knowledge and skills are specific blockages for UAV-
based farming development [18], [63]. As a result, multi-rotor
UAVs are the most deployed types in livestock monitoring,
following the quadcopter and fixed wings.

A multi-rotor UAV with six engines and six arms bearing
a single board computer with a 700 MHz processor and 512
MB memory capable of running a Linux distribution was used
for monitoring and counting animals [48].

The authors of [56] deployed a DJI Phantom 4 Pro
equipped with a 20-MPixel to detect the Canchim breed that
is visually like the Nelore breed. They observed significant
contrast variations between animals and background from
images captured at different times of the year. For instance,
excessive brightness and motion blur caused low contrast
images. Furthermore, observing different degrees of animal
occlusion. Nevertheless, CNN models trained by UAV-based
images under far from ideal conditions could reliably dis-
tinguish the animals and show UAVs’ possible application
for cattle monitoring. In terms of flight height, the minimum
elevation flown was 10 m, and the maximum elevation tested
was 120 m above the ground.

Several potential challenges in intelligent aerial robotics
include computational demand and system capabilities,
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online learning, expedited learning time, uncertainties in data
distribution and representation, stability-plasticity dilemma,
the curse of dimensionality, limited payloads, and challenging
flight environments [64]. In addition, operators require an
advanced level of skill to fly drones in compliance with
federal aviation regulations for UAV operations.

A. UAV-BASED DATA AND FEATURES FOR PLF

Exploiting deep learning for feature extraction and knowl-
edge discovery from existing databases helps to improve
decision support systems [66]. However, various factors
influence the quality of livestock prediction algorithms in
which feature lists are the essential components. Moreover,
livestock behaviour and location across different temporal
and spatial scales can reveal the factors driving resource
selection, growth, reproduction and survival, response to
disease, and coping mechanism with environmental condi-
tions [67]. Therefore, real-time livestock behaviour moni-
toring can facilitate timely and accurate decision-making.
However, introducing only a few successful commercializa-
tion of precision farming technologies recently. Therefore,
to establish a successful PLF, the most significant factors,
such as incorporating technology components, efficient inter-
pretation of captured data from remote sensing tools, and
relevant yet straightforward decision-making systems able to
communicate continuously, are prerequisites in this industry.
Concretely, UAVs, unmanned ground vehicles (UGVs), ML,
DL, Big data, image processing, WSN, and cloud computing
have brought positive and sustainable changes [68].

Remote sensing technologies, particularly UAVs, can
cover large-scale livestock monitoring tasks as timely data
collection and analysis become increasingly valuable with
farms expanding and individual animal observation is not
feasible. Traditionally, real-time image processing and anal-
ysis employ many data acquisition tools (e.g., GPS, ther-
mal, accelerometer). However, UAVs are contact-free and
present no risks of disease transfer, infection, or stress on
animals while recording measurements. Also, UAVs are cost-
effective when using a single camera or microphone to
observe many animals, eliminating the need for sensor recov-
ery on livestock.

Several types of research used acceleration data for ani-
mals’ behaviour classification using ML algorithms. [69]
applied AdaBoost ensemble learning algorithm to identify
dairy cows’ seven behaviour patterns, including feeding,
standing, lying, standing up, lying down, regular walking, and
active walking. Similarly, [70] implemented the Adaboost
algorithm to classify dairy calves’ behaviours using merged
collar-mounted sensor signals and video camera records.
In addition, they developed an adjusted count quantifica-
tion model identifying many behaviours: locomotor play,
ruminating, self-grooming, non-nutritive suckling, nutritive
suckling, active lying, and non-active lying. Despite very low
behaviour prevalence in real-world conditions, these multi-
class classification and quantification learning algorithms
demonstrated high accuracy. In [71], the accelerometer and
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gyroscope sensors extract eleven features: mean, standard
deviation, kurtosis, minimum and maximum value, interquar-
tile range, signal area, total signal area, zero crossings, dom-
inant frequency, and dominant frequency and spatial entropy
to test ML classification algorithms. The results demonstrated
that the RF outperformed other classifiers (kNN and SVM)
with the gyroscope-based features significantly contributing
to the classification of sheep eating behaviours.

Similarly, [72] confirmed five features, including mean,
standard deviation, root mean square, median, and range,
for the highest performance classification of cows’ seven
behaviours, including lying, lying down, feeding, standing,
regular walking, and active walking, and standing up. Ter-
Sarkisov et al. [73] obtained nine features, including overall
mean, maximum, and three quartiles vector features from
pixel intensities, size of bounding boxes, and coordinates of
the bounding box’s centroid the distance feature used for cow
tracking application using video data. While the currently
deployed remote sensing tools generate a massive amount
of data, the transmission of this big data is expensive, time,
and energy-consuming. For instance, they utilize extensive
data logger and accelerometer tools to examine livestock
behaviour. These data recording tools provide animals’ head
inclination and acceleration features to distinguish dairy cat-
tle lying time, the number of lying bouts, lying patterns, cow’s
head posture identification while grazing and differentiating
non-grazing ones [74]. In addition, the investigation of stock
density on livestock behaviour, productivity, and comfort
of dairy cows used data logging tools [75]. Although these
tools have provided valuable information to detect livestock
behaviour patterns, animals experience stress when removing
these tags from their bodies for data extraction [76].

Therefore, it is necessary to discover ways to acquire
data from animals and transform that data remotely. Com-
bining DL and UAV technologies with minimal interfer-
ence offers visual and audio-based recognition abilities in
livestock farming. The main phases of UAV-based object
detection methods include three stages information region
selection, feature extraction, and classification [43]. As an
example, UAV-based video data fitted into DL (e.g., CNN)
and image processing methods facilitated livestock moni-
toring of sheep [55], [77], and calves [78]. However, video
sequencing is challenging for several reasons, each of which
causes a specific issue. These challenges are 1) the ani-
mals changing position and different postures; 2) the view
of animals can suffer from a great degree of partial occlu-
sion; 3) changing illumination and lighting conditions can
pose issues with learning algorithms to erroneously learn
patches or shadows as animals’ features; and 4) in many
cases the noisy and dark background cannot be differenti-
ated from the segmented objects even by the most advanced
algorithms [73], [79], [80]. Different CNN structures, such
as the Mask R-CNN, have enhanced the object detection
and segmentation (e.g., cattle) performance by extracting
more features and thus, overcoming the challenges mentioned
earlier. It is also not affected by cattle coat colour, such as
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brown, white, dark, and poses [49]. Likewise, [80] presented
a novel instance segmentation model that extends the FCN
to label objects independently without predicting regions of
interest. In addition, [81] used the residual learning theory to
build an FCN able to harness multilevel contextual feature
representations learned from various residual blocks from
aerial images and video. To this end, DL methods extract
predictive features automatically and are an active research
area for animal behaviour studies. However, the user cannot
interpret the extracted features from DL, unlike handcrafted
features used in classical ML techniques. Thus, the choice
of the algorithm varies by aiming for an optimum prediction
accuracy or feature extraction.

Moreover, developing algorithms that capture relevant
information at the lowest possible level, enabling the trans-
fer of relevant features and knowledge rather than data,
resolves the challenge of excessive data accumulation and
transmission. Also, these innovative algorithms combining
the livestock data with other public data can facilitate the
PLF management standards [82]. Another possible way to
enable new livestock decision support models is to expand
available data sources. By bridging the geospatial data, social
media feeds, and other data sources using interchangeable
standards to develop new livestock decisions and support
models. Table 3 lists the existing datasets utilized in UAV-
based livestock recognition.

V. REVIEW RESULTS

Three parts discuss the results regarding DL-based PLF using
UAVs: 1) Deep learning-based livestock monitoring using
UAVs, 2) livestock detection and classification 3) livestock
localization.

A. DEEP LEARNING-BASED LIVESTOCK

MONITORING USING UAV

UAV and DL vision systems will soon provide autonomous
solutions for precision farming applications in pastures. They
are being exploited as a cost-effective and fast choice to
collect data from specific regions. Most proposed livestock
monitoring mechanisms rely on mounting tags, sensors, and
nodes. However, it is troublesome to attach devices to many
animals in terms of time and cost in the real-world envi-
ronment. Several studies utilized satellite and aerial imagery
and field data for independent livestock survey and detection;
however, significant limitations are low image resolutions,
high cost, and low sampling frequency. Object and pixel-
based models have been successfully applied for livestock
detection, counting, and positioning over small and relatively
homogeneous areas with few images [12], [85], [86]. Live-
stock detection is the only primary level of more complicated
tasks, including animal counting and anomaly recognition,
addressing multiple technical problems, such as the size of the
target object changing variously in image recognition tasks.
Another presumed challenge is ML algorithms coping with
object brightness variation beyond the training set. Alterna-
tively, the most common and basic pixel-based supervised,
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TABLE 3. Precision livestock farming databases in deep learning.

DATABASE APPLICATION RESOLUTION DATA No. OF NoO. OF PLATFORM REFERENCES
FORMAT OBSERVATIONS OBJECTS
FRIESIANCATTLE2015 AUTOMATIC IMAGE RGB 764 RGB-D 92 UAV [83]
INDIVIDUAL 512x424 VIDEO IMAGES INDIVIDUAL
HOLSTEIN VIDEO CATTLE
FRIESIAN 1920x1080
CATTLE
IDENTIFICATION
FRIESIANCATTLE2017 HOLSTEIN- IMAGE RGB 940 RGB 89 UAV [30]
FRIESIAN 512x424 VIDEO IMAGES INDIVIDUAL
CATTLE VIDEO HOLSTEIN
DETECTION 1920%1080 FRIESIAN
AERIALCATTLE2017 VISUAL 3840%2160 RGB 46,439 IMAGE 23 UAV [30]
LOCALIZATION VIDEO FRAMES INDIVIDUAL
AND CATTLE
INDIVIDUAL
IDENTIFICATION
OF HOLSTEIN
CATTLE
CATTLE UAV-BASED UAV-BASED 224x224 - 14,489 IMAGES - UAV [56]
AERIAL IMAGES CATTLE LABELLED AS
DATASET DETECTION CATTLE
1,448 NON-
CATTLE
A REAL PASTURE LIVESTOCK IMAGE - 1,000 IMAGES 37 UAV [52]
SURVEILLANCE CLASSIFICATION 512x512 37
DATASET AND COUNTING VIDEO
4096x2160
OPENCOWS2020 DETECTION, IMAGE RGB IMAGE 3,707 IMAGES 6,917 CATTLE UAV AND [50]
LOCALIZATION, 512x424 ANNOTATIONS GROUND-
IDENTIFICATION 19201080 BASED
IMAGING
AERIAL-LIVESTOCK- COUNTING 224x384 IMAGE 2,716 IMAGES - UAV [59]
DATASETS GRAZING FOR TRAINING
ANIMALS ON 348 IMAGES
GRASSLAND FOR TESTING
UAV-BASED ANIMAL 4288%2848 VIDEO 2,018 - UAV [84]
WILDEBEEST COUNT COUNTING
DATA
AERIAL UAV CATTLE 400%3000 IMAGE - 212 UAV [53]
DATASETS COUNTING AND INDIVIDUAL
GRAZING TARGETS
MANAGEMENT
UAV-BASED EXTENSIVE 300x4000 IMAGE 654 - UAV [60]
DATASET MAMMAL
CENSUS IN
AFRICAN
SAVANNA
WILDLIFE

unsupervised, and thresholding methods based on mapping
assign every pixel to a class because large animals can cover
single to multiple pixels in very high resolution (VHR) space-
borne imagery.

The authors of [87] identified DL-based PLF as one of
the most common topics between 2016 to 2019. While,
in review by [88], few works considered issues related to
livestock farming using DL, with only three papers published
after 2015. Recently, several state-of-the-art object detection
approaches based on CNNs such as DenseNet, ResNet, and
NASNet have achieved reliable outcomes for wild animal
and livestock recognition. However, achieving high automa-
tion degrees and accuracy in livestock recognition, trained
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explicitly on UAVs’ data, requires improvements [89]. More-
over, the additional post-processing efforts negate UAVs’
time savings and convenience compared to traditional moni-
toring techniques. Thus, to deliver a reliable UAV-based live-
stock detection and counting over data collection to analyse
powerful data analytics capabilities is necessary to use the
data collected by UAVs. Livestock monitoring and detection
studies in UAV imagery are emerging more recently. [90]
examined the possible integration of generic object recog-
nition solutions for onboard animal detection and counting.
They concluded that the object detection deformable part-
based model (DPM) is well-suited to automate the animal
detection and counting onboard UAVs.

80079



IEEEACC@SS D. B. M. Yousefi et al.: Systematic Literature Review on the Use of DL

TABLE 4. Application of DL algorithms in PLF using UAV.

Application Method Backbone network Type of Type of Environment  Platform Altitude References
livestock data
Segmentation Mask R- FPN based ResNet101 Cattle Image Feedlot, Camera - [49]
and CNN Australia
body contour
extraction
Individual cattle ~ Enhanced ResNet101+RPN+Feature  Cattle Image Ranch, Camera - [97]
unrecognizable Mask R- Pyramid Network (FPN) Nigeria
boundary and CNN
body shape
recognition
and segmentation
Detection and FCN, CNN  Network-I, Network II, Sheep Video Farm, UAV-aDJI 80-120 m [98]
counting AlexNet, GoogLeNet, New Zealand Phantom 3
VGG16, VGG19, Pro
ResNet50, and U-Net
Detection CNN VGG-16/VGG- Cattle Image Farm, Brazil UAV-aDJI 30m [56]
19/ResNet-50 Phantom 4
v2/ResNet-101 v2/ Pro

ResNet-152 v2/
MobileNet/MobileNet v2/
MobileNet 121/DenseNet

169/ DenseNet
201/Xception/
Inception v3/Inception
ResNet v2/NASNet
Mobile/NASNet Large
Detection CNN 64x64-18C7-MP4-96C5- Cattle Video Farm, Brazil Multi-rotor - [99]
MP2- UAV
4800L-2
Visual R-CNN VGG CNN M1024 Holstein Image Farm, UK Cameraand 25m [30]
localization and Friesian Video DJI Inspire
identification cattle MKL
Detection YOLOvV2 AlexNet, GoogleLeNet, Holstein Video Farm, UK DJI Matrice 10 m [100]
Inceptionv3 Friesian 100
cattle quadrotor
UAV
Visual CNN ResNet50 Holstein Video Farm, UK UAV - [101]
identification Friesian
cattle
Detection YOLOv2 AlexNet Wildlife Video Wildlife, UAV - [102]
Faster R- Namibia
CNN
Detection, CNN DarkNet Cattle Image Barn, Italy Camera 35m [103]
identification,
and identity
estimation
Counting and CNN y64x64-18C7-MP4- Cow Image Spain Multirotor - [48]
monitoring 96C5-MP2 UAV
-4800L-2
Detection and R-CNN - Sheep Image Farm, New UAV 80 m [55]
counting Zealand
Classification Mask R- - Cattle and Image Farm, Quadcopter, - [52]
and counting CNN sheep Australia MAVIC
PRO
Detection CNN U-net, Google Livestock Video Grassland, Quadcopter - [59]
China UAV
Identification and  Faster R- Inception-v4 Goat Farm, India Mobile - [104]
localization CNN Camera
Detection CNN Inception-ResNet-v2 Cattle Farm, Brazil DIJI 30 m [78]
Phantom 4
Pro
Visual instance FCN FCN-16s and FCN-32s Beef cattle Farm, Irland Camera - [80]
segmentation
Extensive UAV-based wildlife management and conserva- the literature, cattle monitoring studies comprise detection
tion are advancing due to its versatile real-time data acquisi- and counting [39], [51], the distance between calf and
tion performance and timely decision making. According to cow [91], and feeding behaviour [92] using DL methods
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to extract information from images obtained by UAVs.
A comprehensive examination of intelligent cattle monitoring
approaches showed that the non-invasive, consistent, and
real-time cattle detection, body condition score evaluation,
and live weight estimation significantly contribute to future
studies [23]. In [57], the developed system based on CNN’s
achieved a body condition score results whose application
might extend beyond dairy production. Consequently, tech-
nologies such as 3D model reconstruction and DL should be
combined to develop non-contact, high precision, automated
systems for intelligent cattle farming. For the cattle detection
and counting task, [93] took advantage of computer vision
techniques (i.e., CNN and structure from motion (SfM)); to
construct the candidate bounding boxes and the 3D surface
construction of the pasture used aerial records.

Further, the per-frame detection outputs joined with the
3D surface; hence, the multiple detected cows were removed
and reported a correctly counted number of cows. CNNs
play a significant role in remote sensing tasks, considering
the recent DL-based object detection model developments.
Furthermore, they have been the base building blocks for
nearly all computer vision applications [94].

Several researchers have demonstrated the possible inte-
gration of UAVs and DL algorithms for livestock monitoring;
however, screening the entire farm in a single flight and
detecting too small objects are the main drawbacks [95].
This issue can increase error rates related to the time inter-
val between flights, sudden weather changes, dynamic live-
stock behaviour, and the angle of flight incidence will vary.
Several studies achieved promising results in monitoring ani-
mals by performing flights at specific time intervals [96]
with recorded images at the nadir position (orthogonally).
Still, the complete area coverage was limited, which would
improve with multiple UAVs. The commonly selected verti-
cal angle provides the same ground sample distance (GSD)
on all images that facilitate the object of interest detection.
Alternatively, [78] investigated a feasible way to monitor
the entire farm using an oblique UAV image and tested it
using deep CNN. Experimental results showed that a tilted
angle could increase the area covered by each image under
certain conditions by addressing precisely view obstructions
and determining the border.

Also, constant weather conditions challenge farmers to
monitor livestock active spread and congregation. The only
literature exception to mitigate this issue was image acqui-
sition at an angle with all pints assigned the same GSD
[51], [52]. The GSD on these images varies in oblique
images, occlusion become severe, and other object detections
and measurements become challenging. However, the area
screening capacity increases and significantly reduces the
quantity of UAVs required. Table 4 briefly describes DL
algorithms for livestock recognition tasks using UAV records.

B. LIVESTOCK DETECTION AND CLASSIFICATION
Deep learning-based object detection and semantic segmen-
tation techniques received attention in livestock monitoring

VOLUME 10, 2022

in pasture and open space environments. State-of-the-art
CNN is a new approach that showed remarkable results
for object detection, classification, and localization tasks
in computer vision [79]. Furthermore, the in-depth features
learned by CNNs provide necessary semantic and spatial
knowledge [30] to further evaluate cattle welfare in precision
livestock management. An individual cattle segmentation (for
classification and localization) and contour extraction tech-
nique based on the Mask R-CNN framework [49]. The exper-
imental results showed Mask RCNN outperforming other
instance segmentation techniques (DeepMask and Sharp-
Mask) with a high MPA of 0.92 and ADE of 33.56 for cattle
segmentation and contour extraction. However, it is essential
to focus on enhanced segmentation methods for the overlap-
ping cattle regions and their different body parts. To sup-
port this, [97] proposed an enhanced Mask R-CNN instance
segmentation model to detect indistinguishable body patterns
and boundaries of cattle. The transformed instance segmen-
tation and contour extraction results, depicted in Figure 5.
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FIGURE 5. Enhanced Mask R-CNN for cattle image instance
segmentation [97].

The enhanced Mask R-CNN framework effectively
extracted smaller and overlapped features with optimal fil-
ter size, unlike Mask R-CNN, and enhanced segmenta-
tion with sub-network integration. In addition, the imple-
mented approach obtained an MPA of 0.93 and achieved
precise simultaneous localization and mapping. However,
due to the variation in cattle contour, its manual pixel-
wise annotation is costly and time-consuming in CNN-based
approaches. Accordingly, [105] presented a cattle segmenta-
tion DNN Bonnet method based on different data augmenta-
tion approaches. This strategy has improved the segmentation
accuracy of cattle from the complicated background with
99.50% mean accuracy and 97.31% mean IoU. For beef
cattle segmentation, [80] developed a new instance segmen-
tation algorithm based on FCNs, eliminating the region of
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interest (Rol) prediction from video data. The presented
instance segmentation MaskSplitter framework with FCN8s
as the last layer outperformed state-of-the-art methods such
as Mask R-CNN.

The Authors of [98] explored Different FCN and CNN
networks for sheep detection and counting using UAV-
based videos recorded from 80 m and 120 m altitude. The
results showed U-Net-Ms model outperformed the other net-
works (AlexNet, GoogleLeNet VGG16, and ResNet50). UAV
frames captured from a height of 120 m (maximum legal
altitude in many countries) covered a larger area of paddock;
however, various other objects (e.g., tree branches, wooden
logs, farm barriers) obscured sheep recognition accuracy.
In-depth, altitude determines livestock contour’s distinction;
thus, the lower the measurement, the more distinguishable
the objects are from UAV records using CNN networks.
Furthermore, the fully connected network applies centroids
of the objects instead of bounding boxes in CNNs, which
fits composite, small, and overlapping objects detection. That
framework used a small Synthetic Aperture Radar (SAR)
image using a multi-view network for Automatic Target
Recognition (ATR), which exhibited an excellent recognition
performance with the limited number of records required for
network training. It also performed remarkably well in vari-
ous conditions, such as depression angles and configuration
changes [106]. Even though UAVs provide distinctive fea-
tures, their livestock detection and localization applications
are far from fully operational; they solve various issues.

Several studies experimented with different DNNs and
UAV imagery to determine the highest achievable detec-
tion accuracy in the breed-wise livestock recognition task.
The proposed approaches achieved the ideal GSD and the
most accurate CNN architecture. Furthermore, most models
obtained considerable robustness against restricting condi-
tions, such as illumination, extreme brightness, blurriness,
and partly visible animal body. For example, in a study
by [56], 900 models (CNN architectures x three spatial res-
olution x two datasets x 10- fold cross-validation) were
extensively analyzed and tested with 15 CNN architectures
to achieve the most precise CNN model and the optimal GSD
using UAV images. Overall, CNNs networks showed accu-
racies higher than 95%, with sizeable exceptional accuracy
close to 100% for robust detection of two similar Canchim
and Nelore breeds. In addition, these approaches could over-
come restricting factors in UAV-based images under undesir-
able conditions, revealing the reliable application of UAVs
for livestock monitoring. Notably, the captured records at
relatively high altitudes produced the highest accuracies with
a GSD of 2 cm/pixel for animal detection. However, model
drift is a challenging factor using pre-trained models.

Further, to examine the main challenges of small object
detection, [107] applied Sig-NMS-based R-CNN with trans-
fer learning using remote sensing images and automati-
cally labelled them. Also, [108] introduced a self-reinforced
network for small object detection named remote sensing
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R-CNN (R2-CNN), comprised of a network backbone
Tiny-Net, intermediate global attention block, end classifier
and detector. [109] showed feature pyramid network (FPN)
to generate integrated feature maps that significantly improve
small object detection accuracy. Hopefully, these approaches
will inspire future real-time livestock remote sensing systems
developments. Most developed object detection and counting
techniques based on computer vision approaches use non-
orthogonal photos captured horizontally with optical cam-
eras. Rivas et al. [99] designed a cattle detection system
using video data captured by the auxiliary camera equipped
on a multirotor UAV. The sliding window technique was
employed to analyse small, bordering, and intersecting image
tails located over the frame. Subsequently, obtaining the out-
put results using a trained CNN network. Few objects in the
frame were reduced with overlapping boundaries, achiev-
ing the highest accuracy of 98.78%. They also concluded
that vertically taken aerial images by UAVs could display
tiny objects of interest with only a top view presenting a
blob shape that lacks valuable features. Furthermore, the
area of interest is usually overlapped or like other objects
in the background. One animal can pass through the UAV
path multiple times, creating complex problems to solve.
While corresponding ground images contain numerous dis-
tinctive features (e.g., head, body, legs) important for pattern
recognition [110].

Alternatively, [30] introduced a video processing pipeline
using long-term recurrent convolutional networks (LRCNs)
for Holstein Friesian cattle visual detection and localiza-
tion using video captured by a UAV. The LRCNs were
first introduced by [111] as the combination of CNNs and
long short-term memory (LSTM) using UAV-based imagery
datasets. Convolutional visual features were extracted using
the Inception V3 CNN and fed into an LSTM layer for visual
identification of an individual cattle. Consequently, the video-
based LRCNSs successfully distinguished the unique dorsal
patterns and structures exposed by particular species with
an accuracy of 99.3%. For path planning, UAV and wireless
sensor network (WSN) based on the Markov decision pro-
cess (MDP) model were applied [112]. Even though deployed
sensors in WSN can provide animal monitoring informa-
tion in an outdoor environment, long-distance wireless com-
munication in large remote wildlife regions is expensive
and impractical. For example, long information transmission
delays can lead to livestock loss. Currently, some systems
use UAV communication using sockets [48]; but it is limited
to fixed-wing UAVs. This system encourages the multi-rotor
UAVs’ automatic control and information acquisition regard-
ing the status of the arrays it carries like GPS, and it can
send video footage. Ultimately, timely and efficient animal
data collection and transmission are crucial for livestock
monitoring and localization tasks.

Livestock tracking in challenging environments comes
with several significant issues, such as crowded background
and high similarity within a group of in-motion objects, which
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significantly reduces the robustness of existing methods.
A design for an Unmanned Aerial Vehicle onboard system
used a DL inference process for visual detection of sev-
enteen heifer Holstein Friesian cattle in an open pasture
environment. The proposal used three layers of deep CNNs
architectures comprising a species detection using YOLOV2,
a dual-stream deep network to create an exploratory agency,
and an InceptionV3- based biometric LRCN for single object
detection. The experimental results proved the concept with
error-free aerial identification performance (100% accuracy)
in freely moving herds in an open environment that supports
tag-less technology towards autonomous farming technol-
ogy [100]. However, in successfully performing indepen-
dent aerial identification of animals, computational resource
limitations alongside payload, weight, and more should be
considered for future farming automation and productivity.

Similarly, [50] proposed a non-intrusive automated cat-
tle detection, localization, and identification technique from
aerial images. Initially, three object detectors such as
YOLOV3, Faster R-CNN, and RetinaNet, were applied for
cattle Rol extraction. A ResNet embedded the output for
image clustering based on coat patterns. Lastly, carrying out
the classification step using kNN to create cattle identities.
The state-of-the-art object detectors such as YOLOvV3, Faster
R-CNN, and RetinaNet networks have yielded decent results
in primary cattle identification pipelines. Even though the
deep object detectors were highly precise, the combination
of basic localizing methods within video frames is likely to
remove any possibly occurring errors. For significant animal
detection from UAV images, [102] implemented CNNs. The
proposed architecture on a pre-trained AlexNet adopted two
approaches to identify the presence and size of the animals
by assigning the local likelihood scores.

Consequently, the proposed architecture outperformed the
Fast R-CNN with a far better average image processing time
per frame. Studies compared the two models, Faster R-CNN
and YOLOV2, to recognize and detect the animal species
in images. The trained models achieved 83% and 76.7%
accuracy for Faster R-CNN and YOLOv2. Although Faster
R-CNN was more accurate than YOLOv2, YOLOv2 was
faster than Faster R-CNN. Overall, both have demonstrated
high detection performance, but they performed unsatisfac-
torily in the presence of small targets in images obtained by
UAVs [113]. The latest study [103] applied YOLOv3 neural
network using high-resolution video frames to identify a sin-
gle or a group of cows, their movement, actions, and positions
in real-time. The model was trained and validated with four
cows’ video records from the barn. The designed framework
achieved satisfying IoU scores between 0.75 to 0.81 over-
coming the global object detection threshold (0.7 to 1.0). The
outcome showed that the cow coat pattern is most fitted for
detection. Moreover, single cow recognition is possible based
on its outward appearance, and the piebald spotting figures
of a cow’s coat depict a discernible feature for the computer
vision networks.
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C. COUNTING APPLICATION
For counting livestock and animals in nature, the algorithms
require extracting every animal’s unique feature to con-
sider every individual only once. For wildlife and animal
monitoring, such as goat groups [114], recently quadcopter
UAVs have been extensively employed. However, aerial cattle
detection and counting is a deceptively challenging task with
livestock and low background contrast, their profile move-
ment with body changes, large groups of animals, and the
presence of small livestock (i.e., calves). Automatic livestock
identification and counting could enhance animal monitoring
and management and population estimation. Generally, live-
stock manual counting is labour-intensive during drenching,
shearing, or loading and tends to cause slight but substan-
tial errors. Recently, farming industries are moving towards
automated methods to efficiently manage and monitor their
herd. Accordingly, researchers have applied several statistical
and biological techniques to cope with challenges, such as
species-specific characteristics, diversity of background, and
spatial clustering of animals. Most of the relevant research in
this domain has shown promising outcomes using ML classi-
fication algorithm [90], template matching algorithm [115],
deformable part-based model (DPM), and power spectral-
based methods. However, these methods for detecting and
counting livestock on UAVs require handcrafted training data.
Also, these methods apply to images where the livestock are
low in number and require high-resolution records.
Furthermore, various animal species’ remote monitoring
and counting under different climate conditions is advanc-
ing with the evolution of DL algorithms and UAVs. For
instance, [48] successfully performed a livestock recognition
and counting system via CNNs and video data captured by
UAVs. Recent counting approaches revolve around data from
scattered regions that favour detection networks. However,
these techniques fail to detect sparsely located dense objects.
In [110], the authors developed a novel DisCountNet model
based on two-stage networks of DiscNet for coarse detec-
tion and CountNet conducted on dense areas of the sparse
matrix to produce a density map using the UAV dataset.
The system consisted of detection, and heat-map networks
presented a simple yet effective solution by processing a
large and high-resolution image. However, even though the
network improved various object counting and localization,
its outcome was highly occluded. Another issue of deal-
ing with hundreds of small animals per image still lacks
information and reliable processing methods. In this regard,
[55] explored two sheep detection and counting approaches
based on R-CNNs and an expert system using blob analysis
from UAV video. While the proposed expert system tech-
nique indicated great potential for the intended application,
the CNN technique required more work to detect practical
objects, especially when dealing with small objects in the
background. A variety of cattle and sheep recognition and
counting system based on Mask R-CNN from UAV images
have been proposed [51], [52]. The results demonstrated
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its classification and counting effectiveness with 96% and
92% accuracies, respectively. Figure 6 presents a successful
livestock classification and counting framework based on
Mask R-CNN and UAV. Even though the sheep and cattle
classification and counting followed the identical pattern with
the changing density, the classification and counting certainty
of livestock over changing thickness is not investigated.

Prediction for classification,
bounding-box and mask

Training datiaset with annotations

Classification and
regression

Training model

Machine

Feature extraction

Livestock classification
and counting

learning|
detector /

Testing dataset

FIGURE 6. Enhanced mask R-CNN for cattle image instance
segmentation [97].

Deep learning detectors such as R-CNN, Mask R-CNN,
Enhanced Mask R-CNN, and Faster R-CNN based on
instance segmentation have effectively employed background
discrimination and identifying fewer uniform livestock like
cattle with multi-colour. In addition, UAVs equipped with
these approaches require large datasets. Contrary, most live-
stock monitoring techniques have been conducted on limited
observations, yielding numerous false alarms when tested
with the large-scale and actual study scenes for extensive
animal monitoring. To this end, it presents a method to train
CNN for animal censuses on a UAV-based image dataset,
including many images with sparse animals [60]. As a result,
the CNN yielded a considerably higher prediction perfor-
mance and generated reliable results expanding over fewer
image tiles. Furthermore, these research results demonstrate
CNN’s effectiveness in producing a substantially higher pre-
cision at high recall values than state-of-the-art detectors and
achieving more confined predictions across fewer image tiles.

Furthermore, CNN reduced the number of image tiles sig-
nificantly compared to the baseline, at a recall level of 90%.
Thus, these evaluation methods and the recommended model-
agnostic are straightforward and can complement any DL
object detector for animal monitoring with accessible results
during an actual UAV movement, counting images without
wildlife records. [59] compares the livestock detection algo-
rithm based on U-net and Google Inception-v4 networks
against YOLOv3 and Faster R-CNN. The proposed model
based on U-net and Google Inception-v4 achieved better
detection results than YOLOv3 and Faster R-CNN. The lower
detection performance of YOLOv3 and Faster R-CNN was
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attributed to their ineffective light-coloured instance segmen-
tation. Other research gaps, such as high-speed algorithms,
fence lines detection, robust parameter detection, and the
integration of tracking technologies to resolve minor errors in
object detection, should be tackled. An overview of the latest
achievements with CNN techniques for livestock counting
and density estimation is more proficient at handling large
density crowds with object scales and background changes.
Also, these methods drastically enhance the estimation error
when incorporated with scale and contextual information
(i.e., time, location, temperature) [48].

Another UAV-based cattle counting by [39] applied a pre-
trained CNNs network known as Nas-Net Large to depict the
area of interest. The process included colour transformation
and object segmentation from the background, mathematical
morphology to distinguish clusters and false objects elim-
ination, and image matching to match image overlapping.
The proposed structure achieved over 90% accuracy under
different conditions and backgrounds with highly present
young calves. UAVs and autonomous approaches would be
especially applicable in broad and remote rugged terrain.
It represents a comparable solution for livestock monitoring
to other methods.

Further possibilities of covering large areas at once should
be tested to eliminate the long flights and image overlap lim-
itations [8]. Wang et al. [89] proposed a livestock population
estimation model with the animal crowd features extracted
from UAV imagery and satellite data. According to experi-
mental results, both the UAV and satellite imagery achieved
reliable results in yak counting, but satellite imagery failed
to detect sheep due to low-resolution observation. Addition-
ally, the UAV operation did not cause changes in livestock
distribution and reactions at 700m altitudes. UAV shows to
be a promising, affordable, and reliable platform for PLF
applications. However, monitoring animals over extended
distances and vast study regions requires caution.

Additionally, remote imagery using UAVs for small ani-
mals is highly constrained by the imagery resolution. The
small object detection from UAV imagery is advancing, tak-
ing advantage of DL algorithms to automatically detect live-
stock, which needs constant counting between and within
years. However, these techniques fail when fed with too small
sizes of the object of interest, overlapping background, and
low resolution of the images. Even though these issues chal-
lenge researchers, having a uniform scene reduces the diver-
sity and complexity of geospatial object presence. To sum up,
animal counting is possible using DL-based object detection
techniques embedded in UAVs for their practical application
to deliver diverse aerial imagery.

D. LIVESTOCK LOCALIZATION

Farm animals’ body location and motion identification
greatly determine their well-being and efficient moni-
toring [116]. Specifically, few livestock monitoring sys-
tems have been commercialized for livestock behaviour
and position inspection from motions; however, these are
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relatively expensive. For instance, [117] proposed the Gea
CowView system able to detect the presence of cows in the
0.5-3 mrange with over 70% sensitivity using ultra-wideband
(UWB) highly spatial and directional data. [118] employed
GPS tags and Bluetooth Low Energy (BLE) technology for
herds localization and identification. For outdoor localization
of cows, [119] evaluated the matching method and DNN
using the received signal strength indicator (RSSI) from BLE
tags. Deep learning methods facilitated livestock localization
with higher precision and speed than the matching approach.
The matching method uses pattern matching between RSSI
datasets during localization [120]. However, this approach
suffers from the large fingerprint datasets that lead to long
retrieval time and processing costs over a vast pasture region.
Moreover, authors in [121] and [122] proposed low-cost BLE
tags for cow’s location tracking with an achieved precision
of 3.3 m and an accuracy of 3.27 F 2.11 m in a barn
(10 x 40 m2). However, the amount of noise due to tag
positioning, orientation sensitivity, and pasture environment
structure decline the developed systems learning ability.

Visual information recorded by UAVs provides rich chro-
matic details of the scene. DNNs are novel in the field of
Aerial imagery research; the training of object localization
uses UAV recorded data based on deep network architectures.
A study by [104] applied a trained Faster R-CNN model
using fine-tuned transfer learning for automatic goat breed
identification and localization using images. Localization
testing used coordinate information of the animal in each
training image and obtained the ground truth data using a
bounding box predictor algorithm. Creating bounding boxes
around the goats in the training phase performs the image
annotations task. The evaluated fine-tuned Faster R-CNN
with Inception-ResNet-v2 as the feature extraction backbone
showed positive results as animals breed detection system.
This approach could automatically dismiss low-resolution
images limiting the identification of animal breed detec-
tion. CNN’s achieved good performance for ground-to-aerial
localization studies [123]. Recent object detection and track-
ing promoted motion features next to the task of localiza-
tion. The authors in [124] showed the reliable application
of motion features for animal detection and tracking wildlife
using UAV videos. Although high-speed cameras can capture
information to perceive and detect fast-moving objects, the
major drawback is the possibility of them being out of the
field of view and do not assume animals are constantly in
motion.

Similarly, fast-moving animals within the field of view
can be too small and barely visible to be detected by com-
puter vision algorithms [125]. Technological advancements
in data collection with UAVs provide a wide range of data
resources to analyze animal behaviour in unprecedented
detail. Livestock classification and localization from audio-
visual data are becoming an important research area to tackle
the dynamic behaviour of animals on farms. Given that
animals have audio and visual signatures, both audio and
visual modalities can be used to study animals’ behaviour.
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Specifically, audio provides temporal segments, and visual
data provide visual-spatial learning. Technically, feature
extraction from this data type is filled with low contrast, poor
lighting conditions, and frequent occlusion issues when the
aim is to monitor animal behaviour directly. Audio-visual
analysis of field data using labelling methods allows real-
time monitoring to manage individual cows [126]. Alterna-
tively, a cow tracking algorithm was developed using video
data based on DL algorithms, heuristic techniques, and an
ensemble learning method [73]. Specifically, a novel object
segmentation algorithm named conditional random fields as
recurrent neural networks (CRF as RNN) was designed for
localization. So far, this approach has demonstrated very
high performance on video data compared to other methods,
including FCN.

Specifically, one-stage detectors, such as YOLO and
SSD, were used to localize and segment bird localization
[13], [127]. A CNN can effectively perform deep-level fea-
ture extraction and is essential for species categorization and
environmental sound classification. Another cattle monitor-
ing system was built based on CNN and MFCCs for real-time
cattle audio detection and corresponding behaviour matching.
Two CNN networks were applied to evaluate cattle conditions
and behaviour classification by classifying cattle audio and
eliminating background noise from existing datasets. The
audio-based cattle vocal detection monitored their actions
through a four-behavioural classification model with an accu-
racy of 81.96% following SIFT analysis used for audio filter-
ing [128]. Likewise, [129] investigated animal audio classifi-
cation based on CNN and MFCCs to classify ten different
animal types. The Nesterov-accelerated Adaptive Moment
Estimation (NAME) reports the best accuracy of 75%. How-
ever, the low number of training samples harmed the model
recognition performance as it is well-known that DL requires
big data for better generalization. Thus, recommends increas-
ing the number of samples or unsupervised data augmentation
methods to increase data volume where data acquisition is
restricted. Alternatively, use data augmentation by randomly
cropping and patching images to increase the size of livestock
data. This strategy has improved the segmentation accuracy
of the DNNs to resolve the limited labelled training datasets
in farming applications [105]. To classify animal species,
amulti-view CNN framework with a wireless acoustic sensor
network (WASN) reported a high accuracy and outperformed
classical classification algorithms (e.g., SVM, kNN) when
the environmental noise dominates the audio signal [130].
Audio detection as a system to identify livestock is a field
with significant potential. Recently a Siamese neural net-
work (SNN) generated dissimilarity descriptors to determine
and enlarge the distance function within multiple classes for
animal sound classification [131], [132]; this leads to the idea
of future improvements used in conjunction with a CNN.

Furthermore, the authors of [133] developed a novel
Audio-visual Fusion Block (AVFB) and Segment-Wise
Attention Block (SWAB) to address the sound source posi-
tioning issue. The proposed model was automated to learn
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the fusion between audio and video, containing high variabil-
ity in data without imposing any constraints, thereby assur-
ing generalizability and robustness. The developed model
enabled visual scene perception using audio localization
for robotics. Recent approaches used network localization
methods to locate sound sources using DNNs measuring
the correlations between visual and audio inputs. However,
these models are suited for relative positioning tasks and can
handle only sequential data [134]. Deep learning algorithms
depend significantly on data representation, and real-work
data such as videos, images, and audio does not retain specific
algorithmically defined features [135]. Alternatively, intro-
ducing Audio-visual Correspondence (AVC) could discover
single embeddings that illustrate the sound across an image—
led to a new network architecture design for cross-modal
retrieval and sound source localization using the unsuper-
vised AVC the objective function. Audio-visual object local-
ization (AVOL-Net) exhibited impressive object localization
capabilities [136] using the unlabelled video’s overlapping
visual and audio systems; these cross-modal auditory local-
ization approaches can tackle the labour-intensive and
objects’ bounding box annotations. Although the heteroge-
neous nature of the discrepancy in audio-visual learning
(i.e., a large gap between audio tracks and visual modality)
poses another research challenge. Hence, attention mech-
anisms and memory banks may improve the performance
of mapping audio attributes and objects in an image or a
video in a PLF application [137]. Most established live-
stock health assessment methods are performed manually
by farmers, effective for only a limited number of live-
stock, and prone to human error. Few studies classified
sheep eating behaviour with relatively high accuracies using
sensors [76], [138]. However, these studies used highly unbal-
anced datasets [139] or had very few algorithmic classifi-
cation data points [140], [141]. Therefore, livestock timely
behavioural classification systems combined with UAVs can
provide unusual behaviour and health features where differ-
ent behaviour changes can imply health-related issues.

VI. PROSPECTIVE LIMITATIONS AND

FUTURE SOLUTIONS

UAVs or drones in this application have abundant contextual
and spatial data for animals scattered around the pasture
[18]. Nonetheless, finding possible solutions to some of the
reported and addressed significant limitations. Primary, UAV-
based images are associated with a big scene-understanding
issue as ground-based images. In [142], semantic segmenta-
tion architectures like U-net and Inception were ineffective
for light-colour aerial image segmentation. However, the two
neural networks, Faster R-CNN and Yolov3 obtained better
prediction results than the semantic segmentation models.
Overall, most techniques for livestock monitoring and detec-
tion in literature use two approaches: 1) CNNs to create a
probability heat map for livestock localization [48], [99],
[110], and 2) creating bounding boxes around the object
[53], [100]. However, the former architecture performed
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poorly on identifying small objects, generalizing visual fea-
ture ratios, and not well-established datasets. The latter strug-
gled with precise image annotation, which is time-consuming
and labour-intensive. Even though DL models dominated
visual recognition, their performance dropped with either or
both semantic and covariate shifts, and they tend to overfit.
To this end, the authors of [65] proposed to use Semantically
Coherent Out-Of-Distribution (SC-OOD) with an Unsuper-
vised Dual Grouping (UDG) to distinguish between distri-
bution and OOD samples. Using that method is particularly
important in modelling UAV-based data collected at different
times and under different conditions. Specific livestock detec-
tion and localization challenges in vast rangelands comprise
1) livestock blocked by trees and bushes, 2) contrasting illu-
mination, 3) weak features from small-scale livestock images,
and 4) herding animals’ distinction. The findings showed
numerous potential uses of UAVs and DL technologies to
support livestock PLF activities to detect, localize, and clas-
sify. The future of livestock farming can hold swarms of
UAVs [143] and hybrid aerial-ground actors that could sup-
port data collection and monitoring tasks [21], [144]. These
will mitigate increased processing delays due to computa-
tional processing-intensive tasks like visual identification and
tracking of animals. However, UAV-based lower resolution
images can pose challenges for computer vision analysis.

Overall, these issues represent lesser information for learn-
ing algorithms. Recent livestock counting and recognition
techniques such as Fast-CNN and YOLO have indicated high
detection accuracy but were unsatisfactory when trained with
small targets using UAV images [113]. However, the multi-
scale feature-based object detector SSD has demonstrated
better detection performance than other well-known mod-
els. Notably, from the literature, most of these works have
focused on using classification techniques that those applied
deep object detection methods require modifications to detect
small objects. The convolutional neural network-based live-
stock recognition frameworks embody several desirable char-
acteristics that can handle recordings of different lengths and
segment sizes, producing and adjusting secondary outputs.
The network does not require additional pre-processing steps
and can reach advanced audio and visual fusion systems.
Faster R-CNN and YOLO are proven architectures to auto-
mate cattle detection and identification in pasture environ-
ments where livestock move free.

Deep neural network approaches trained on limited data
can be fed with diverse training sets and avoid over-fitting
using data augmentation and transfer learning techniques.
The results in [54] showed that fine-tuned CNNs trained on
augmented instances outperform fine-tuned CNNs trained on
a set of the original dataset. However, these data augmen-
tation methods demand high computational resources and
filters. Generative Adversarial Nets (GANs) [145] performed
unsupervised data generation. However, their deployment is
complex and leads to a long computation time. The DL
approaches employed above have strengths and limitations
that need to be acquainted with mixed methods to bring
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together the differences and non-overlapping weaknesses.
Extensively performed DNNs in PLF tasks require lots of
training data. A novel less than one shot (LO-shot) learning
method that learns from a smaller number of the training set
in domains where little training data is available would be
very beneficial [146]. Furthermore, livestock classification
and localization using the attention-based audio-visual local-
ization techniques described in [125], [147] demonstrate their
feasible application. The multi-modal audio-visual trans-
formers will improve upon the two-stream audio-visual
neural networks.

These models utilize nearly the same data and deploy simi-
lar externally pre-trained embeddings that illustrate the power
of the transformer architecture for the task at hand. Subse-
quently, many expect to see more approaches adopting LSTM
or other RNN algorithms exploiting the time dimension to
improve prediction performance. Also, the effect of label den-
sity (i.e., weekly labels) and corruption (e.g., noise in labels)
are other limiting parameters for large-scale AED that needs
to develop algorithms able to address these challenges [148].
While these solutions for livestock classification and local-
ization using different UAV-based data sources (e.g., image,
video, sound) can be explored in detail to minimize the
data sample requirement. Additionally, the scalability of the
above-discussed techniques on a large population should be
investigated by acquiring more significant instances from
an individual target discovering unique features exhibited
by animals. In doing so, more generalized models will be
available to transfer on unfamiliar farms and herds.

Other technical issues related to UAVs that may influence
the data quality and formats are hardware maintenance and
inadequate energy sources in fields with harsh weather condi-
tions and remote areas. Hence, reliable hardware and energy-
efficient solutions are desirable for the end devices [18].

VIl. CONCLUSION

Early detection and prevention play a crucial role in the mod-
ern livestock farming domain. Ultimately, farmers require
an appropriate, timely guideline to monitor and predict live-
stock position and behaviour in enormous pasture and range-
land environments. Deep learning techniques provide a clear
understanding of the process by analysing a diverse set of data
and elucidating the achieved information. In remote sens-
ing, livestock detection, classification, and localization tech-
niques based on deep computational networks have received
increased attention over the last few years by advancing
monitoring techniques, such as UAVs providing diverse sets
of data. A recent family of object detection and semantic
segmentation techniques (e.g., CNN) demonstrated higher
precision for livestock monitoring in pasture and open space
environments using UAV-based data. Faster R-CNN exten-
sively tested for livestock detection has shown the most
accurate results despite exploring the wide range of region-
based object detectors. Livestock detection models based on
YOLO demonstrated high performance in locating and clas-
sifying the object of interest within the image by drawing the
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bounding boxes and the class probabilities. However, they
struggle with small objects within the images. To this end,
Mask R-CNN extended the livestock classification and local-
ization tasks to other instance segmentation solutions.

Further, the unified and self-reinforced R-CNN and
attention-based mechanisms will hopefully inspire the real-
time monitoring tasks using appearance and motion informa-
tion from UAV-based audio-visual data. The present review
also shows the potential application of audio-based percep-
tion for searching and livestock management for a person
with vision disability (e.g., fog, fire). Several introduced com-
binations of DL (e.g., CNN) and feature extraction methods
(e.g., MFCCs) apply to unique acoustic feature extraction
from limited data available to evaluate livestock conditions
and behaviour. However, most studies rely on visual per-
ception, and a limited number of studies investigated audio-
visual perception using UAVs. Despite all investigations,
training robust DNNs, need large datasets that do not exist
in many cases.
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