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ABSTRACT The authors’ recently published design system for the creation of single-stage N-sorter/N-filter
sorting devices, which were implemented using a particular example hardware block, is here expanded and
applied to a second hardware type, FPGA carry chain logic. Although several researchers have published
applications which use FPGA carry chain logic, most do not use carry chain logic as is done here, and none
of the applications target sorting devices. Prior to the introduction of the single-stage N-sorter/N-filter design
system, the fastest state-of-the-art hardware devices which sorted more than 2 input values were multistage
sorting networks, in which the sorting process is performed by one or more 2-sorters and 2-max/2-min filters,
operating in each sequential stage. Using the authors’ original design system, single-stage N-sorters and N-
filters were shown to be faster than the fastest comparable sorting networks when sorting 3 to 9 inputs.
Here, product term splitting and a new Sum-of-Products output multiplexer equation are added to the design
system, and this expanded design system is then implemented in carry chain logic to build faster and larger
N-sorters, and much larger and still fast N-max/N-min filters. The new carry chain N-sorters are implemented
in the FPGA used in the Amazon AWS EC2 F1 instance, which is one of the two example FPGAs utilized in
the previous publication. A carry chain logic 16-sorter, not practical when using the original hardware block,
has a speedup of 4.61 relative to the fastest 16-network. An example of the new, very large single-stage carry
chain N-max filters is the 125-max 5 x 5x5 CNN video max pooling filter, which operates in only 2.075 nS.
A 2-stage 1024-max network, using single-stage 32-max carry chain filters, has a speedup of 2.85 versus the
existing state-of-the-art 10-stage network of 2-max filters.

INDEX TERMS Field programmable gate arrays, FPGA, sorting, sorting networks, video max pooling.

I. INTRODUCTION

The authors have recently published a system for designing
fast, stable, single-stage hardware sorting devices, which sort
3 or more input values [1]. A single-stage device has one set
of ports, one set of output ports, and whatever internal logic
is needed in order to produce a fully sorted list of the input
values at the output ports. If the device’s output list is the full
sorted list of all N inputs, the device is called an N-sorter.
If the device outputs are only a subset of the full sorted
list, it is called an N-filter. Examples of N-filters include
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N-max, N-min, N-median, and lowest-2-of-5 filters. The term
“sorters’ here will refer to both single-stage N-sorters and
N-filters.

Although the general design system introduced in [1] is
not hardware-specific, a design logic block (LB) common to
two FPGA families was used to show how the sorting devices
are constructed. Using synthesis results for two products in
those two families, it was shown that the single-stage sorters
were significantly faster than the multistage sorting networks
considered at that time to be the fastest state-of-the-art
hardware sorting devices.

The authors’ main motivation for both this and the
previously published research is to find design methods
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that will produce faster single-stage sorting devices than
the comparable fastest sorting networks. This work strives
to build even faster and larger devices than were created
in [1], and to build the new devices with a second hardware
type, carry chain logic. To this end, the N-sorter/N-filter
design system from [1] is now expanded, with the addition
of product term splitting and Sum-of-Products (SOP) output
multiplexer (mux) equations, and is then used to build fast
sorting devices using carry chain logic.

Hardware vendors use carry chain logic to accelerate addi-
tion, subtraction, 2-value comparisons, and other processes
that the vendors automatically implement. These carry chain
LBs typically include carry lookahead logic internal to the
LB to accelerate signals traveling along the chain. The carry
chain LBs can also be easily cascaded vertically to form tall
carry chains with hardwired routing within the chain.

This dedicated vertical routing produces fast signal paths,
versus the general programmable horizontal routing which
connects one LB’s outputs to the inputs of the next LB in
series. A signal’s general routing is not finalized until place
and route, and must compete with the general routing of
all signals in the design. The vertical routing within a carry
chain is finalized at synthesis, and therefore the signal’s speed
through the carry chain is also determined at synthesis.

The speed of a hardware sorting device is determined by
the propagation delay of the slowest signals in the device,
as the signals travel from the device inputs to outputs. In a
product like an FPGA, propagation delay, to a first order,
is proportional to the number of LBs in series that the slowest
signals travel through. The inputs to each LB are provided
by general routing, so a signal’s number of series LBs is also
a measure of the number of general routing sections that the
signal must traverse. Here, the phrase “‘series LBs” refers to
the horizontal number of LBs in series that a sorting device’s
slowest signals propagate through.

In the design of N-sorter/N-filter signals, it is possible
to use a single tall carry chain to replace 2 series LBs and
their intervening general interconnect routing, which will
lower the overall signal propagation delay. Use of tall carry
chains also allows implementation of very large single-stage
N-max/N-min filters. These N-max/N-min filters can then be
used in large, simple, and fast N-max/N-min networks. All of
these design and speed improvements will be implemented
and characterized in this study.

The design system defined in [1] is the only system
which successfully enables the design of novel FPGA sorting
devices that sort more 2 devices in a single-stage set of
operations. The unsuccessful attempts by other researchers to
define a system for single-stage sorting device design were
discussed in [1], and that discussion is not repeated here.
It does not appear that any competing single-stage sorter
systems have been proposed since the publication of [1].

Single-stage 2-sorters and 2-max/2-min filters have been
used for many years, and are the devices used in parallel
in each stage of a multistage sorting network. The fastest
sorting networks that fully sort from 3 up to 16 values have
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been custom-designed by a number of individuals, and are
listed in Donald Knuth’s classic text [2] and in a more
recent publication [3]. These fastest previous state-of-the-art
devices are the sorting networks that the single-stage devices
in [1] were compared to, and are the devices that this work’s
new single-stage devices are compared against as well. The
very simple N-max/N-min sorting networks using 2-max and
2-min filters have been briefly covered in [4].

Kenneth Batcher’s two sorting network algorithms,
Odd-Even Merge Sort and Bitonic Merge Sort [5], typically
produce the fastest sorting networks when sorting more than
16 values. Portions of these two networks are also used in
special sorting operations, such as 2-way merge sequences
for small sorted input lists. Sorting networks in FPGAs are
specifically covered in [4] and [6].

The basics of carry chain logic in FPGAs are presented
in [6], [7]. A number of researchers have published appli-
cations which use FPGA carry chain logic, but most of
these carry chain logic uses are not closely related to the
way this logic is used in this study [8]-[16]. A very recent
publication [17] does use carry chain logic in a manner
similar to some of the ways used here for N-sorter/N-filter
design, but none of these publications target using carry chain
logic for sorting devices.

In this article, the additions proposed above to the
N-sorter/N-filter design system have now been implemented,
and the expanded system has been used to build and
synthesize many sorters using carry chain logic. The new
single-stage devices defined here, like those in [1], produce
a stable sort. Here, stable sort is defined as a sorting method
where duplicate values in the sorted output list are returned
in the same order as they appear in the input list.

The carry chain logic block used in the study is found
in the AMD-Xilinx xcvu9p UltraScale+ FPGA, the FPGA
used in the Amazon AWS EC2 F1 cloud computing instance,
and one of the two FPGAs used in [1]. All of the new carry
chain logic single-stage devices, the previous single-stage
devices constructed in [1], and comparable multistage sorting
networks, have been synthesized with the same software tool,
targeting the xcvu9p product. This enables direct comparison
of speed and hardware usage results between the three types
of sorting devices.

Based on the synthesis result comparisons, the predicted
speed improvements and series LB reduction for the new
carry chain devices have been realized. The new devices are
shown to be the fastest state-of-the-art sorting devices for the
number of unsorted input values that are processed.

Throughout this work, propagation delay, speedup, and
resource usage results for various sorters are reported in the
text. The reported results are for devices which sort 32-bit
unsigned integer input values. For comparison’s sake, there
are 4 tables in Sections V-A and V-B that list data for 8-bit
as well as 32-bit values, but 8-bit data are not otherwise
presented or discussed.

In what follows, the paper provides a detailed summary of
the key contributions of the paper. The primary contributions
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include significant speedups and the implementation of large
N-sorters and N-filters.

The expanded design system and carry chain logic produce
N-sorters which require fewer series LBs and are faster than
the devices constructed in [1]. For example, the slowest
signals for the original state-of-the-art single-stage 7-sorter
travelled through 4 LBs in series, and produced a worst case
propagation delay of 1.812 nS. The slowest signals for the
new single-stage 7-sorter, implemented using carry chain
logic, propagate through only 2 LBs in series, with a prop-
agation delay of 1.469 nS, a speedup of 1.23=1.812/1.469
versus the original 7-sorter. In addition, the new 7-sorter has
a speedup 4.24 versus the comparable sorting network.

The use of product term splitting and tall carry chains
enables implementation of larger N-sorters than were prac-
tical using the design system and hardware in [1]. The new
single-stage 16-sorter design operates in 2.024 nS, a speedup
of 4.61 versus the existing state-of-the-art 16-sorter, a 9-stage
network of 2-sorters.

The expanded design system with carry chain logic
is especially advantageous for implementation of large
N-max/N-min filters. A state-of-the-art 9-max 3 x 3 2D image
window filter was described in [1], but a much larger 125-max
5x5x5 filter is now defined, which is useful for 3D video
max pooling in Convolution of Neural Nets (CNN) [18].
A 125-max filter operates in 2.075 nS, less than a 480 MHz
clock period.

Simple networks are easily constructed to implement sig-
nificantly larger N-max/N-min sorting devices. A 1024-max
network, constructed using 2 stages of single-stage 32-max
filters, has a propagation delay of 3.557 nS, less than the
period of a 280 MHz clock. This 2-stage network has a
2.85 speedup versus the current state-of-the-art 1024-max
network, which uses 10 stages of 2-max filters.

The rest of this article is organized as follows.
Section II discusses the background of sorting networks,
the single-stage sorting devices from [1], and applications
which have used FPGA carry chain logic. Section III presents
the design system additions, and shows how the expanded
design system is used to construct N-sorters using carry chain
logic. N-filter design using carry chain logic is presented in
Section IV, and focuses on N-max/N-min filters and simple
networks that use N-max/N-min filters. Speed and resource
usage synthesis results for various new devices are presented
in Section V, and compared to the results for sorting networks
and the earlier single-stage devices. A discussion of the logic
blocks, particularly the carry chain logic blocks, for the
newest FPGA families is found in Section VI. Section VII
contains the conclusion, and Appendix A contains an analysis
of how the design system improvements can be used to
produce improved sorters using the FPGA hardware from [1].

Il. BACKGROUND

Prior to [1], the only fast and efficient single-stage sorting
devices that were available in FPGA hardware were 2-sorters
and 2-max and 2-min filters. Sorting more than 2 input
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values required a sorting network, in which the sorting
process consists of a series of stages, with 2-sorters and/or
2-filters utilized in each stage. General 2-sorter networks can
be constructed using Kenneth Batcher’s Odd-Even Merge
Sort or Bitonic Merge Sort [5], and custom networks can
be found in Donald Knuth’s text [2], and more recently
in [3]. N-max/N-min networks using 2-max/2-min filters are
perhaps too simple to receive much focus, but they are briefly
covered in [4].

A review of the prior research related to single-stage
sorting devices is found in [1], and is not repeated here.
A summary of [1]’s novel single-stage N-sorters/N-filters
design system is presented in Section II-A below.

The primary focus of this work is to use vendor-supplied
carry chain logic to build faster and larger single-stage
sorters. Various applications have been proposed which take
advantage of provided carry chain LBs, and these applications
are discussed below in Section II-B.

A. THE AUTHORS’ SINGLE-STAGE DESIGN SYSTEM

The general design system for single-stage stable N-sorters
was defined in [1]. This section contains notation, definitions,
and discussion of that design system. The terms defined
here, such as ge_L._R and In_X_goes_to_Out_Y, are used
throughout this work. The main definitions that are used
throughout the text are listed below:

- Allist of N unordered input values is processed into a fully
sorted output list, containing those same N values.

- The inputs are identified as inputs In_(N-1) down to input
In_0, and the outputs are identified as outputs Out_(N-1)
down to output Out_0.

- The output list sorted order is uniformly non-increasing
from output Out_(N-1) down to output Out_0.

- All unique Nx(N—1)/2 input value comparisons are
created in order to correctly sort the input list.

- Each 2-input comparison uses the greater-than-or-equal
> operator, and the input with the higher numeric suffix is
always on the left side of the comparison operator.

A comparison result signal name is of the form of ge_L._R,
where ‘“‘ge” stands for greater-than-or-equal, L is the higher
numeric suffix for the input signal on the left side of operator,
and R is the lower numeric suffix for the input signal on the
right side of operator.

- For each input In_X, with X>0, N Sum-of-Product
(SOP) In_X_goes_to_Out_Y equations are defined, each
of which maps a specific input In_X to a specific Out_Y
output port. For a given In_X, only one In_X_goes_to_Out_Y
signal will be true. Likewise, for a given Out_Y, only one
In_X_goes_to_Out_Y signal can be true.

In order to build the In_X_goes_to_Out_Y equations for
input In_X, all 2V ! unique product terms are constructed in
which the variables in each product term are the N—1 ge_L._R
comparison result signals in which In_X is compared to the
other inputs. Each product term is then analyzed in order to
determine the number of “winner” comparison results for
In_X in that product term.
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The definition of a comparison result winner for input
In_X is based on whether In_X is on the left (L) or right
(R) side of the > comparison operator, and whether the
ge_L_R comparison result is complemented or not. If In_X
is on the right side of the > comparison operator, then a
winner is a complemented (! ge_L._R ) value. If In_X is on
the left side of the > comparison operator, then a winner
is a ( ge_L_R) value that is not complemented. An In_X
product term with Y number of winners is then ORd into the
associated In_X_goes_to_Out_Y SOP equation.

wire In_6_goes_to_Out_5 =
ge_6_58 ge 64 & ge 6_3 & ge_6_2 && ge_6_1 && ! ge_6_|

ge 6_58 ge 64 8 ge 6_3 & ge_6_2 && ! ge_6_1 &&  ge_6_

( 2]
( -]
( ge 658 ge 6 48 ge 63 8 ! ge 628 ge 6_18&% ge 60
( ge 658 ge 6 4 & ! ge 6_3 & ge_ 6_2 & ge 6_1 && ge_6_0
( ge_6_58&% ! ge_ 6.4 & ge_ 6_3 && ge_6_2 && ge_6_1 & ge_6_0
(! ge 658 ge 6 4 & ge 6.3 8 ge 628 ge 6_18&% ge 60

FIGURE 1. 7-sorter In_6_goes_to_Out_5 SOP equation.

Fig. 1 shows the In_6_goes_to_Out_5 SOP equation for
a 7-sorter’s In_6 input, in which each of the six product
terms has 5 winners. A 7-sorter’s In_6 is always on the
left side of the > operator, therefore all uncomplemented
comparisons are winners, and each product term in Fig. 1
has 5 uncomplemented ge_6_R comparisons. If one of these
product terms is true, In_6_goes_to_Out_5 is true, and input
In_6 will be mapped and transferred to output port Out_5.
Also, no other In_6_goes_to_Out_Y signal will be true, and
no other input’s In_X_goes_to_Out_5 signal will be true.
Fig. 1 and many of the following figures use SystemVerilog
syntax [19].

The mapping of a unique input to a target output is
implemented in per-bit output multiplexers constructed for
that output. An output multiplexer is designed using an
equation which utilizes ternary, i.e., conditional syntax.

assign Out_5[ 0 ]
In_6_goes_to_Out_5 ? 0]
In_5_goes_to_Out_5 ? 0]
In_4_goes_to_Out_5 ? e]:
In_3_goes_to_Out_5 ? In_3[ @ ] :
In_2_goes_to_Out_5 ? e]:
In_1_goes_to_Out_5 ? 0]
0]

N~~~

ERRRRRE

FIGURE 2. 7-sorter out_5[ 0 ] output multiplexer ternary equation.

An example of a ternary output mux equation, for a
7-sorter’s Out_5, is shown in Fig. 2. Although there are
7 inputs, only 6 In_X_goes_to_Out_5 signals are needed.
Specifically in Fig. 2, there is no In_0_goes_to_Out_5 signal.
If none of the other In_X_goes_to_Out_5 signals are true,
then In_0, by default, will go to Out_S5.

Per-bit equations and figures, such as Fig. 2, typically
target bit 0. Whenever bits other than bit O are targeted, this
will be noted.

The system of In_X_goes_to_Out_Y signals, and their use
in output multiplexers, ultimately implements a comparison
counting sort process. The comparison counting is performed
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in a combinatorial process by triggering a product term, one
product term per input, in an In_X_goes_to_Out_Y SOP
equation. Synchronous counters are not needed.

The N-sorter sorting process defined in [1] and summa-
rized here produces a stable sort. Equal values in the input
list are presented in the same order in the output list.

N-filter design generally follows the system described
above. All Nx(N—1)/2 comparison signals must still be
created, even for a single-output filter. All outputs not in the
N-filter’s output port list are removed, as well as any internal
logic that only supports the removed ports.

The In_X_goes_to_Out_Y signals for N-max and N-min
filters only have one product term, which enables unique
designs for these filters. This N-max/N-min feature was
discussed in [1], and is discussed further and emphasized
here.

— H
— 6 MUXF7_GH
— — ] >
L | MUXF8_EH
e
"'ﬁ R
— _'I/J g
—= F MUXF7_EF
p— E
6-Input MUXF9_AH
LUTs = 3
— D
—3 c MUXF7_CD
I—HI ’
L
~ MUXF8_AD
JE— _'I_,_/I »
—= B MUXF7_AB
—= A

FIGURE 3. UltraScale+ LUT-MUXF7/8/9 logic block: 8 6-input LUTs.

As mentioned earlier, an example hardware LB was
used in [1] to show how these novel sorting devices
are constructed. The example LB was also utilized to
build equivalent sorting networks using 2-sorters/2-filters,
so that the novel single-stage devices could be compared
to analogous 2-networks, which were the state-of-the-art at
that time. The example LB, which is found in the xcvu9p
UltraScale4+ FPGA [20], is shown in Fig. 3. The Fig. 3 LB
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contains 8 6-input lookup tables (LUTs), and 3 levels of
2-to-1 multiplexers, which are used as needed to combine
LUT outputs inside the block. This LB is used to build output
multiplexers as well as In_X_goes_to_Out_Y signals. Since
In_X_goes_to_Out_Y product terms contains N —1 compar-
ison variables, the In_X_goes_to_Out_Y signals for 7- and
smaller N-sorters can be implemented in one 6-input LUT.

For N-sorters larger than a 7-sorter, one or more of
the 2-to-1 multiplexer levels are required in order to build
an In_X_ goes_to_Out_Y signal in a single Fig. 3 LB.
If all 3 2-to-1 multiplexer levels are utilized to implement
an In_X_goes_to_Out_Y signal, the full LUT-MUXF7/8/9
structure will support any SOP equation with 9 vari-
ables. A 10-sorter requires 10—1=9 variables in an
In_X_goes_to_Out_Y signal, so a 10-sorter is the largest
N-sorter whose In_X_goes_to_Out_Y signals can be con-
structed in a single Fig. 3 LB. Because of this, the largest
xcvu9p N-sorter that can be efficiently implemented using
only the Fig. 3 LB is a 10-sorter.

The fastest signals travelling through a Fig. 3 LB propagate
through only a single LUT. Signals travelling through the
2-to-1 multiplexer levels are slowed down relative to a signal
traveling only through a single LUT in the block, but any path
fully internal to this LB will be a fairly fast hardwired path.

2-sorter \ In_XInput Port Values | In_0 default input N-sorters : I
3-sorter | PSRy juhuphnpphpupiyuly Ay Syl i out_Y
Comparison Signals Block Output MUX Block
Create N*(N-1)/2 1 LUT per bit —
Input Comparison Signals
4-sorter In_X Input Port Values [t - I
5-sorter 1 In_0 defaultinput N-sorters !
6soter 0 mmmmmmmmmsmmmeomomsoeee Out_¥
Comparison Signals Block 1t MUX Select Line Signals Output MUX Block
Create N*(N-1)/2 - In_X_to_Out_Y 1to 8 LUTs -

. .
In_Xa_OR_Xb_to_Out_Y per bit

l out_Y

2nd MUX Select Signals Output MUX Block
OR Equations of = 2to 4 LUTs =
In_X_to_Out_Y signals per bit

Input Comparison Signals

7-sorter 8-sorter In_X Input Port Values
9-sorter 10-sorter

Comparison Signals Block
Create N*(N-1)/2 =
Input Comparison Signals

15t MUX Select Signals
In_X_to_Out_Y |

FIGURE 4. Signal flow diagrams for the baseline LUT-MUXF7/8/9
N-sorters.

Signal flow diagrams for the baseline N-sorter designs
described in [1] are shown in Fig. 4. An N-sorter’s slowest
signals always propagate through the Comparison Signals
Block, shown at the left in each of the three diagrams. The
slowest signals for the 2- and 3-sorter propagate through
only 2 LBs in series, and these signals travel through only
a single LUT in the second series LB, the Output MUX
Block. The 4-, 5-, and 6-sorters in the middle diagram have
3 series LBs, and the slowest signals for 7- through 10-sorters
propagate through 4 LBs in series.

B. CARRY CHAIN LOGIC

FPGA vendors such as AMD-Xilinx have implemented carry
chain logic, with fast carry lookahead, beginning with some
of their earliest product families [7]. The primary purpose of
this carry chain logic is to produce fast 2-value comparisons,
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co_[3] CO_ABOVE

ﬁ"'”'

FIGURE 5. UltraScale+ CARRY8 LUT-MUXCY 8 segment carry chain.

addition, subtraction, and other basic arithmetic operations.
In addition to its default uses by FPGA vendors, carry chain
logic is also available for logic designers to use as desired.

The example carry chain LB used in this work is shown
in Fig. 5. This LB is also found in the xcvu9p FPGA, and
is an alternate configuration of the basic ““slice” hardware
that produces the Fig. 3 LB [20]. The Fig. 5 and Fig. 3 LBs
are found in all products of the AMD-Xilinx UltraScale and
UltraScale+ FPGA families.

Here, each of the 8 LUT-MUXCY pairs is called a segment.
Each segment has a carry in (CI) input, a data in (DI) input,
a carry out (CO) output, as well as a multiplexer select
(S) signal, which is the output of the segment 6-input LUT.
As can be seen in Fig. 5, the 8-segment chain can be divided
into two independent 4-segment chains, as needed. A segment
CI input is typically the CO output of the previous segment
in the chain. However, the user must specify the CI input for
segment 0, and for segment 4 when there are two 4-segment
chains.

When used for per-bit additions, subtractions, etc., each
segment has an additional XOR gate and SUM output, which
are not shown in Fig. 5. The XOR/SUM structures are not
used in the N-sorter/N-filter carry chains, each of which
produces a single signal which is tapped off from the CO
output of a target segment. Also not shown in Fig. 5 is the fact
that the segment DI input can come from a second output in
the segment LUT. All N-sorter/N-filter carry chains described
here utilize DI signals that only come in from the general
interconnect.

A number of research publications have used an FPGA’s
full carry chain logic, with the SUM output, for multiple input
addition and similar arithmetic functions [8]-[12]. As these
articles use the per-segment SUM output, they are not closely
related to the use of carry chain logic which is being proposed
here.
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Other publications have used a carry chain LB like Fig. 5
to produce a single output signal, and do not require segment
SUM outputs in their implementation. In one patent, one or
more common factors were extracted from an SOP equation
with numerous product term variables, and then carry chain
logic was used to AND the common factors with the narrow
SOP equation produced after factoring [13].

A number of researchers have studied use of carry
chain logic to build time-to-digital (TDC) converters. One
recent publication reviewed the history of these studies and
proposed its own TDC using two independent carry chains,
each of which is designed into a ring oscillator [14].

Researchers have also used carry chains without segment
SUM outputs to map general logic equations into FPGAs, by
using AND-Inverter-Graphs (AIG) [15] or Majority-Inverter-
Graphs (MIG) [16] systems. Because of their reliance
on example carry chain structures and focus on general
equations, these systems tend to create slower and inefficient
designs compared to the methodology defined in this work,
which systematically implements a set of specific N-sorter/N-
filter equations on the target Fig. 5 carry chain LB.

A very recent publication also attempts to map a general
logic equation into an FPGA [17]. Its methodology creates
AND and OR equations which are similar to AND and OR
equations used in this work. The AND equations default to 1,
use constant 0 DI segment inputs, and the O is written to the
carry chain whenever the segment equation fails. The OR
equations default to 0, use constant 1 DI segment inputs,
and the 1 is written to the carry chain whenever the segment
equation is true.

IIl. N-SORTERS USING CARRY CHAIN LOGIC

As shown in Fig. 4 and mentioned above, each output
multiplexer for 2-sorters and 3-sorters is simply constructed
in a single LUT, so these two N-sorters have no need
of MUXF7/8/9 2-to-1 multiplexers or carry chain logic.
Therefore, use of carry chain logic here targets sorters with
4 or more input values.

As noted earlier, the example carry chain logic used in
this study is shown in Fig. 5. This is the carry chain logic
block found in the xcvu9p FPGA used in [1], and in all of
the FPGAs in the AMD-Xilinx UltraScale and UltraScale+
product families.

AMD-Xilinx provides the CARRYS primitive to users
who wish to directly implement their designs in the Fig. 5
carry chain LB. Users specify the CARRYS8’s initial CI
signal, the segment DI and S signals, and then tap out the
appropriate segment CO output for their target signal. In order
to show how the carry chain designs discussed here are
implemented using the CARRYS8 block, 8-segment figures
are used, in which all of the CARRY 8 inputs are specified, as
well as which segment CO output is tapped out for the target
signal.

Fig. 6 is the first such figure, and it shows the multiplexer
setup for a carry chain 7-sorter’s Out_5 output. This
configuration implements the Fig. 2 equation. The initial
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Inputs : Outputs

[71 s 1 i co
DI 0 :

[61 s 1 i co
DI %] 1

[5]1 s ! In_6_goes_to_Out_5 i out_5[ @ 1 co
DI In_6[ 0 ] I

[4]1 s ! In_5_goes_to_Out_5 ! co
DI In_5[ 0 ] |

CI[ 4] =co[ 3]

[3]1 s ! In_4_goes_to_Out_5 : co
DI In_4a[ 0 ] !

[2] s ! In_3_goes_to_Out_5 ! co
DI In_3[ 0 ]

[1] s ! In_2_goes_to_Out_5 co
DI In_2[ 0 ]

[e] s ! In_1_goes_to_Out_5 co
DI In_1[ @ ] !

CI[ @ ] = CI_BOTTOM = In @[ © ]

FIGURE 6. 7-sorter out_5 bit 0 carry chain setup.

carry in signal is the default In_0O bit. Each segment LUT
produces an In_X_goes_to_Out_5 signal, and each segment
DI input is the associated In_X bit.

A segment DI signal is mapped to CO when the LUT
output S signal is a 0, so the In_X_goes_to_Out_5 signals are
complemented in order to select the correct segment MUXCY
input. Note that the S signal in segment 5 is the complement
of the Fig. 1 signal.

Fig. 6 implements an OR equation, but not the same type of
OR equation used in [17]. The [17] OR equation has a default
of 0, and a segment true OR result writes a 1 to the CO output.
In Fig. 6, the default is the In_0 bit value, and a segment true
OR result will write the associated input value to CO.

All of the other bits for Out_5 use the same configuration
shown in Fig. 6, with the same In_X_goes_to_Out_5 signals.
Only the bit index for the input and output ports changes.

The setup of carry chain 4-, 5-, and 6-sorters is like that
of the 7-sorter, as each In_X_goes_to_Out_Y signal can be
produced in a segment LUT. The slowest signals for these
N-sorters propagate through only 2 LBs in series, as shown
in the top flow diagram in Fig. 7. The previous baseline
4- through 6-sorters needed 3 series LBs, as shown in the
middle Fig. 4 flow diagram. The bottom flow diagram in
Fig. 4 shows that the original baseline 7-sorter required 4 LBs
in series.

The In_X_goes_to_Out_Y signals for 8- and larger
N-sorters have at least 7 comparison variables in their product
terms, so these signals cannot be produced in a 6-input
segment LUT. For 8- to 10-sorters designed with the middle
flow diagram in Fig. 7, In_X_goes_to_Out_Y signals are
built using 2-to-1 mux groups in the Fig. 3 LB. An 8-sorter
uses 2 LUTs and a MUXF7 for its signals, and a 10-sorter
requires all 8 LUTs and all 7 MUXF7/8/9 multiplexers for its
In_X_goes_to_Out_Y signals.

The 8- to 10-sorters then use new SOP output multiplexer
equations in their Output MUX Block, an example of which
is shown in Fig. 8 for a 10-sorter’s Out_Y. Here, Out_Y is
used to represent each of the 10-sorter’s 10 output ports.
There are no default inputs in an SOP output mux equation,
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6-sorter 7-sorter

4-sorter S-sorter In_X Input Port Values P e T T '
1 out_Y

Comparison Signals Block
Create N*(N-1)/2
Input Comparison Signals

Final Output Carry Chain

Segment In_X_to_Out_Y LUT [

selects DI bit signal In_X
(N-1) LUTs per bit

8-sorter In_X Input Port Values e
9-sorter 1 Nodefault input N-sorters !
10-sorter oo Out Y
Comparison Signals Block 1*tProduct Term Signals Final Output Carry Chain
Create N*(N-1)/2 1 In_X_to_Out_Y Each segment LUT ORsupto 3 [

Input Comparison Signals signals created using

LUT-MUXF* logic block

(In_X_to_Out_Y &&In_X )
product terms ; 3 to 4 LUTs/bit

uwpto | T T default input Nosorters

8-sorter In_X Input Port Values
19-sorter

\
DD PR PR T out_Y

Comparison Signals Block 15tProduct Term A/B Count Signals Final Output Carry Chain

Create N*(N-1)/2 == EachIn_X_to_Out_Y product term ——| Each segment LUTORsupto3 [—>
Input Comparison Signals is split into A/B groups. (In_X_A[K]&& In_X_B[Y-K])
All possible A/B count signals created terms; selects DI bit signal In_X

FIGURE 7. Signal flow diagrams for LUT-MUXCY carry chain N-sorters.

assign Out_Y[ 0 ]

In_9_goes_to_Out_Y && In_9[
In_8_goes_to_Out_Y && In_8[
In_7_goes_to_Out_Y && In_7[
In_6_goes_to_Out_Y && In_6[
In_5_goes_to_Out_Y && In_5[
In_4_goes_to_Out_Y && In_4[
In_3_goes_to_Out_Y && In_3[
In_2_goes_to_Out_Y && In_2[
In_1_goes_to_Out_Y && In_1[
In_0_goes_to_Out_Y && In_O[

NA~AAA~AAAA~AAA~AA~
OO
[ S S S
N

FIGURE 8. New 10-sorter out_Y[ 0 ] output mux SOP equation.

so In_0_goes_to_Out_Y signals must be constructed and
used.

Fig. 9 shows the 8-segment carry chain setup for 10-sorter
bits 0 and 1, using SOP output mux equations. As each
product term contains 2 signals, an In_X_goes_to_Out_Y
signal and its associated In_X input bit, up to 3 product terms
can be placed in a 6-input segment LUT. Note that segments
0 to 3 implement the Fig. 8 equation.

The Fig. 8 SOP output mux equation does not have a
default input, but it does have a default logic value of 0.
Therefore, the two Fig. 9 chains are each initialized with
logic 0, and then each segment DI value is set to a logic 1.
One of the In_X_goes_to_Out_Y signals is a 1, and if the
associated input bit is also a 1, the DI 1 value is written to the
segment CO output. If the associated input bit is a 0, none of
the segment product terms will be true, and Out_Y will be the
default O value.

The Fig. 8 equations are OR equations that are imple-
mented in essentially the same manner as the OR equations
in [17]. The equation default is 0, and any true product term
result will cause a DI 1 to be written to CO.

The 10-sorter is the largest carry chain N-sorter that
can be constructed using the middle flow diagram in
Fig. 7 and the 10-sorter was the largest of the previous
Fig. 4 baseline N-sorter designs. As mentioned earlier,
any larger N-sorter would require 10 or more variables in
an In_X_goes_to_Out_Y product term, which cannot be
implemented in a single Fig. 3 LB.
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[71 S ! ( (In9 goestoOutY& In9[1]) ) 1 outY[1] cO
DI 1 i
[6] S ! ((In_8 goes to Out Y & In_8[ )y 11 1 o

1]
( In_7_goes_to Out_Y & In 7[ 1 1) ||
( In_6_goes_to_Out_Y & In 6[ 1 ]
DI 1

[5] S 1 ( ( In_5_goes_to Out_Y & In 5[ 1] ) || co
( In_4_goes_to Out_Y & In 4[ 1 1) ||
( In_3 goes_to Out_Y & In 3[ 1] ) )

DI 1
[4] S ! ( ( In_2 goes_to Out_Y & In 2[ 1] ) || co
( In_1_goes_to Out Y & In 1[ 1 1) ||
( In_0_goes_to_Out_Y & In o[ 1 ]
DI 1
CI[ 4] = CI_TOP = ©
( In_9_goes_to_Out_Y & In 9[ © ] ) )

~

[3]

w
~

out_Y[@] cO

DI 1

( In_8_goes_to Out_Y & In 8[ 01 ) || co
( In_7_goes_to Out_Y & In_7[ @ 1) ||

( In_6_goes_to Out_Y && In_6[ 0 ]
DI 1
( In_5_goes_to Out_Y & In 5[ @0 1) || co
( In_4_goes_to Out Y & In4a[ 0 1) ||
( In_3 _goes_to_ Out_Y & In 3[ © ] ) )
DI 1
( In_2_goes_to Out Y & In 2[ 01 ) || co
( In_1_goes_to Out Y & In_1[ © 1) ||
( In_0_goes_to_Out_Y & In o[ 0 ]
DI 1 !

CI[ @ ] = CI_BOTTOM = @

[2]

w
~

[1]

w
~

[e]

w
~

FIGURE 9. 10-sorter LUT-MUXCY bits 0 and 1 output SOP mux setup.

In order to build larger carry chain N-sorters, another new
feature has been added to the N-sorter design system: product
term splitting for In_X_goes_to_Out_Y SOP equations. With
product term splitting, the comparison variables that are
found in a given input’s In_X_goes_to_Out_Y equations are
split into two A/B groups. Winner count SOP equations are
determined separately for each group, and the count signals
are placed in an array in which the array index indicates the
winner count for that signal.

Then, for a particular output Out_Y, all A/B count pairs are
found in which the A count plus the B count add up to ¥, and
then a new SOP equation is created in which each product
term consists of an A count signal which is ANDed with the
B count signal with which it is paired. This creates a new type
of In_X_goes_to_Out_Y equation for N-sorters with N>10.

Examples of this new type of A/B product term are shown
in Fig. 10, which shows the setup for the highest 8 of
48 segments for a 16-sorter’s Out_8 output. For each A/B
pair, the counts, as indicated by the array indices, add up
to 8. There are 15 comparison variables in a 16-sorter’s
In_X_goes_to_Out_Y product terms, and these are split into
an A group with 7 variables and a B group with 8 variables.
The A group counts range from O to 7 and all 8 A group count
signals are used for each input. The B group counts range
from O to 8, but the B group count 0 signal is not used for
Out_8. The B group count 0 signal is used for several other
16-sorter outputs.
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Segment Inputs OQutputs
[71 s 1 ( ( In_15_to_Out 8_A[ @ ] & In_15_to Out_ 8 B[ 8] ) || out_g[@] co
( In_15_to Out 8 A[ 1 ] 8 In_15 to Out 8 B[ 71 ) )
DI In_15[ @ ]
61 s 1 ( ( In_15_to_Out_8 A[ 2 ] && In_15 to Out_8 B[ 6 ] ) || co
( In_15_to_Out_8_A[ 3 ] && In_15_to Out 8 B[ 571 ) ||
( In_15_to_Out_8_A[ 4 ] && In_15_to Out 8 B[ 41 ) )
DI In_15[ @ ]
51 s 1 ( ( In_15_to_Out_8_A[ 5 ] & In_15_to_Out 8 B[ 3 1) || o
( In_15_to_Out_8_A[ 6 ] && In_15_to_Out_8 B[ 2] ) ||
( In_15_to Out 8 A[ 7 ] 8& In_15 to Out 8 B[ 11) )
DI In_15[ @ ]
[41 s 1 ( ( In_14 to_ Out _8_A[ @ ] && In_14 to Out 8 B[ 8 1) || co
( In_14 to Out 8 A[ 1] 8% In_14 to Out 8 B[ 71 ) )
DI In_14[ @ ]
CI[ 4] =co[ 31
[31 s 1 ( ( In_14_to_Out_8_A[ 2 ] & In_14 to_ Out 8 B[ 6 1 ) || o
( In_14_to_Out_8_A[ 3 ] & In_14 to_ Out 8 B[ 51 ) ||
( In_14_to_Out_8_A[ 4 ] & In_14_to_Out_8_B[ 4 ] )
DI In_14[ @ ]
[21 s 1 ( ( In_14 to Out 8_A[ 5 ] &8 In_14_to Out 8 B[ 31 ) || co
( In_14_to_Out_ 8_A[ 6 ] & In_14 to Out 8 B[ 2 1) ||
( In_14 to Out 8 A[ 7 ] 8& In_14 to Out 8 B[ 1] ) )
DI In_14[ @ ]
[1] s 1 ( ( In_13_to_Out_8 A[ @ ] && In_13_to_Out_8 B[ 8 ] ) || co
( In_13_to_Out 8 _A[ 1 ] && In_13_to Out 8 B[ 71 ) )
DI In_13[ @ ]
[el1 s 1 ( ( In_13_to Out 8_A[ 2 ] &8 In_13_to Out 8 B[ 61 ) || co
( In_13_to_Out_8_A[ 3 ] && In_13_to Out 8 B[ 51 ) ||
( In_13_to Out 8 A[ 4 ] 8& In_13 to Out 8 B[ 41 ) )
DI In_13[ @ ]

cI[ @ ] = CI_BELOW

FIGURE 10. 16-sorter LUT-MUXCY out_8 Bit 0: top 8 of 48 segments.

IV. N-FILTERS USING CARRY CHAIN LOGIC

The slowest signals for carry chain 4-sorters up to 7-sorters
travel through the minimum 2 series LBs, as shown in the
top flow diagram in Fig. 7. Therefore, N-filters for 4 to
7 inputs use the basic N-sorter design, such as the 7-sorter
design shown in Fig. 6, and then simply remove the output
multiplexers for the unused outputs.

For N-filters with N>7, if outputs other than the max and
min outputs are in the N-filter’s output list, the same basic
design concept holds. Start with the N-sorter, and then remove
the unused outputs and any internal logic which only supports
the removed outputs.

When N >7 and the N-filter’s output list only contains the
max and/or min outputs, the single-stage N-filter’s design can
be greatly simplified, as is discussed in Section IV-A. Fast
N-max and/or N-min networks are very easily designed using
single-stage N-max/N-min filters, and Section I'V-B discusses
these simple and impressive networks.

A. N-MAX/N-MIN FILTERS USING CARRY CHAIN LOGIC
As has been noted previously, the In_X_goes_to_Out_Y
equations for both the max and min outputs have only
one product term. Therefore, the ge_L._R variables for an
In_X_goes_to_Out_Y signal can be split into any number
of groups. The fundamental principles in both N-max and
N-min filter design are the same, so only N-max filters will
be discussed further.

If there are 6 or fewer groups, the group results can be
ANDed together in an output mux segment equation, as is
shown in Fig. 11 for the setup of the top of 4 CARRYSs for
a 32-max output mux. This filter has 6 A/B/C/D/E/F groups,
with 2/6/6/6/6/5 ge_L_R variables in each group. Only the
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Inputs Outputs
[7] s ! ( In_31_A counts[2] & In_31_B_counts[6] && out_31[e] co
In_31_C_counts[6] & In_31_D_counts[6] &&
In_31_E_counts[6] & In_31_F_counts[5] )
DI In_31[ @ ]
[6] s ! ( In_3@_A_counts[2] & In_3e@_B_counts[6] && co
In_3@_C_counts[6] & In_3@_D_counts[6] &&
In_3@_E_counts[6] & In_3@_F_counts[5] )
DI In_3e[ @ ]
[5] s ! ( In_29_A counts[2] & In_29_B_counts[6] && co
In_29_C_counts[6] && In_29_D_counts[6] &&
In_29_E_counts[6] & In_29 F_counts[5] )
DI In_29[ @ ]
[4] s ! ( In_28_A counts[2] && In_28 B_counts[6] && co
In_28_C_counts[6] & In_28 D_counts[6] &&
In_28_E_counts[6] & In_28_F_counts[5] )
DI In_28[ @ ]
cI[ 4] =co[ 31
[3] s ! ( In_27_A counts[2] & In_27_B_counts[6] && co
In_27_C_counts[6] && In_27_D_counts[6] &&
In_27_E_counts[6] && In_27_F_counts[5] )
DI In_27[ @ ]
[2] s ! ( In_26_A_counts[2] && In_26_B_counts[6] && co
In_26_C_counts[6] & In_26_D_counts[6] &&
In_26_E_counts[6] && In_26_F_counts[5] )
DI In_26[ @ ]
[1] s ! ( In_25_A_counts[2] && In_25_B_counts[6] && co
In_25_C_counts[6] & In_25_D_counts[6] &&
In_25_E_counts[6] & In_25_F_counts[5] )
DI In_25[ @ ]
[e] s ! ( In_24_A counts[2] & In_24 B_counts[6] && co
In_24_C_counts[6] && In_24_D_counts[6] &&
In_24 E_counts[6] & In_24 F_counts[5] y
DI In_24[ @ ] !

CI[ @ ] = CI_BELOW

FIGURE 11. 32-max LUT-MUXCY out_31 bit 0: top 8 of 32 segments.

max count for each group is needed, as should be clear from
Fig. 11.

If the single product term must be split into more than
6 groups, a separate carry chain is used to produce each
In_X_goes_to_Out_Y signal, as is shown for a portion of
125-max In_124_goes_to_Out_124 carry chain shown in
Fig. 12. The 124 ge_L_R variables for each product term are
split into 20 groups containing 6 variables, and a single group
with 4 variables. Fig. 12 shows the bottommost CARRYS8
setup for the signal, with 4 groups of 6 and the single group
of 4. The other 16 groups of 6 are setup in two CARRY8s
connected above the Fig. 12 CARRYS.

The Fig. 12 CARRYS produces a tall AND function, with
a default value of 1. Each segment DI input is a 0, which is
written to the chain whenever a segment equation fails. This
is the same type of AND equation used in [17].

The Fig. 12 carry chains are found in the 2nd series logic
block for the Out_124 output. The In_X_goes_to_Out_124
signals are then used in the Out_124 output multiplexers, in
the same manner as was shown for each 10-sorter bit in Fig. 9.
The slowest signals for the 125-max device still travel through
only 3 logic blocks in series.

B. CARRY CHAIN N-MAX/N-MIN FILTER NETWORKS
Sorting networks which only use N-max or N-min filters
are easily constructed and easily understood. As N-min filter
networks are constructed in a manner akin to that of N-max
filter networks, only N-max filter networks are discussed
here.
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[71 s ( ge_124 27 &% ge_124 26 &% co
ge_124 25 && ge_124 24 &%
ge_124 23 && ge_124_22 )
DI 2
[6] s ( ge_124_21 &% ge_124 20 && co
ge_ 124 19 && ge_124 18 &%
ge_124 17 && ge_124_16 )
DI e
[5] s ( ge_124_15 &% ge_124_14 && co
ge_124 13 && ge_124_12 &%
ge_124 11 && ge_124_1@ )
DI ]
[4] s ( ge_ 124 9 8&& ge 1248 &% co
ge 124 7 && ge_ 124 6 &&
ge_124 5 && ge_124 4 )
DI ]
cI[ 4] =co[ 3]
[3] s ( ge_124_3 8&& ge_124 2 8% ! co
ge_ 124 1 && ge_124 @ )
DI
[2] s 1 co
DI
[1] s 1 co
DI
[e] s 1 co
DI ]

CI[ @ ] = CI_BOTTOM = 1

FIGURE 12. 125-max in_124_goes_to_out_124: bottom 8 of 24 segments.

Since 1024=322, a 1024-max network can be built using
2 stages of 32-max filters. In the first stage, the 1024 values
are placed into 32 lists, with each list having 32 values.
In parallel, the maximum of each list is determined using
this first set of 32-max filters. In the 2nd and final stage, the
32 results from the first stage are processed using one more
32-max filter, which produces the final 1024-max result.
After some thought, it should be clear that, if P=N9, the
max of P values can be determined in a q-stage network of
N-max filters. If P is not a power of ¢, then number of stages
q= CEILING(logn(P)).

As 1024=210 the existing state-of-the-art 1024-max
network is also constructed in a straightforward manner,
using 10 stages of 2-max filters. The two different 1024-max
networks are compared later in Section V-C.

V. RESULTS

Many single-stage N-sorter and N-filter designs have been
defined here using SystemVerilog, targeting the AMD-
Xilinx UltraScale+ xcvu9p FPGA. These designs have been
synthesized using the Vivado 2018.2 synthesis tool, the same
tool used in [1] when synthesizing devices which used the
original design system and only used the Fig. 3 LB.

The design details and the synthesis run options which
were used here have targeted low propagation delays, which
may have also produced high LUT hardware resource usage.
In [1], speed was important, but the design methodology and
synthesis options there tended to focus on reducing resource
usage.
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32-bit Single-Stage UltraScale+ N-Sorter Propagation Delay (nS)

(su) Aejag uonesedouqd 1a110s-N a8eis-3|3uls

—E~LUT-MUXF7/8/9 Original N-Sorter Designs
—A—LUT-MUXF7/8/9 SOP Output Mux N-Sorter Designs 11

—&—LUT+Carry Chain Fastest N-sorter Designs

2 3 4 5 6 7 8 9 10 =>12 =16
N of N-sorter ; 32-bit Values ; 8-LUT Slice with MUXF7/8/9 or Carry Chain Logic

FIGURE 13. Single-stage 32-bit N-sorter propagation delay.

The single-stage N-sorter/N-filter results are compared to
results from the historical state-of-the-art designs, which use
2-sorter/2-filter networks. The 2-network designs are also
synthesized here with settings that emphasize speed, which
tends to increase their LUT resource usage as well.

N-sorter and N-max filter designs for both 8-bit and 32-bit
unsigned integers have been synthesized for this work. The
synthesis results report both worst case propagation delay and
LUT resource usage for each single-stage or network sorting
device. For comparison’s sake, data for both 8-bit and 32-bit
devices are listed in the four tables found in the following two
sections. However, as mentioned earlier, only data for 32-bit
devices are plotted and discussed.

There is one caveat which concerns the LUT resource
usage reported by the synthesis tool. During this study, it was
noticed that the synthesis tool does not count LUTs which
produce a constant 1, a constant 0, or passthrough/buffer
a single input, even if these LUTs are an essential part of
the design. There has been some effort put into counting
these type of LUTs, but a rigorous method for counting these
ignored LUT types for this work has yet to be developed.

A. SINGLE-STAGE N-SORTER SYNTHESIS RESULTS

Fig. 13 displays N-sorter propagation delay curves for 3 types
of N-sorter designs. The purple top curve contains data for the
original baseline LUT-MUXF7/8/9 designs, which use only
the Fig. 3 LB and whose design flows are shown in Fig. 4. The
data points for 2-sorters and 3-sorters, whose output muxes
are simple LUTs and cannot be improved upon, are only
shown in the purple curve.

The data in the middle blue curve come from new
LUT-MUXF7/8/9 designs, which use only the Fig. 3 LB
but take advantage of the new SOP output mux equations,
like the one shown in Fig. 8. These designs are discussed
in Appendix A. Note that the 6-sorter in this group is the
only LUT-MUXF7/8/9 N-sorter that is (slightly) faster than
a comparable carry chain logic N-sorter.

The bottom red curve contains the propagation delay data
for the new carry chain logic N-sorters which are the focus
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here. This curve shows that 7-sorters and larger carry chain
sorters are clearly faster than LUT-MUXF7/8/9 N-sorters.
The largest LUT-MUXF7/8/9 N-sorter is a 10-sorter, but
product term splitting enables the larger carry chain N-sorters
to be constructed, and data points for carry chain 12-sorters
and 16-sorters are shown in the plot. The X-axis increments
by 1 only up to 10, and any data points past 10 are shown
using a dashed line. Note that the new carry chain 16-sorter
is faster than the baseline 9-sorter.

The propagation delay for the original LUT-MUXF7/8/9 7-
sorter design, 1.812, is labelled in Fig. 13’s high purple curve.
Likewise, the 7-sorter propagation delay for the new carry
chain N-sorter, 1.469, is labelled in the low red curve. As was
noted earlier in the introduction, the speedup for the carry
chain 7-sorter is then 1.23=1.812/1.469 versus the original
LUT-MUXF7/8/9 7-sorter.

The speeds of the carry chain logic N-sorters shown in the
red curve in Fig. 13 are entered into the 3rd column of Table 1.
The speed data of comparable sorting networks is found in the
5th column. These sorting networks, generally considered the
state-of-the-art, have been custom-designed for speed [2].

TABLE 1. Carry chain 8-bit/32-bit N-sorter speed vs. 2-sorter N-network.

N N N 2srtr  2srtr N N N
Srter Srter Ntwrk Ntwrk Srter Srter Srter
Prop Prop Prop Prop Estim True True
Delay Delay Delay Delay Spdup Spdup Spdup
8-bit 32bit 8-bit 32bit 8-bit 32bit

4 1.128 1.297 2.617 3.154 3 2.32 2.43

5 1.203 1.380 4.297 5.192 5 3.57 3.76

6 1.303 1.434 4.319 5.214 5 3.31 3.64

7 1.335 1.469 5.148 6.222 6 3.86 4.24

8 1.522 1.656 5.148 6.222 4 3.38 3.76

9 1.617 1.751 5.999 7.252 4.7 3.71 4.14

10 1.630 1.760 6.021 7.274 4.7 3.69 4.13

12 1.671 1.804 6.872 8.304 5.3 4.11 4.60

16 1.891 2.024 7.723 9.334 6 4.08 4.61

All propagation delay values are in nS.

N-sorter LBs in Series = 2 for 7- and smaller N-sorters ; otherwise = 3.
Estimated speedup = ( 2-Network LBs in Series ) / ( N-sorter LBs in Series )
True speedup = ( 2-Network Prop Delay ) / ( N-sorter Prop Delay )
Yellow rows highlight N-sorters only implemented in carry chain logic.

The last column in Table 1 lists the speedups of the
carry chain N-sorters versus the fastest comparable sorting
networks. In [1], the maximum single-stage N-sorter speedup
was 3.56. Here, all of the N-sorters in the last column
of Table 1, except for the 4-sorter, have a speedup higher
than 3.56. The maximum speedups in this table are for the
carry chain 12- and 16-sorters, which cannot efficiently be
built using design methodologies that only use the LUT-
MUXF7/8/9 Fig. 3 LB. Both 12-/16-sorter speedups are at
least 4.60.

Table 2 shows the LUT resource usage for the carry
chain N-sorters and sorting networks whose speed data are
shown in Table 1. N-sorter LUT increase ratio, which is
(N-sorter LUTs/2-sorter network LUTS), is used to compare
N-sorter LUT hardware usage to that of the associated
2-sorter network.

The fastest carry chain 8-sorter, whose data are found in
Fig. 13 and Tables 1 and 2, is designed according to the
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TABLE 2. Carry chain 8-bit/32-bit N-sorter LUT usage vs. 2-sorter
N-network.

N N N 2srtr 2srtr N N
Srter Srter Ntwrk Ntwrk Srter Srter
8-bit 32bit 8-bit 32bit 8-bit 32bit

LUT LUT LUT LUT Incrs Incrs
Usage Usage Usage Usage Ratio Ratio

4 120 480 100 400 1.20 1.20

5 200 800 180 720 1.11 1.11

6 300 1200 240 960 1.25 1.25

7 420 1680 320 1280 1.31 1.31

8 432 1344 380 1520 1.14 0.88

9 800 2960 500 2000 1.60 1.48

10 1287 4851 620 2480 2.08 1.96

12 1991 7535 800 3200 2.49 2.35

16 4860 17100 1220 4880 3.98 3.50

N-sorter LUT increase ratio = ( N-sorter LUTs ) / ( 2-Network LUTSs )
Yellow rows highlight N-sorters only implemented in carry chain logic.

middle flow diagram in Fig. 7. The LUT increase ratio is very
low for this 8-sorter, even less than 1.0 for the 32-bit version,
which is highlighted in blue in Table 2.

The LUT increase ratios for the fastest carry chain 9- up to
16-sorters are not as low as the 8-sorter’s. These sorters are
designed using the bottom flow diagram in Fig. 7.

B. SINGLE-STAGE N-MAX SYNTHESIS RESULTS
Propagation delay curves are shown for 4 types of
single-stage N-max filters in Fig. 14. Once again, the curves
and additional data are representative of comparable N-min
filters as well.

The purple top curve contains data for the original baseline
designs, which use only the Fig. 3 LB and whose design flows
are generally shown in Fig. 4. The data points for 2-max
and 3-max filters, like the 2-sorter and 3-sorter data points
in Fig. 13, are only shown in the top curve.

The blue curve in Fig. 14 shows data for ge LR
Direct N-max filters, which were previously discussed in
Section III-F in [1]. The ge_L_R Direct 4-, 5-, and 6-max
filters only use 2 series LBs, and Fig. 14 shows that these
are the fastest N-max filters for these filter sizes.

The Fig. 14 green curve shows data for larger
LUT-MUXF7/8/9 N-max filters that use A/B group product
term splitting. These are the fastest LUT-MUXF7/8/9 N-max
filters for 9 or more input values. These N-max filters are
discussed in more detail in Appendix A.

The red curve in Fig. 14 shows the propagation delays for
carry chain N-max filters. These are the fastest 7- and larger
N-max filters, and they include much larger, but still fast,
N-max filters.

As listed in Table 3, which contains speed data for
single-stage and network N-max filters, a single-stage
125-max 5 x 5x5 CNN video max pooling filter [18] has
a propagation delay is 2.075 nS, which is a speedup of
3.43 relative to the 7.113 nS delay of the analogous 7-stage
2-max filter network. This speedup value of 3.43 is the largest
speedup for the single-stage carry chain N-max filters.

Table 4 shows the LUT resource usage for the N-max
filters whose speed data is listed in Table 3. The N-max
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32-bit Single-Stage UltraScale+ N-Max Filter Propagation Delay (nS)
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FIGURE 14. Single-stage N-max filter 32-bit propagation delay.

TABLE 3. Carry chain 8-bit/32-bit N-max filter speed vs. 2-max
N-network.

N N-Max N-Max 2-max 2-max N N N
Flter Flter Ntwrk Ntwrk Max Max Max
Prop Prop Prop Prop Estim True True
Delay Delay Delay Delay Spdup Spdup Spdup
8-bit 32bit 8-bit 32bit 8-bit 32bit
4 1.088 1.258 1.720 2.078 2 1.58 1.65
5 1.158 1.328 2.526 3.063 3 2.18 2.31
6 1.254 1.385 2.526 3.063 3 2.01 2.21
7 1.267 1.401 2.526 3.063 3 1.99 2.19
8 1.373 1.548 2.548 3.085 2 1.86 1.99
9 1.388 1.563 3.354 4.070 2.7 2.42 2.60
10 1.469 1.597 3.354 4.070 2.7 2.28 2.55
12 1.498 1.629 3.354 4.070 2.7 2.24 2.50
16 1.534 1.662 3.376 4.092 2.7 2.20 2.46
27 1.602 1.733 4.182 5.077 o3 2.61 21593
32 1.629 1.760 4.204 5.099 3.3 2.58 2.90
64 1.845 1.975 5.032 6.106 4 278 3.09
125 1.945 2.075 5.860 7.113 4.7 3.01 3.43

All propagation delay values are in nS.

N-max LBs in Series = 2 for 7- and smaller N-max filters ; otherwise = 3.
Estimated speedup = ( 2-Network LBs in Series ) / ( N-max LBs in Series )
True speedup = ( 2-Network Prop Delay ) /( N-max Prop Delay )
Yellow rows highlight N-max filters only implemented in carry chain logic.

LUT increase ratio grows significantly for the largest N-max
filters. The LUT resource usage for the 125-max filter,
127969, is 10.8% of the available xcvu9p LUT resources.

C. N-MAX FILTER NETWORK SYNTHESIS RESULTS

The 2-stage 1024-max network, using a total of 33
single-stage 32-max filters, has a worst case propagation
delay of 3.557 nS. The existing state-of-the-art 1024-max
sorter, using 10 stages of 2-max filters, has a propagation
delay of 10.134 nS. The 2-stage 1024-max network therefore
has a speedup of 10.134/3.557=2.85.

The 1024-max network using 32-max filters uses
300762 LUTs, which are 25.4% of the available xcvu9p
LUTs. This 2-stage network has a N-max LUT increase ratio
of 6.125 versus the 10-stage 2-max filter network.

VI. LOGIC BLOCKS IN THE LATEST FPGA FAMILIES

The logic blocks shown in Figs. 3 and 5 are found in
the FPGA products in the AMD-Xilinx UltraScale and
UltraScale+- families. These two logic blocks have been used
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TABLE 4. Carry chain 8-bit/32-bit N-max filter LUTs vs. 2-max N-network.

N N-max N-max 2-max 2-max N-max N-max
Flter Flter Ntwrk Ntwrk Flter Flter
8-bit 32bit 8-bit 32bit 8-bit 32bit

LUT LUT LUT LUT Incrs Incrs
Usage Usage Usage Usage Ratio Ratio

4 48 192 36 144 1.33 1.33

5 72 288 48 192 1.50 1.50

6 100 400 60 240 1.67 1.67

7 132 528 72 288 1.83 1.83

8 160 592 84 336 1.90 1.76

9 202 754 96 384 2.10 1.96

10 240 900 108 432 2.22 2.08

12 336 1272 132 528 2.55 2.41

16 656 2480 180 720 3.64 3.44

27 1742 6578 312 1248 5.58 5.27

32 2418 9114 372 1488 6.50 6.13

64 8944 33664 756 3024 11.83 11.13

125 33961 127969 1488 5952 22.82 21.50

N-max LUT increase ratio = ( N-max LUTs ) / ( 2-max network LUTSs )
Yellow rows highlight N-max filters only implemented in carry chain logic.

to design all of sorting devices defined here and in [1].
However, AMD-Xilinx has introduced a new FPGA, Versal
ACAP, with significantly different logic structures. It is
worthwhile to perform an initial analysis on how well the new
logic blocks will support the N-sorter/N-filter design system
described in [1] and expanded on here.

It is also worthwhile to analyze how well the N-sorter/
N-filter design system can be implemented in the Intel Agilex
FPGA logic blocks, particularly since the Agilex carry chain
logic differs a great deal from both the UltraScale+ and the
Versal ACAP carry chain structures. Carry chain logic in
the new families is discussed in Section VI-A, and standard
FPGA logic blocks, such as the one shown in Fig. 3, are
analyzed in Section VI-B.

A. CARRY CHAIN LOGIC IN THE LATEST FPGAs

The type of carry chain logic shown in Fig. 5 is here called
Carry Out MUX (COM) logic. The segment CO signal is the
output of a 2-to-1 mux. The two data inputs to the MUX are
the segment CI signal and a variable DI segment input. The
select line for the 2-to-1 mux is driven from the output of the
segment 6-input LUT.

The carry chain logic in the AMD-Xilinx Versal ACAP
FPGAs continues to be a COM type, but with significant
modifications [21]. The output mux select line is the output
of a 4-input LUT portion of the full segment 6-input LUT.
The DI signal is normally a LUT input that is not an input to
the 4-input LUT that drives the select line.

Because of the 4 input limitation for the Versal ACAP
output mux select line, the Versal ACAP N-sorter/N-filter
carry chain design methodology consistently underperforms
the methodology using the UltraScale+ Fig. 5 carry chain.
This is shown in the first two blue columns in Table 5.

The Versal ACAP data in Table 5 is the result of a simple
analysis of the Versal ACAP carry chain logic. There are
additional features of Versal ACAP logic that may improve its
results compared to UltraScale+. One very interesting Versal
ACAP feature is the CASC signal, which is directly routed
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TABLE 5. Carry chain N-sorter/N-filter comparisons of 3 carry chain types.

Uscale+ Segment Uscale+ V ACAP Agilex
Design Attribute Carry Carry Carry
Figure Chain Chain Chain
6 S eq. variables 6 4 3
6 Largest N-sorter 7- 5- 4-
10 Prod Terms/Seg 3 2 2
11 Groups/Segment 6 4 3
9 Pairs/Segment 3 2 3
12 Comparisons/Seg 6 4 6

UltraScale+ : DI = input bit in Figs. 6, 10, and 11
UltraScale+ : DI = 1 in Fig. 9 — Simple OR equation
UltraScale+ : DI = 0 in Fig. 12 — Simple AND equation

from the main LUT output to the LUT directly above the first
LUT. Another new feature in Versal ACAP is that the carry
chain logic is organized in a LUT pair, and the CO signal
from the pair comes from a 4-to-1 multiplexer, with 2 control
signals, and data inputs from both paired LUTs.

The Agilex carry chain logic found in its LUT structure
consists of two full adders in a Ripple Carry Adder (RCA)
sequence [22]. There is no carry out mux, and no separate DI
signal. Two of the LUTs 6 inputs only support Adder0, two
only support Adderl, and two are common to both adders.
Each adder has 2 data inputs, driven from separate 4-input
LUT sections of the 6-input structure.

The N-sorter/N-design carry chain design outputs use a
CO signal, but it is not clear from the Agilex documentation
how often CO signals are routed out of the logic blocks.
However, a CO signal can be sent to the SUM output of the
subsequent adder by forcing its two data inputs to opposite
Boolean values, and all SUM outputs can be routed out to the
interconnect.

The first four lines in Table 5 contain data for UltraScale+
carry chain designs in which the DI input is an input data
bit. The Agilex carry chain logic does not efficiently support
this type of N-sorter/N-filter design, as can be seen in last
column of the table. However, the last two lines in Table 5
target designs in which the DI input is a constant 0 or 1. Since
a full adder is able to generate a 0 or 1 based on its data input
values, the Agilex segment LUT is able to use its 6 inputs as
efficiently as UltraScale+ for the Figs. 9 and 12 designs in
the last 2 table rows.

B. STANDARD LOGIC BLOCKS IN THE LATEST FPGAs
AMD-Xilinx has historically referred to their FPGA logic
block as a CLB. The 8-LUT UltraScale4 group shown in
Figs. 3 and 5 is also referred to as a slice. In UltraScale+,
the CLB and 8-LUT slice are identical structures.

The Versal ACAP CLB is changed rather dramatically [21].
An 8-LUT group is still called a slice, but there are now
4 slices per CLB. The Fig. 3 MUXF7, MUXF8, and MUXF9
2-to-1 hardware multiplexers have been removed. In their
place, the CLB now has local routing, intended to provide
fast paths between LUTs in the CLB.

The UltraScale+ In_X_goes_to_Out_Y signals for 8- to
10-sorters utilized Fig. 3 MUXF7/8/9 multiplexers, so these
type of signals will need to use additional LUTs and local
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routing in Versal ACAP if they are still to be as fast. The
output of an UltraScale4+ MUXF7/8 block requires 4 LUT
outputs and 3 control signals as inputs, too many to be
implemented in a 6-input LUT.

However, the two MUXF7 control signals can be combined
into a single signal, using a LUT with all 3 control signals as
inputs. This control signal reduction happens in parallel with
the operations in the 4 base LUTs, so there is no speed impact.
The MUXF7/8 equivalent operation is now completed in a
LUT whose 6 inputs are the outputs of the 4 base LUTs,
and the 2 control signals. Therefore, 6 LUTs are required
for the equivalent of a MUXF7/8 structure in a Versal ACAP
CLB. The slowest signals travel through 2 series LBs, but the
routing between the series LBs is fast local routing.

The slice equivalent in the Intel Agilex devices is called
a LAB [22]. A LAB has 10 LUTs, versus the 8 LUTs in a
AMD-Xilinx slice. The Agilex LAB also has local routing
between the LUTs in the LAB. The equivalent of a MUXF7/8
operation in a LAB is similar to that in Versal ACAP. The
outputs of four base inputs would be locally routed to an
additional LUT, along with the two control signals after
control signal reduction in a LAB LUT. This six LUT group
allows for the 4 remaining LAB LUTS to be utilized for other
operations.

VIi. CONCLUSION

The single-stage N-sorter/N-filter design system that the
authors previously published is expanded here, and then
applied to a hardware type not previously utilized, FPGA
carry chain logic. The carry chain logic targeted here is found
in the same FPGA that was used for the previous analysis,
and the same software is used to implement carry chain
logic single-stage devices. The new carry chain devices are
compared to the previous single-stage devices, and to the
multistage sorting networks that had been the fastest state-
of-the-art FPGA sorting devices.

The carry chain logic N-sorters are shown to be consider-
ably faster than the previous single-stage N-sorters, and much
faster than comparable sorting networks. Also, significantly
larger and still fast N-sorters, such as a carry chain 16-sorter,
have now been implemented and characterized.

Perhaps the most striking aspect of carry chain logic is
its ability to enable fast and dramatically larger single-stage
N-max/N-min filters, which can aid video max pooling in
CNN applications. These large N-max/N-min filters can then
be used in simple N-max/N-min sorting networks, which are
able to process large input lists much faster than the previous
state-of-the-art networks, consisting of many serial stages
which use 2-max/2-min filters.

This study has focused on the logic blocks found in the
products of two currently popular FPGA families. Newer
FPGA families have been introduced, and their ability to
accommodate efficient N-sorter/N-filter design has been
discussed. One possible focus for future work is to adapt
this N-sorter/N-filter design system to one or more of the
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latest FPGA product families, and to compare the new FPGA
results to the results obtained in this study.

APPENDIX A

LUT-MUXF7/8/9 SOP MUX DESIGNS

As shown in Fig. 4’s flow diagrams for the baseline
LUT-MUXF7/8/9 N-sorters, all of the input signal bits were
inputs to the last Output MUX Block. For 5- and larger
N-sorters, MUXF 2-to-1 multiplexers are required in the last
LB, and ORs of multiple In_X_goes_to_Out_Y signals are
typically needed as select lines for the 2-to-1 multiplexers.

4-sorter In_X Input Port Values
5-sorter 6-sorter

out_Y

Comparison Signals Block 1t Product Term Signals Output MUX Block

Create N*(N-1)/2 ls| (In_X_to_OutY&&InX) b o OR of 1% -
Input Comparison Signals each per-bit product term product terms
in1LUT 1LUT per bit

7-sorter 8-sorter In_XInput Port Values v _>I
9-sorter 10-sorter [ty et i Out Y

Comparison Signals Block 1**Product Term Signals 2" Product Term Signals Output MUX Block
Create N*(N-1)/2 — In_X_to_Out_Y = In_X_to_Out_Y &&In_X OR of 24

Input Comparison Signals signals created using per-bit product terms product terms
LUT-MUXF* logic block 3 product terms per LUT 1LUT per bit

FIGURE 15. LUT-MUXF7/8/9 SOP output mux signal flow diagrams.

For the new LUT-MUXF7/8/9 design flows shown in
Fig. 15, the input signal bits are normally the inputs to
the 2nd-to-last series LB, and the final Output MUX Block
consists of a single 6-input LUT, which enables faster
N-sorters. Another feature that enables faster speeds for these
N-sorters is that each LUT output in the 2nd-to-the-last LB is
simply routed to one LUT input in the final LB, as shown for
the 6-sorter in Fig. 16.

In_5_goes_to_Out_3 && In_5[0]

In_4_goes_to_Out_3 && In_4[0]

Final LUT Logic Block:
Out_3[0]

—

In_3_goes_to_Out_3 && In_3[0]

| —
| —
| —
[ in_2_goes_to_out 3 &&n_2[0] |—
| —
| p—

OR of 6 values

In_1_goes_to_Out_3 && In_1[0]

In_0_goes_to_Out_3 && In_0[0]

FIGURE 16. Last 2 stages of LUT-MUXF7/8/9 6-sorter SOP output mux.

Since a 6-sorter’s In_X_goes_to_Out_Y signals use
5 comparison signals, (In_X_goes_to_Out_3 && In_X[0])
product terms in Fig. 16 are able to be implemented in
a 6-input LUT in the next-to-the-last LB. The 3rd and
final LUT simply ORs the 6 product terms and completes
the SOP output mux equation. This 6-sorter is the one
LUT-MUXF7/8/9 N-sorter that is (slightly) faster than the
comparable carry chain N-sorter, as shown in the blue curve
Fig. 13.

Use of SOP output mux equations, along with A/B
group product term splitting, enable the fastest and largest
LUT-MUXF7/8/9 N-max filters for 9 or more input values,
whose data are plotted in the green curve in Fig. 14.
Fig. 17 shows the 3rd, next-to-last stage of the 12-max design.
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Outputs to Final
6-input LUT

( In_11_A _counts[ 5] && In_11_B_counts[
( In_10_A _counts[ 5] && 1In_10_B_counts[

)
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& In_10[ 0 ]

o

( In_9_A counts[ 5] && In_9_B_counts[
( In_8_A counts[ 5] && In_8_B_counts[

o

& Ioo[e] )|l
& 1Ins[@] )

)

( In_7_Acounts[ 5] & In_7 B_counts[ 6] & In_7[ @] ) ||
5] & In_6_B_counts[ 6 ] & & In_6[ 0 ]

( In_5A_counts[ 5] & In_5B_counts[ 6] & InS5[0] ) ||

( In_4_A counts[ 5] & & In_4 B counts[ 6 ] & In_4[ 0]

( In_3_Acounts[ 5] & In_3 B_counts[ 6] & In3[e@] ) ||

( In_2_A counts[ 5] && In_2_B_counts[ 6 ] & In_2[ 0]

(  In_1_A_counts[
(  In_o_A_counts[

w

& In_1_B_counts[
&  In_O_B_counts[

o

’ (  In_6_A_counts[

T

& In_1[e] ) ||
8& Ine[e] )

w
o

FIGURE 17. LUT-MUXF7/8/9 12-max 3rd of 4 stages using A/B groups.

The A/B count signals are created in the 2nd stage. Once
again, the final stage consists of a single LUT which ORs
all 6 of the LUT outputs from the 3rd stage. Although these
are the fastest and largest LUT-MUXF7/8/9 N-max filters,
Fig. 14 shows that comparable carry chain N-max filters are
faster and much larger carry chain filters can be implemented.
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