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ABSTRACT This work proposes a new algorithm to classify high impedance faults (HIFs) in distribution
systems. HIFs can be represented by small current magnitudes with non-linear variations, which complicate
their detection in distribution grids. The proposed method uses the Hermite transform (HT) as a signal
processing technique that offers several advantages, one of the more important being the ability to analyze
the signal at multiple resolution levels and at different frequency bands thanks to their filter functions based
on Gaussian derivatives. The Hermite coefficients are used to extract signal features that allow efficient
identification of the transient behaviour related to HIFs and other typical faults. In this sense, a multichannel
approach based on the Hermite transform is proposed to classify different types of faults and HIFs. This
analysis is carried out in a distribution network considering photovoltaic (PV) systems considering three
different classifiers, which are also used to compare our results with the discrete wavelet transform (DWT)
as signal decomposition model; the comparison suggests that our proposal presents better performance
discriminating HIFs from typical faults.

INDEX TERMS Classification, distribution grids, fault detection, Hermite transform, high impedance faults,
multiresolution analysis, photovoltaic systems.

NOMENCLATURE
Hn Hermite polynomials.
Ln Hermite-expansion coefficients.
Dn Filter functions.
G(x) Gaussian window.
i(x) Electrical signal.
v Arc voltage.
i Arc current.
τ Time constant.
g(t) Arc conductance.
P(v, i) Arc power in steady-state.
Ia, Ib, Ic Line currents.
IHTa, IHTb, IHTc High-frequency components.

The associate editor coordinating the review of this manuscript and

approving it for publication was Inam Nutkani .

F1 Standard deviation.
F2 Average absolute magnitude.
F3 Average energy.
F4 Kurtosis index.

I. INTRODUCTION
The aim of a distribution system (DS) is to supply energy
to all demanding customers. Grid congestion and distances
associated to power distribution expose the grid to critical
conditions such as faults and abnormal scenarios, which may
affect the power quality and the system reliability. In this
context, the protection systems must be reliable to detect
faults as fast as possible to avoid large interruptions of load.
One of the more important issues of distribution grids is the
protection against short circuits that produce high current
magnitudes resulting from ‘‘low impedance fault (LIFs)’’.
However, in some cases, the fault may present small current
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magnitudes originated by ‘‘high impedance faults (HIFs)’’,
which are characterized by a nonlinear behavior [1], [2].
Therefore, the correct discrimination between LIFs and HIFs
has become an essential subject of interest because HIFs
present complex transient behaviours that complicate their
detection. A HIF occurs when an overhead conductor makes
contact with any object that hosts a path to ground. Due
to the small current magnitudes and the nonlinearity of the
phenomenon, HIFs may not be detected by conventional
overcurrent protections [3]. The resulting resistance during
a HIF limits the fault current but the current magnitude is
below the detectable limit (pick-up current) by a conventional
overcurrent protection. Fault current magnitudes are gener-
ally smaller than 75 amperes, particularly in 12.47 kV feed-
ers, depending also on the contact surface [4]. For example,
typical fault current levels at a bus of distribution substations
are around 5–6 kA, whereas at the end of the feeder the fault
currents can drop to 1.5 kA and the load currents range is
between 300-500 A. So, for a conventional ground fault relay
set to detect faults between 200–300 A, a HIF that produces
magnitudes smaller that 75 A will be undetectable. As a
consequence, the problem of HIF detection has been tackled
form a signal processing perspective, associating transient
characterization to the electric arc phenomenon. The arc phe-
nomenon is non-linear, asymmetric, and unpredictable, which
makes the detection of HIFs in distribution grids a complex
task. Therefore several recent studies aim at characterizing
the patterns of voltage and current signals related to HIFs.

In general, the analysis of HIFs can be carried out in
time, frequency, or time-frequency domains in which feature
characterization is developed achieved by advanced signal
processing and artificial intelligence techniques. For instance,
in [5] a methodology based on the harmonic content has
been implemented, in which the detection uses odd and even
harmonics of the current signal to distinguish HIFs from other
transient phenomena. In a similar approach [6] evaluates
the even harmonics in the voltage waveform by using smart
meters (SMs). In [7] the incorporation of inter-harmonic
components superimposed onto the current of conventional
protections such as automatic recloser and sectionalizer is
analyzed, demonstrating that thismethod facilitates the detec-
tion due to the variations found in the inter-harmonics. Fol-
lowing the same basis of inter-harmonics, the complex nature
of HIFs has motivated the development of new proposals
using multiresolution approaches; for instance, [8] combines
two techniques such as maximum overlap discrete wavelet
packet transform (MODWPT) and empirical mode decompo-
sition (EMD), demonstrating effective outcomes during the
detection and classification of HIFs.

Due to the nonlinear behaviour and the intermittency of
the electric arc, the current waveforms present asymme-
tries that can be detected by multiresolution techniques. For
example, in [9], [10] a simplified version of the discrete
wavelet transform (DWT) uses the energy of the wavelet
coefficients to detect HIFs within a sliding window of size
equal to the fundamental period. In a similar way, [11]

introdues a DWT-based method that monitors the high- and
low-frequency components of voltage through the system.
Another way to deal with HIFs in distribution networks is
based on power spectral density (PSD) estimation from a
multiresolution analysis by using the DWT [12], in which
the detection and classification process is carried out in a
radial distribution system. In [13] a DWT-based ensemble
Random Subspace (RS) classifier is proposed for discrimi-
nating HIFs in distribution grids with a photovoltaic system,
using three classifiers, namely K-nearest neighbour (KNN),
logistic regression (LR), and random tree (RT).

Other techniques such as mathematical morphology,
empirical mode decomposition (EMD), and morphological
gradient have been employed for HIFs detection and classi-
fication [14]–[17]. In [15], a multistage morphological-based
fault detector is proposed to cope with HIFs in distribution
systems by extracting the nonlinear features of HIFs. In a
different approach, the EMD-based method proposed in [16]
uses voltage signals to identify the predominant harmonic
components, and the classification is performed by applying
an artificial neural network (ANN). In the same context,
in [18] a multilayer perceptron (MLP) is proposed. In this
case the classification method is based on higher-order statis-
tics (HOS), which is also combined with Fisher’s discrim-
ination ratio to extract specific patterns associated with the
HIFs. The multi-resolution morphological gradient (MMG)
method has also proved to be an effective tool for discriminat-
ing HIFs from other transient phenomena [17]. This method
analyses the fault currents in order to extract themain features
that are used as inputs to a multi-layer perceptron neural
network. In the same context, a classifier named Boosted
Decision Trees (BDT) has been applied in HIFs [19]; the
proposed method employs the high-frequency components
and was tested with a real data set comprising a large number
of experiments that were also assessed in the presence of
noise. Another approach based on time-frequency analysis
and a support vector machine (SVM) classifier was pro-
posed by [20]. A similar application of SVM is reported
in [21], which is combined with Principal Component Anal-
ysis (PCA) to cope with the detection and classification
of HIFs.

Other techniques based on time-domain analysis have been
recently introduced. For instance, in [22] the superimposed
high-frequency components of voltages and currents are ana-
lyzed using the moving sum of one cycle of the fundamental
frequency. Moreover, a time-domain approach focusing on
fault location based on a linear least square-based estimator
is also applied in [23]. In general, the limitations and advan-
tages of all different applied methods depend on the selec-
tion of signal processing techniques and feature extraction
processes. This paper proposes a new method based on the
Hermite transform (HT) as a tool to extract relevant features
that allow HIF discrimination form other faults.

The main contribution of this work is the development of
a new method able to discriminate typical faults from HIFs
in distribution networks by including distributed generation
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based on photovoltaic (PV) generation. This paper considers
a HIF obtained from a bare conductor in touch with dry
grass in a 13.8 kV distribution grid. The method employs a
multiresolution and multifrequency scheme based on the HT.
The electrical signal is analysed by means of the basis filter
functions of the HT which extract relevant features that are
used to discriminate and classify failures. The classification
process is mainly developed using four different characteris-
tics defined by the high-frequency components. The proposed
scheme is assessed by employing three different classifiers
KNN, SVM, and NN. In addition, results are compared with
those obtained by an approach based on the DWT.

II. HIGH IMPEDANCE FAULTS MODELLING AND
ANALYSIS
A. HERMITE TRANSFORM
The Hermite transform is an efficient signal representation
model that has proven to be useful to analyse electrical signals
(voltage and current signals). The main transient components
of an electrical signal i(x) can be extracted by expanding the
signal into the Hermite polynomials [24]. The decomposition
of the signal i(x) is locally carried out by sliding a Gaussian
windowG(x−kT ) at overlapping positions kT , which can be
expressed in the time domain as follows:

G (x − kT )

[
i(x)−

∞∑
n=0

Ln (kT )Hn (x − kT )

]
= 0 (1)

where Hn(x) corresponds to the Hermite polynomials,
whereas Ln(kT ) stands for the expansion coefficients.
The Hermite polynomials Hn(x) build an orthogonal basis

with respect to a Gaussian window. Therefore, the expansion
coefficients can be obtained with [24]:

Ln (kT ) =
∫
∞

−∞

i (x)Hn (x − kT )G2 (x − kT ) dx (2)

Expression (2) shows the polynomial expansion coeffi-
cients Ln(kT ) of a signal i(x); in fact, the coefficients Ln(kT )
can be computed through a convolution between the filter
functions Dn(x) and the studied signal i(x). Notice that the
process is followed by a subsampling process at multiple
positions of T , and the filter functions Dn(x) are defined by:

Dn (x) = Hn (−x)G2 (−x) (3)

It can be shown that the filter function of order n corre-
sponds to the nth derivative of a Gaussian function, therefore
filter functions n can also be represented by [24]:

Dn (x) =
1
√
2nn!

dn

d
( x
σ

)n [ 1
σ
√
π
e

(
−

x2

σ2

)]
(4)

The subsampling period T is a free parameter with the only
restriction that the adjacent Gaussian windows must overlap.

The HT presents several advantages over other decompo-
sition schemes. One of the most relevant advantages is its
optimal resolution in time-frequency based on the uncertainty
principle due to the Gaussian window of analysis. More-
over, filteringwithGaussian functions guarantees no spurious

artifacts in the resulting analyzed signals, according to the
scale space theory. Additionally, the analysis filters (Gaussian
derivatives) have proven to be efficient feature detectors. The
multiscale analysis of the studied signal can be performed by
systematically increasing the Gaussian window width; this
process allows detecting any transient component (frequency
components) at different time scales [25], [26].

B. MODELLING OF HIGH IMPEDANCE FAULTS
HIFs in distribution grids are frequently composed of
non-linear characteristics resulting from an electric arc and
the contact surface, these are responsible for developing
small current magnitudes, a non-linear dependency between
voltages and currents, and asymmetric current waveforms.
These characteristics can be used to develop HIF models.
The behaviour of HIFs can be understood using a non-linear
resistance, which facilitates the implementation to conduct
simulations. In this work, a HIF model based on the arc
conductivity is used, which is developed by a first-order
differential equation [5].

d (lng(t))
dt

=
1
τ
(
vi
P
− 1) (5)

where v and i represent the arc voltage and current, respec-
tively; g(t) is the arc conductance, τ (v, i) is the time constant,
and P(v, i) is the arc power in steady-state. Then, by taking τ
as a constant and the steady-state power as P = P0 + v0i, the
solution to (5) can be obtained.

According to [5], the general equation to represent the arc
conductance in the time domain is expressed by:

g(t) = G0(1− e−t/τ ) (6)

where g(t) is the time-varying conductance and G0 is the
steady-state conductance. It should be mentioned that the
time varying resistance r(t) can be obtained by the inverse
of g(t).

The parameters G0 and τ reported in [5] are obtained from
measurements using the least square method. For instance,
if one has a voltage signal vf (tk ) and a current signal if (tk )
corresponding to a real HIF, the arc conductance gf (tk ) can
be computed by

gf (tk ) =

√√√√∑n
i=−n i

2
f (tk+i)∑n

i=−n v
2
f (tk+i)

(7)

where n is the number of samples of one cycle of the
fundamental frequency and the discrete-time instants are
denoted by t1,t2,· · · ,tN . Finally, to determine the arc parame-
ters S(G0, τ ), the minimization process is defined by

S(G0, τ ) =
N∑
k=1

[g(tk )− gf (tk )]2 (8)

Due to the need to interface the non-linear conductance-
resistance model with the standard models, in this work, the
model is implemented with a non-linear resistance by using a
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FIGURE 1. HIF model implemented in Matlab-Simulink.

block of a controlled current source throughMatlab-Simulink
software. Other HIF models can be found in [18].

C. HIFs ANALYSIS BASED ON THE HERMITE TRANSFORM
Figure 1 shows a test system to cope with the signal pro-
cessing of HIFs in active distribution networks. The sam-
pling frequency used is 6.4 kHz for a fundamental frequency
of 50 Hz. A HIF was simulated between buses 3 and 9 of
the test systems. In this case, Fig. 2a) depicts the HIF current
at the fault point along the fault period. In addition, the
corresponding voltage-current (V-I) characteristics are shown
in Fig. 2b). Finally, the line currents seen by the protection
devices are represented in Fig. 2c). In this case, a current
transformer (CT) with a ratio of 100:5 was employed. Due to
the current magnitudes of HIFs, the CT will not experience
the saturation phenomenon.

Figure 3 depicts the HT coefficients where plots corre-
spond to different HT coefficients, which in turn represent
different time-frequency levels of analysis of a typical HIF
signal. HT coefficients are normalized in order to improve the
sensitivity of high-frequency components of a HIF. HT coef-
ficient calculation will be used to detect and classify HIFs in
distribution as will be discussed later.

III. CLASSIFICATION APPROACH FOR HIGH IMPEDANCE
FAULTS
A. FEATURE EXTRACTION
The effectiveness of any classifier to discriminate typical
faults resulting from high impedance faults depends on the
efficiency of the feature extraction process. Feature extraction
of high impedance faults is not an easy task since current
magnitudes may present small changes that can be inter-
preted as load variations [21]. As a consequence, HIFs require
robust algorithms able to distinguish them from other fault
types. One effective way to extract the most relevant char-
acteristics of HIFs is commonly based on multiresolution
approaches [19], [27]. In general, multiresolution analysis
facilitates feature extraction because it provides information
in time and frequency at different resolution levels. A suitable
feature selection is therefore essential to improve classifica-
tion performance.

In this work, feature extraction is performed through
a Hermite transform-based approach that obtains the

FIGURE 2. HIF in a distribution network: a) current, b) V-I characteristics,
and c) line currents seen by the digital relay.

high-frequency components of the analysed signals by means
of the HT coefficient calculation. The analysis employs dif-
ferent time-frequency resolution levels that allow identifying
the most relevant transient characteristics, which are used to
establish the feature extraction defined by statistical indexes.
To avoid the problem of high dimensionality, a max-pooling
process is carried out to reduce the transient information
obtained by means of the HT coefficients at each resolution
level. As argued before, classification performance relies on
the feature selection process [19] and outcomes are highly
dependant on the training process, that is, low performance
scores in the training stage means that the features used are
not good enough to separate classes. For example, to over-
come the disadvantage of using features by trial and error,
in [28], [29] the authors employ a matrix defined by eight
features, some of them depending on statistical indices. In this
case, we opted for only four features defined by:

F1 =

√√√√ 1
N − 1

N∑
k=1

(yk − µ) (9)

F2 =
1
N

N∑
k=1

|yk | (10)
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FIGURE 3. HT coefficients of a HIF signal: a) 0 order, b) 1st order, c) 2nd
order, d) 3rd order, e) 4th order, f) 5th order, g) 6th order.

F3 =
1
N

N∑
k=1

y2k (11)

F4 =
(1/N )

∑N
k=1 (yk − µ)

(1/N )
(∑N

k=1 (yk − µ)
2
)2 (12)

where N is the number of samples, µ represents the aver-
age value, F1 corresponds to the standard deviation, F2 is
the average absolute magnitude, F3 stands for the average
energy, F4 represents the Kurtosis index, and yk (IHTa, IHTb
and IHTc) stores the most essential transient components (HT
coefficients from 1st to 6th order) defined by the determinant
of the matrix resulting from the max-pooling process.

B. PROPOSED APPROACH
This proposal introduces a new method to detect and classify
HIFs as well as typical faults in distribution systems. The
proposed approach is summarized in Fig. 4, which consists
of six stages. First, the electrical signals are measured on

the protected line by employing current transformers (CTs).
Next, all measured signals Iline (Ia, Ib, and Ic) are processed by
theHT to extract the high-frequency components. To this aim,
the process consists of representing all transient frequency
components at different resolution levels by computing the
convolution between the measured signal and the Hermite
filter functions. Therefore, each current signal Iline will be
represented by a matrix of N samples and L resolution levels
IHTC−line. In this work, the Gaussian derivatives from 1-st
to 6-th are used according to the HT decomposition scheme.
Then, to distinguish HIFs from typical faults, a max-pooling
process with sliding window is carried out to reduce the
transient information; for this purpose, it is suggested to use
a number of resolution levels (or level of decomposition)
multiple of three, this means that the matrix size employed for
the max-pooling process will be L × L, which is partitioned
in four sub-matrices of L/3 × L/3. The max-pooling is
applied to each sub-matrix giving as a result a new matrix of
2 × 2, and this new matrix is used to compute its determinant
in order to have only one value per analysed window. The
determinant of the resulting matrix is computed so that the
new signal IHT−line is represented by one dimension, that
is, N samples. This signal IHT−line will store all transient
components used to the feature extraction. The feature extrac-
tion process will define the inputs of the classifier. Finally,
the complete data set is divided to conduct the training and
validation stages of classification to distinguish HIFs from
typical faults.

For better understanding, Fig. 5 shows the stages of the
proposed approach. The line currents are processed using
the HT, where the HT coefficients are employed to extract
the most essential high-frequency components. Notice that
this proposal faithfully captures the transient information pro-
duced by HIFs in distribution systems. For example, Fig. 5a)
depicts the line currents (Ia, Ib, and Ic) where small changes in
the current magnitudes occur at t = 0.5 s. Based on the pro-
posed method, the processing of the HT coefficients permits
to identify themost relevant transient components, as pictured
in Fig. 5b), both for the non-faulted phases (IHTb and IHTc)
and the faulted phase IHTa. Finally, the extracted features are
shown in Fig. 5c) which correspond to the faulted phase Ia
just after processing the HT coefficients stored in IHTa.

C. CLASSIFIERS
Classification of high impedance and typical faults was
achieved with three different classifiers, namely: K-nearest
neighbour (KNN), support vector machine (SVM) and artifi-
cial neural networks (ANNs).

1) K-NEAREST NEIGHBOUR (KNN)
KNN is a supervised classifier based on a distance metric and
K number of neighbours defined by the user [30]. Given a
set of training samples belonging to a number of different
classes, a new sample is assigned to the class which most
frequent K-nearest neighbours belong to. In addition, to over-
come bias in the class prediction due to unbalanced data,
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FIGURE 4. Schematic diagram of the proposed approach.

FIGURE 5. HIF simulated: a) line currents seen by the digital relay,
b) transient components-based algorithm using HT, and c) features.

weight proportional to the inverse of the distance from the
K neighbours is assigned to each class. K is an important
tuning parameter and its choice affects computing time and
classification performance. For this work, K is 5 and the
selected metric was Euclidean.

2) SUPPORT VECTOR MACHINE (SVM)
Support vector machine is a widely known algorithm for
supervised learning. This classifier uses an objective function
aiming at minimizing misclassification errors by maximizing

FIGURE 6. Support vector machine diagram.

the separation margin. It also separates classes by construct-
ing an hyperplane in the high dimensional features as shown
in Fig. 6.

For instance, in a two-class problem, the mapping consists
of a two-stage dataset (xiyi)Ni=0 with N data points where
xi is the training data, and yi is the corresponding class,
which takes values of +1 and −1. In this sense, the margin
is the distance between the separating hyperplane and the
training samples that are closest to the hyperplane, these are
also called support vectors. The hyperplane separates both
categories, and its equation is:

wT xi + b = 0 (13)

whereω represents the vector normal to the hyperplane, and b
is the bias parameter; both parameters determine the position
of the hyperplane. In the training stage, the best values of
these parameters are obtained such that they maximize the
separation between both categories, obtaining the separation
margin as m = 2/‖m‖. Therefore, the objective function
will maximize the margin defined by the relation between m
(margin value) and ω, that is, the solution allows obtaining
these values, and the samples are classified correctly as [31]:

y(i)(w0 + wT x(i)) ≥ 1,∀i (14)

Finally, the classification is carried out by separating all
negative samples on one side of the hyperplane (first class),
and the positive samples on the other side of the hyperplane
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FIGURE 7. Single-layer neural network.

(second class). Additionally, SVMs can be converted into
a multivalued classifier using a one to one method. In this
work, a Gaussian radial basis function (RBF) kernel and a
cross-validation procedure were used during during training.

3) ARTIFICIAL NEURAL NETWORKS (ANNs)
ANN classifiers are widely used in machine learning and
have proven to be powerful supervised learning algorithms
because of their parallel processing, nonlinear mapping, and
associative memory. Multilayer neural networks are able to
produce robust diagnosis in different areas of electric power
systems [32]. The method consists of a training stage,in
which network weight parameters are tuned by means of
back-propagation so that a cost function is minimized. Next
equation shows the iterative process to update the weights
through back-propagation.

w := w+1w,

1w = −ηOJ (ω) (15)

where, w represents the weights, which are updated by tak-
ing a step in the opposite direction of the gradient OI (ω).
Moreover, the gradient is multiplied by a factor known as the
learning rate η.

In general, the learning rate balances the speed of the
learning with the overshoot of the global minimum of the cost
function, which is usually defined by the sum of square errors.
A graphical basic architecture of a single-layer neural net-
work is shown in Fig. 7. For a multilayer scheme, the output
is connected to the next layer and so on. In this application,
10 layers are used and the activation function corresponds to
the cross-entropy.

IV. PRACTICAL IMPLEMENTATION ASPECTS
From a practical point of view, digital signals require dis-
crete computation and the general overview of a practi-
cal implementation is shown in Fig. 8. For applications in
distribution systems, the line currents Ia, Ib, Ic of a spe-
cific protected distribution line are sampled by means of
an analog-to-digital converter device. Once the signals are
sampled, the discrete Hermite transform is calculated and
two approaches can be followed according to [24]. The first

FIGURE 8. Logic of detection based on HT.

one consists of approximating the continuous filter func-
tions by finite-support discrete filters; the second one uses a
discrete polynomial expansion, that is, the continuous Her-
mite polynomials are approximated by discrete polynomi-
als (Krawtchouk polynomials), which are orthogonal with
respect to the binomial window function, which in turn
approximates the Gaussian window. Both approaches achieve
similar results, and the first one is chosen to calculate the HT
coefficients of the studied signals. The spread of the approxi-
mated Gaussian function can be tuned to maximize detection
of time-frequency features of the HIF signals. Each signal
is analysed by expanding its transient information according
to the HT, and the produced Hermite coefficients Ln(kT )
(or IHTCa, IHTCb, IHTCc) are processed using a max-pooling
process to reduce the transient information stored at each res-
olution level allowing us to find the most significant features.
In this work, only four features are used to discriminate HIFs
from typical faults by means of a classification stage. The
full scheme of HIF detection can be implemented in a digital
signal processor (DSP) summarized in Fig. 8.

V. RESULTS AND DISCUSSIONS
A. DISTRIBUTION GRID UNDER TEST
Detection and classification analysis are carried out by using
the IEEE 33-bus test feeder, which is shown in Fig. 9. All
simulations are carried out in Matlab/Simulink software by
employing a sampling frequency of 6.4 kHz. All fault sce-
narios are performed between buses 3 and 23, corresponding
to the distribution line identified as L3-23. The data set
includes non-fault scenarios, HIFs, and typical faults such as
single-phase-to-ground, double-phase-to-ground, and three-
phase-to-ground faults. The typical faults take into account
different fault locations along the distribution line, several
fault resistance, and different fault inception angles; different
contact surfaces for HIFs are analysed considering variations
in the electric arc’s conductance. Moreover, a capacitor bank
switching is simulated at bus 24, load changes of linear
load are assessed at bus 25, and finally, a non-linear load is
modelled at bus 29.
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FIGURE 9. Modified IEEE 33-bus test feeder.

B. DETECTION BASED ON THE HT COEFFICIENTS
HIF detection is based a sliding window analysis. In this case,
the detection index is defined by the extracted features as
follows:

λ(k) = N ×
(
F1(k)+ F2(k)+ F3(k)

3

)
× F4(k) (16)

Detection performance was studied under several fault
scenarios using the test system shown in Fig. 9. For example,
a HIF is simulated taking into account a power electronic
converter-based distributed generator (250 kW Photovoltaic
system) at bus 25. In this case, a HIF was simulated at
t = 0.5 s and its results are depicted in Fig. 10. From
Fig. 10a), it can be noticed that the line currents in the abc
reference frame show small changes in magnitude during the
fault which was simulated at t = 0.5s. On the other hand,
Fig. b) shows the most relevant transient information during
the pre-fault, fault and post-fault periods. Notice that the pro-
posed approach can disclose the underlying high-frequency
components of the analysed signal, which can be verified
in Fig. 10b). After processing the HIF signal information,
Fig. 10c) displays the results of the HIF detection according
to the transient components-based algorithm.

To highlight the advantages of the proposed approach,
a single-phase fault was simulated and its results are shown
in Fig. 11. In this case, the fault was simulated at t = 0.5 s
and the line currents observed by the protection devices are
depicted in Fig. 11a). After processing the line currents,
the most essential transient components are captured, and
are used to extract the signal features that help identifying
HIFs. These components for each line current are displayed
in Fig. 11b) and the HIF detection is depicted in Fig. 11c).
Therefore, in order to confirm that a HIF occurred when a
transient event is detected and to avoid false classification
results, it is required at least one cycle of the fundamental
frequency.

Capacitor switching may be one cause of false detection
as well as load changes. Therefore, the proposed approach is
examined considering the transient behaviour under non-fault

FIGURE 10. HIF with distributed generation: a) line currents and b) HT
coefficients, and c) HIF detection using transient components-based
algorithm.

conditions. For instance, Fig. 12 shows the response when
a capacitor bank is energized at bus 24 (1.5 MVar). These
results correspond to an energization when the voltage
(Phase A as a reference) exceeds its maximum value, t =
5.05 s. The line currents in the abc reference frame are shown
in Fig. 12a) and Fig. 12b) presents the results of the detection
index computed by employing the HT coefficients. Notice
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FIGURE 11. Single-phase fault with fault resistance of 100 �: a) line
currents and b) HT coefficients, and c) HIF detection using transient
components-based algorithm.

that the transient response disappears during the first two
cycles. This phenomenon may generate false classification
results during the transient period, meaning that after two
cycles the transient components-based algorithm will offer
good performance during the detection and classification of
HIFs. To ensure the detection of HIFs, it is important to
remark that the transient components caused by HIFs need to
persist for a long time in comparison to a transient period of
a capacitor switching (or any other transient phenomenon),
because this is the main information used by the proposed
approach. Therefore, the protective devices must include a
digital logic to avoid false operations. In this case, a delay of
2 cycles should be included in the digital logic to confirm that
a HIF occurred, while other works report times between 1 and
5 cycles of the fundamental frequency [33].

Figure 13 shows the results during load changes. The
change is simulated at bus 29 caused by a non-linear load.
The non-linear load is energized at t = 0.5 s and its results are
displayed in Fig. 13. In this case, a small change is taken into
account, and the line currents seen by the digital protection

FIGURE 12. Capacitor switching: a) line currents and b) HT coefficients,
and c) HIF detection using transient components-based algorithm.

device are shown in Fig. 13a). The corresponding transient
information is captured in the HT coefficients as depicted in
Fig. 13b). Notice that the load change presents significant
differences along time as shown in Fig. 13c), nevertheless,
this event is correctly identified as a non-faulted condition.

Based on these results, the proposed method exhibits good
performance detecting faults. Detection time depends on the
sampling frequency. In this case, the average time is 20.2 ms,
with a system frequency of 50 Hz. Before the average time,
a HIF can not be correctly detected and may be classified as a
non-fault condition. In consequence, the performance of the
classifiers may also be affected. Therefore, to improve the
detection and classification of HIFs, this approach needs at
least two cycles of the fundamental frequency. Higher accu-
racy and reliability entail a longer detection time. In the case
of HIFs accuracy is important to avoid additional problems
based on the complex nature of the electric arc phenomenon.

C. CLASSIFICATION RESULTS
Table 1 depicts the results reached by the classification
process. Based on these results, KNN presented better
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FIGURE 13. Load change at bus 29: a) line currents and b) HT coefficients,
and c) HIF detection using transient components-based algorithm.

TABLE 1. Proposed approach using HT and DWT.

performance than SVM and ANN. In addition, for compar-
ison purposes the studied faults were also processed by the
discrete wavelet transform (DWT) using 6 decomposition
levels with the mother wavelet Daubechies 4 (Db4). In this
case, a set of features was defined in a similar way to the HT,
namely, statistical moments obtained from the wavelet high
frequency bands at different resolution levels.

Results show that both signal processing techniques
present small differences when the KNN classifier is applied,
and the most significant discrepancy appears with the other
two classifiers. Fig. 14 presents the confusion matrix for
the proposed approach using the KNN classifier. Notice in
Fig. 14, that the false-positives of the HIFs are identified as
non-fault conditions.

Another topic to analyse is the classification metrics and
their behaviour when an unbalanced data set is employed.
For example, in this application, a critical condition occurs
when the protection systems are not capable of detecting

FIGURE 14. Confusion matrix using HT and KNN classifier with a
balanced data set.

TABLE 2. Proposed approach using an unbalanced data set.

any condition of HIFs, that is, the fault could be classified
as a non-fault scenario. This represents a critical scenario
compared to misclassification resulting in other fault types,
for example, a double-phase fault which is identified as a
three-phase fault. In this sense, an unbalanced data set was
employed to assess the proposed method whose results are
shown in Table 2 and Fig. 15. It can be noticed that the
results present significant changes in the classifiers as shown
in Table 2. However, the best results still correspond to the
KNN classifier while the ANN improves in comparison with
the results shown in Table 1. Moreover, the SVM offers small
changes in both scenarios, balanced and unbalanced data set.

Finally, the confusion matrix obtained is depicted in
Fig. 15. Notice that HIFs produce false positives identified
as non-fault events and double-phase faults. A HIF classified
as a fault (no matter which fault type), is preferred over a HIF
identified as a non-fault event. Finally, the comparison results
after applying the DWT show that both techniques generate
similar results, and the best results are achieved by the KNN
classifier. In terms of complexity both DWT and HT demand
a similar computational burden. The advantage of the HT
relies on the basis functions that are better suited to detect sig-
nal changes in time-frequency since they consist of Gaussian
derivatives of different orders at different scales, whereas the
DWT has a single basis function (mother wavelet) at different
scales. In conclusion, the proposed method presents better
performance for the discussed scenarios.

For comparison purposes, other methods reported in the
literature were analysed to validate the effectiveness of the
proposed method. Table 3 shows the results obtained using
different methods. For example, the DWT-based algorithm
reported in [13] considers five decomposition levels and
employs only two features such as energy and standard devi-
ation whose accuracy was 98.3298 %. In [21] a classification
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TABLE 3. HIF classification comparison results using other approaches.

FIGURE 15. Confusion matrix using HT and KNN classifier with an
unbalanced data set.

method based on principal component analysis (PCA) is
performed, where only the most significant six features are
employed for the classification process producing a effec-
tiveness of 98.8273 %. Another similar approach is discussed
in [28], where eight features are taken into consideration for
the classification approach; in this case, the authors used
five decomposition levels and Daubechies 5 as the mother
wavelet. Empirical mode decomposition is also employed
for comparison purposes [16], where features were obtained
in ten resolution levels according to each intrinsic mode
function; in this case, authors reported a accuracy of 98.2 %,
however, we obtained 97.9515% with the data used in this
research is. The Short-time Fourier transform (STFT) has also
been used to detect HIF. The effectiveness of this technique
was proven in [34], with a classification based on a convolu-
tional neural network (CNN), showing an overall accuracy of
98.76 %.

VI. CONCLUSION
A new method for fault detection and classification of HIFs
in distribution systems was proposed. This approach analyses
the high-frequency components of the electrical signal by
means of the the Hermite Transform on a multiresolution.
The method was tested under different transient scenarios,
proving good performance in the discrimination of HIFs from
other types of faults. In addition, the non-fault transient events
were discussed to show that high-frequency components,
produced by the non-linear load changes, depend on the load
capacity. This means that larger load changes (non-linear
load), may produce misclassification depending on the har-
monic content. Based on the results, the transient components
analysis method exhibited good performance and effective-
ness for different analysed scenarios, thanks to the properties

of the HT analysis functions. The HT coefficients play a
key role extracting essential characteristic features during the
transient period of electrical signals. The Hermite transform
presents several advantages with respect to the DWT, due to
the localization properties of the Gaussian function and its
derivatives in time and frequency. They extract the most rele-
vant transient information which was used to build statistical
indexes. Finally, different classifiers such as SVM, KNN, and
ANN showed good accuracy, taking as inputs the statistical
indexes defined by the HT coefficients. The obtained results
were compared with the DWT, and it was found that KNN
offered better performance than the other classifiers in both
methods.
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