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ABSTRACT Considering that functional magnetic resonance imaging (fMRI) signals from multiple
subjects (MS) can be represented together as a sum of common and a sum of distinct rank-1 matrices,
a new MS dictionary learning (DL) algorithm named sparse group (common + distinct) bases (sgBACES)
is proposed. Unlike existing MS-DL algorithms that ignore fMRI data’s prior information, it is formulated
as a penalized plus constrained rank-1 matrix approximation, where l1 norm-based adaptive sparse penalty,
l0 norm-based dictionary regularization, and lag-1 based autocorrelation maximization have been introduced
in the minimization problem. Besides, spatial dependence among neighbouring voxels has been exploited for
fine-tuning the sparsity parameters. To my best knowledge, the sgBACES algorithm is the first to effectively
take temporal and spatial prior information into account for an MS-fMRI-DL framework. It also has the
advantage of not requiring a separate sparse coding stage. Studies based on synthetic and experimental fMRI
datasets are used to compare the performance of sgBACES with the state-of-the-art algorithms in terms of
correlation strength and computation time. It emerged that the proposed sgBACES algorithm enhanced the
signal-to-noise ratio (SNR) of the recovered time courses (TCs) and the precision of the recovered spatial
maps (SMs). A 10.2% increase in the mean correlation value over the ShSSDL algorithm is observed for
motor-task based fMRI data.

INDEX TERMS Sparse representation, dictionary learning, l0 constraint, l1 penalization, multi-subject
analysis, fMRI, lag-1 autocorrelation, spatial dependencies, adaptive penalty.

I. INTRODUCTION
Since its formation [1], fMRI has emerged as a powerful
neuroimaging technique to investigate brain activity. Due to
its high spatial resolution, it has been particularly precise in
mapping neural activities during task-based (TB), or resting-
state (RS) experiments [2]. For TB-fMRI data analysis, the
general linear model (GLM) [3], which has been imple-
mented in the statistical parametric mapping (SPM) tool-
box [4] is commonly used. It employs regressors based on
the canonical hemodynamic response function (HRF) and its
derivatives [5]. An obvious disadvantage of this approach is
its inability to account for any unpredictable experimental
variance, such as HRF variability across subjects [6]. In con-
trast, the flexibility of data-driven methods such as inde-
pendent component analysis (ICA) [7], principal component
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analysis (PCA) [8], canonical correlation analysis (CCA) [9],
and their variants [10]–[15] to adapt to individual hemody-
namics across subjects and different functional networks by
learning underlying trends from the data make them appli-
cable to both TB activation detection and RS functional
connectivity analysis. Therefore, these methods have been
extensively adapted to fMRI data over the last three decades.
In this period, ICA, in particular, has dominated the fMRI
literature with applications to both TB and RS fMRI data.

Regarding MS analysis, spatial ICA (sICA) [16] has
enjoyed more success than temporal ICA owing to fMRI
data’s lower spatial variations than temporal [17]. On the
other hand, due to the sparse nature of brain networks,
the sparse assumption has gained more popularity in the
last decade, and this led authors in [18] to question
ICA’s ability to handle independence among components,
which was refuted in [19]. They concluded that ICA does
select for maximal independence and emphasized that, like
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independence, sparsity is a reasonable assumption for fMRI
analysis. Nevertheless, ICA’s assumption of independence
was again challenged in [20] where ICA, compared to sparse
DL, faced difficulty retrieving neural dynamics when mod-
erate to significant overlaps among functional networks were
present. A similar trend was encountered in [21] where ICA
could not reveal the activation maps that DL discovered.
The sparse assumption has also been supported by biological
evidence of sparse coding in the brain [22], and highlighted
in an earlier ICA study [23].

In the last two decades, sparse representation [24] has
been extensively utilized to tackle numerous signal and image
processing problems such as denoising [25], inpainting [26],
super-resolution [27], classification [28], and many others.
Its usefulness becomes evident for fMRI when combined
with DL [29]. It allows representing the blood-oxygen-level-
dependent (BOLD) signal by a linear combination of a few
atoms from the trained dictionary, thus allowing retrieval
of underlying neural dynamics. This motivated the devel-
opment of a sparse GLM framework for fMRI by authors
in [30]. Since then many DL algorithms have been developed
specifically for single-subject fMRI data, for instance, basis
expansion dictionary [31], consistent adaptive sequential dic-
tionary [32], adaptive complex-valued dictionary [33], and
information assisted dictionary [34].

In the context of MS studies, there are some [35], [36]
that directly apply existing DL algorithms such as ODL [26]
to obtain group-level brain networks. Whereas, authors in
other publications developed DL algorithms explicitly for
MS-fMRI studies [37]–[40]. However, they could not inter-
relate spatiotemporal (ST) dynamics across subjects, because
their models could not retain the data decomposition format
like the latter approaches presented in [41], [42]. Algorithms
in [41], [42] were inspired by the approach used in image
classification [43] to decompose the whole-brain (WB) MS
datasets into common and subject-specific TCs and SMs
while using incoherence penalty to transfer shared features
to the common dictionary. These algorithms might suffer
from convergence issues because they are based on alter-
nating minimization (AM) approach that updates dictionary
and sparse code separately and performance issues because
they ignore fMRI data’s prior information such as tempo-
ral smoothness and spatial dependence among neighbour-
ing voxels. Moreover, recently, an MS-DL algorithm was
applied to spatial features to reveal SMs that were common
among healthy controls and schizophrenic subjects and those
that were specific to each group [21], and more recently,
MS-fMRI data were decomposed using the Tucker-2 model
into shared, and individual TCs/SMs [44].

This paper proposes a new DL algorithm that decomposes
the WB-fMRI dataset from multiple subjects into a sum of
common and distinct rank-1 matrices. It is entirely differ-
ent from existing MS algorithms in terms of the objective
function, and both dictionary and sparse code (SC) update
stage. In addition to the adaptive sparse penalty on coeffi-
cient rows, the proposed algorithm introduced smoothing and

autocorrelation maximization constraints on atoms in the
rank-1minimization problem. Its solution is based on a power
method variant, and is named sparse group bases (sgBACES).
A second algorithm named rgBACESW that takes a much
simpler perspective on MS learning is also presented. The
sgBACES algorithm yields superior dynamics compared to
sICA [16], CODL [40], and ShSSDL [42] in terms of cor-
relation strength of retrieved signals with the ground truth.
In this paper, the main contributions are

1) A new rank-1 matrix approximation problem that takes
into account the prior information about lag-1 autocor-
relations, and the smoothness of fMRI time series and
imposes an adaptive penalty on sparse coefficients to
facilitate multi-subject fMRI learning.

2) For the proposed approximation problem, a computa-
tionally efficient algorithm, specifically when the num-
ber of data variables is from small tomedium that learns
sparse representation matrix (RM) or mixing matrix
and sparse coefficient matrix as a pair and does not
alternate between DL and SC stage.

3) A greedy approach that estimates adaptive sparse
penalty parameters based on each voxel’s two-
dimensional (2D) neighbourhood within each slice.

4) A thresholding correlation-based RM estimation
approach for the sparse basis expansion that particu-
larly helps reduce the computational burden.

The rest of the paper is organized into six sections.
Section 2 discusses the related work, section 3 provides back-
ground on multi-subject DL, section 4 describes the proposed
algorithm, section 5 presents experimental studies, and the
paper ends with section 6 containing concluding remarks.

II. RELATED WORK
In essence, the sgBACES algorithm is motivated by the fact
that when interesting source signals are mixed, their autocor-
relation is lower, which can be maximized using exploratory
techniques such as CCA [9]. In this work, the autocorrelation
becomes even weaker due to the risk of overfitting through
the mixing of DCT bases. Moreover, the effect of nuisance
factors such as scanner-induced drift, which have influenced
each voxel’s time series by causing a lag-1 autocorrelation
structure, might still exist even after the conventional tem-
poral pre-processing [45]. This can be eliminated from the
signals of interest while maximizing the autocorrelation [9].

As it was discussed in [31] that the BOLD signal at any
voxel can be assumed smooth since the linear convolution
model that is frequently used in fMRI leads to a neural
response that is smoothed by the HRF. The notion of smooth-
ness was included as prior information in the DL model
where instead of imposing it through the roughness penalty
matrix, it was enforced through sparse basis expansion via
the l1 norm. This has motivated me to incorporate the DCT-
based dictionaries into the proposedMS-DLmodel. Themain
drawback of using l1 norm-based penalization for sparse basis
expansion is that it is hard to relate its penalty value to the
number of selected DCT bases that represent the dictionary
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TABLE 1. For fMRI group analysis, a summary of existing state-of-the-art data-driven algorithms, the proposed algorithm (sgBACES), and its
variant (rgBACESW).

atom being estimated using the error matrix. This can be
resolved by using l0 based constraint, because it counts for
the number of non-zeros and naturally seems to be a better
option for basis selection.

To solve the sparse signal recovery problem given by equa-
tion (1), an AM-based DL algorithm that rotates between the
SC stage and the DL stage is usually considered, where the
DL stage consists of sequential estimates of dictionary atoms
and respective SC using singular value decomposition (SVD)
on the reduced error matrix [46]. However, this solution
is not always convergent over the iterates of a sequential
learning [47], its alternative [32] on the other hand, has shown
superior convergence. This algorithm is a variant of the power
method that solves a regularized rank-1matrix approximation
for the full error matrix by promoting adaptive sparse penalty
in the minimization problem resulting in consistent estimates
of dictionary/SC.

Based on the discussion above and the ideas mentioned in
the following (background) section, a novel algorithm named
sgBACES and its minor variant named rgBACESW have
been presented in this paper. As the proposed algorithm and
its variant are quantitatively compared with other data-driven
algorithms in this paper’s experimental section, a theoreti-
cal comparison among them in terms of their decomposi-
tion type, methodology, advantages, and limitations is given
in Table 1.

III. BACKGROUND
As shown in Fig. 1, consider a single subject’s whole-brain
BOLD time courses consisting of N scanned volumes and

V number of voxels arranged along the column direction
in Y = [y1, y2 . . . .yV ] ∈ RN×V . Assuming, sparseness
along its row direction each signal in Y can be represented
as a linear combination of a few dictionary atoms from
D ∈ RN×K according to the sparse coefficient strength in
each column of the sparse code matrix X ∈ RK×V given as
yv ≈ Dxv, v = 1, . . . ,V . To achieve this decomposition,
a sparsity constraint is imposed on coefficient columns, and
a normalization constraint on atoms as

min
D,X
‖Y− DX‖2F sub.to. ‖xv‖0 ≤ ζ, ‖dk‖2 = 1, (1)

where ‖.‖F , ‖.‖2, and ‖.‖0 is the Frobenius, l2, and l0 norm,
respectively, ζ � K is the hyperparameter that controls
sparsity, and each atom is normalized to a unit norm to avoid
scaling ambiguity. Due to the non-convexity of (1), it is solved
conventionally using the AM approach, which comprises
SC and DL stages. During the SC stage, sparse coefficient
matrix is estimated using either coordinate descent with soft
thresholding [48] in case of l1 norm on X or a greedy strategy
such as orthogonal matching pursuit (OMP) [49] in case of
l0 norm. On the other hand, a block update is performed when
a computationally efficient dictionary is desired [50], or a
sequential update is carried out to obtain a dictionary with
superior performance [26], [46].

In order to extend (1) so that it can simultaneously analyze
multiple subjects such that the dictionary which is common to
all subjects, as well as a set of dictionaries that are specific to
each subject can be learned, the ShSSDL algorithm was pro-
posed in [42]. Wherein authors while assumed incoherence
among the trained dictionaries D′ = [Dc,D1,D2, . . . ,DM ],
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FIGURE 1. A data-driven fMRI analysis flowchart showing single-subject fMRI data matrix decomposition through dictionary learning.

proposed the following model to learn shared Dc and subject-
specific dictionaries Dm, {m = 1, ..,M} for M number of
subjects as

min
D′,X′

M∑
m=1

‖Ym − DcXc − DmXm‖
2
F + η

∥∥∥D>mAm

∥∥∥2
F
,

sub.to.
∥∥xc,v∥∥0 ≤ ζc, ∥∥xm,v∥∥0 ≤ ζm, ∥∥d′k∥∥2 = 1, (2)

where Ym is the dataset from m-th subject, X′ = [X>c ,
X>1 ,X

>

2 , . . . ,X
>
M ]>, Xc ∈ RKc×V , Xm ∈ RKm×V , Dc ∈

RN×Kc , Dm ∈ RN×Km , d′k is the k-th column of D′, η is
the tuning parameter for controlling coherence, ζc/ζm are the
tuning parameters that control sparsity for common/subject-
specific sparse coefficient matrices Xc/Xs while xc,v/xm,v are
their v-th columns, and Am = [Dc,D1,Dm−1,Dm+1,DM ]
contains all dictionaries except the one that is currently being
updated.
The strategy adopted to solve (2) consisted of AM between

SC and DL stage, where Dc and Dm were kept fixed while
updating Xc and Xm and then Dc and Dm were updated while
keeping Xc and Xm fixed. Besides, the algorithm had an
internal optimization routine between Xc and Xm, where two
were updated in an alternating manner while keeping Dc and
Dm fixed, although no such optimization was used for Dc
and Dm. From experimental fMRI data, I observed that the
convergence of this internal optimization had a considerable
impact on this algorithm’s overall performance. Moreover,
when all other variables were kept fixed, Xc was updated
via OMP using the mean of common-level residuals Rc =
1/M

∑M
m=1Ym − DmXm as

Xc = argmin
Xc
‖Rc − DcXc‖

2
F sub.to.

∥∥xc,v∥∥0 ≤ ζc,
and on the other hand Xm was updated using the subject-level
residuals Rm = Ym − DcXc as

Xm = argmin
Xm
‖Rm − DmXm‖

2
F sub.to.

∥∥xm,v∥∥0 ≤ ζm,
and dictionary Dc was updated in a block-wise manner using
alternating directions method of multipliers (ADMM) that
solves the augmented Lagrangian function given as

L(Dc,Z,W) = ‖Rc − DcXc‖
2
F + η

∥∥∥Z>Ac

∥∥∥2
F

+µ ‖Dc − Z‖2F + tr[W>(Dc − Z)].

where Ac contains only subject-level dictionaries, Z is the
relaxation variable, W is the Lagrangian multiplier, and µ
is the tuning parameter. Similarly, an update for Dm can be
obtained by solving an identical function with respect to
Dm, Z, and W by using Rm, Am, Dm, and Xm. The use of
the dual AM approach to solving (2) is motivated by the
strategy used in conventional single-subject DL algorithms,
that is, to update atoms while preserving the sparsity patterns
in Xc and Xm [46]. Alternatively, as described in the next
section, a regularized rank-1 approximation where sparsity is
promoted can allow to update xkm/dm,k as one pair and x

k
c/dc,k

as another.

IV. METHODS
Throughout this paper, scalar values are denoted by small
italic or capital italic letters, vectors are represented by small,
and matrices by capital letters. Vectors attached with sub-
scripts and superscripts indicate the specific column and
row of the matrix, respectively. Subscript signified by the
letter c or m attached to any scalar value, vector, or matrix
corresponds to a common or subject-level feature. Subscript
p or i attached to the dictionary matrix indicate the DCT bases
dictionary or partial dictionary whose accessible columns
are based on the indices vector i. The error matrix attached
with a subscript k indicates the k-th error matrix for the
corresponding dictionary atom and SC row.
The dataset used in this paper is an open access data that is

publicly available [51], and for this reason, ethics approval
was not required from the Human Research Ethics of the
University of Melbourne.
For fMRI group analysis, a dataset Ym from m-th subject

that can be represented as a linear combination of a few
atoms from the common dictionary and the distinct (subject-
specific) dictionary is considered to form an oversimplified
model as

min
D′,X′

M∑
m=1

‖Ym − DcXc − DmXm‖
2
F+ζc ‖Xc‖1 + ζm ‖Xm‖1 ,

sub.to.
∥∥d′k∥∥2 = 1 (3)

where ‖X‖1 is the l1 norm of X given as
∑K

k=1
∑V

v=1 |x
k
v |.

According to the conventional dictionary update
approach [46], k-th dictionary atom/sparse code update for
subject-specific dictionary is based on rank-1 approximation

83382 VOLUME 10, 2022



M. U. Khalid: Sparse Group Bases for Multisubject fMRI Data

Algorithm 1 (A1) for Multi-Subject Dictionary Learning

Given:
Training set (Ym ∈ RN×V ,m = 1, . . . ,M )
Tuning parameters (ζc, ζs, λ, µ, α,Kpc,Kpm)
Constants (Kc,Km,T , τ = 0.01)

1. Initialize:
Dc,Dpc,Dm,Dpm with DCT bases
Bc,Bm with identity matrix I
Xc,Xs,Dc,t with matrix of zeros O

2. while
∥∥Dc − Dc,t

∥∥
F /

∥∥Dc,t
∥∥
F > τ

3. for t ← 1 to T

4. Dc,t ← Dc

5. Subject-specific dynamics estimation:
for m← 1 toM
Compute: Rm← Ym − DcXc
Estimate: Bm & Xm using A2 for sgBACES or
Estimate: Bm & Xm using A4 for rgBACESW
Compute: Dm← DpmBm
Compute: Rcm← Ym − DmXm

end for

6. Common dynamics estimation:
Compute: Rc← 1/M

∑M
m=1 Rcm

Estimate: Bc & Xc using A2 for sgBACES or
Estimate: Bc & Xc using A4 for rgBACESW
Compute: Dc← DpcBc

7. end for
8. end while

Output: Dc, Dm, Xc and Xm

of the error matrix of all signals Ek = Rm−
∑Km

i=1,i6=k dm,ix
i
m

when k-th atom/sparse code has been removed

{dm,k , xkm} =
∥∥∥Ek − dm,kxkm

∥∥∥2
F

and for common dictionary/sparse code update when error
matrix is Ek = Rc −

∑Kc
i=1,i6=k dc,ix

i
c it is

{dc,k , xkc} =
∥∥∥Ek − dc,kxkc

∥∥∥2
F

A. sgBACES
This subsection discusses the sgBACES algorithm, which
deduces its name from sparse group bases using adaptive
consistent sequential dictionary learning that can maximize
autocorrelation via quadratic error minimization.
A rank-1 matrix approximation problem for atom/SC

update has been formulated as a fusion of l1 norm adaptive

Algorithm 2 (A2) for Solving the Minimization Problem (4)

Given:
Subject or common level residual matrix (R ∈ RN×V )
Tuning parameters (ζ, λ, µ, α)
Dictionary, mixing, and sparse code matrix (Dp,B,X)
Constant (K )

1. Initialize:
D← DpB

2. for k ← 1 to K
3. xk ← 0
4. f 1i ← 0, f ni ← dn−1i , i = 1, ..,K , n = 2, ..,N
5. Z← 1

µ+2 (F
>F)−1F>DX

6. Ek ← R− DX+ FZ
7. x̃k ← d>k Ek
8. Estimate

◦
xk using A3

9. Estimate ζ kj for j = 1, . . . ,V:

if |
◦
xkj | > α|x̃kj |
ζ kj ←

ζ

|
◦
xkj |

else

ζ kj ←
ζ

|x̃kj |
(1+ |

◦
xkj |)

end if

10. xk ← sgn
(
x̃k
)
◦

(
|x̃k | − ζ k

2

)
+

11. c← sort
(∣∣∣D>p (dk + ηEkxk>)∣∣∣, descend)

12. is← {cl}λl=1
13. bk,is ← (D>p,isDp,is )

−1D>p,is

(
dk + ηEk,ir x

k>
ir

)
14. bk ← bk/

∥∥Dpbk
∥∥
2

15. dk ← Dpbk
16. end for

Output: B and X

penalization on the coefficient matrix (X), l0 constraint on the
representation matrix (B), and lag-1 error minimization for
the dictionary matrix (D). The l1 penalization results in a con-
sistent estimate of the atom/SC as a pair for common/distinct
updates. The l0 constraint provides the regularization of dic-
tionary atoms through sparse basis expansion. The lag-1 error
minimization allows producing atoms with maximum auto-
correlation. Whereas, the adaptive threshold for each entry
of the sparse code allows to control the shrinkage amount
in a multisample data-driven manner. Overall, this strategy
enables processing of the WB-MS-fMRI data within a rea-
sonable amount of computation time to acquire common and
distinct TCs and SMs that closely resemble the ground truth.

The lag-1 autocorrelations are considered by introducing
variables F ∈ RN×K and Z ∈ RK×V where each column
of F is the lag-1 version of its corresponding column in the
original dictionary, and its respective SC estimate is stored
in Z. Assuming that the currently updated dictionary atom
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Algorithm 3 (A3) for 2D Convolution Operation

Given:
Row vector x̃ of size V = {P × Q × R}, where p =
{1, . . . ,P}, q = {1, . . . ,Q}, r = {1, . . . ,R}, v =
{1, . . . ,Vr } with Vr number of voxels within r-th slice,
and P× Q represent the size of each of the R slices

1. Reshape x̃ ∈ RV to produce 3D arrays H, and
W ∈ RP×Q×R

2. Initialize Hr ∈ RP×Q with zeros and zero pad the
corners of W

3. For v-th voxel: hr (p, q) =
∑1

u=−1
∑1

w=−1
|Wr (p− u, q− w)|

4. Repeat step 3 for all Vr number of voxels
5. Repeat steps 2, 3, and 4 for all R slices

6. Reshape 3D array H to a row vector and store it in
◦
x

Output:
◦
x

has lower autocorrelation due to nuisance factors and over-
fitting by DCT bases and given that the transformed variates
are uncorrelated Z>F>FZ = I, the aim is to minimize the
quadratic error between the currently updated atom/SC row
and whole dictionary/SC matrix to produce an atom that has
maximum autocorrelation [14]. By considering these propo-
sitions, the penalized plus constrained minimization problem
for the rank-1 approximation of the full error matrix Ek is

{bk , xk ,Z} = arg min
bk ,xk ,Z

∥∥∥2Ek − Dpbkxk
∥∥∥2
F

+

∥∥∥Dpbkxk − 2FZ
∥∥∥2
F
+2

V∑
j=1

ζ kj |x
k
j |,

sub.to. ‖bk‖0 ≤ λ, Z>F>FZ = I,∥∥Dpbk
∥∥
2 = 1 (4)

where Ek is either based on a common level residual as
Rc −

∑Kc
i=1,i6=k dc,ix

i
c or a subject level residual as Rm −∑Km

i=1,i6=k dm,ix
i
m, Dp ∈ RN×Kp is the base dictionary [52],

which can be built using DCT basis or spline basis [53],
B ∈ RKp×K is the sparse RM [31] and bk is its k-th column,
K < Kp < N , ‖.‖0 counts the number of non-zero elements,
ζ kj is the sparsity parameter controlling every coefficient
value in k-th row, ζ k = ζ k1 , . . . , ζ

k
V , ζ is a scalar value pro-

vided to the algorithm, and I is the identity matrix. As l0 norm
is associated with a constrained least square problem, it is
posed and solved as a separate problem, and not made part
of the regularized problem while deriving xk [54]. Therefore,
sequential update for dk = Dpbk and xk and a block update
for Z can be obtained by solving the following for (4)

L(bk , xk ,Z) = 4E>k Ek + 2xk
>
b>k D

>
p Dpbkxk

− 4E>k Dpbkxk − 4Z>F>Dpbkxk

+ 2(µ+ 2)Z>F>FZ+ 2
V∑
j=1

ζ kj |x
k
j | (5)

Algorithm 4 (A4) for Solving the Minimization Problem (13)

Given:
Subject or common level residual matrix (R ∈ RN×V )
Tuning parameter (ζ )
Dictionary, mixing, and sparse code matrix (Dp,B,X)
Constants (ε = 10−5,K )

1. Initialize:
D← DpB

2. for k ← 1 to K
3. bo← 0, xk ← 0
4. Ek ← R− DX
5. x̃k ← d>k Ek
6. ζ kj ← ζ/|x̃kj | for j = 1, . . . ,V
7. Representation vector and sparse code estimation:

while ‖bk − bo‖2 / ‖bo‖2 > ε

bo← bk
xk ← sgn

(
b>k D

>
p Ek

)
◦

(
|b>k D

>
p Ek | −

ζ k

2

)
+

bk ← (D>p Dp)−1D>p
(
dk + ηEkxk

>
)

bk ← bk/
∥∥Dpbk

∥∥
2

end while
8. dk ← Dpbk
9. end for

Output: B and X

where µ is the Lagrangian multiplier. By solving (5) with
respect to xk , a closed-form solution for the sparse code row
is obtained as

4b>k D
>
p Dpbkxk − 4b>k D

>
p Ek − 4b>k D

>
p FZ

+ 2
V∑
j=1

ζ kj

d |xkj |

dxk
= 0

H⇒ xk = sgn
(
b>k D

>
p Ék

)
◦

(
|b>k D

>
p Ék | −

ζ k

2

)
+

(6)

where Ék = Ek + FZ, vector ζ k holds V different values,
(x)+, sgn(.), and ◦ define the component-wise max between
(0, x), the component-wise sign, and the Hadamard product,
respectively [55]. At this point, it is necessary to consider (4)
to solve for xk without penalization on coefficient matrix and
constraint on sparse representation matrix and denote it as
x̃k (the non-penalized estimate of the k-th coefficient row).
Hence, by reconsidering (5) and solving it with respect to x̃k ,
following solution is obtained

4b>k D
>
p Dpbk x̃k − 4b>k D

>
p Ek − 4b>k D

>
p FZ = 0

H⇒ x̃k = b>k D
>
p (Ek + FZ) (7)

Equation (7) becomes meaningful when the shrinkage
amount for each entry of the corresponding penalized sparse
code row xk is estimated. This is because, it was discussed
in [32] that simultaneously tuning all entries of ζ k can be
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FIGURE 2. A flowchart describing the proposed multi-subject dictionary learning framework.

a daunting task, and therefore it was considered a reliable
approach to compute it by utilizing x̃k as ζ k = ζ1V /|x̃k |,
where 1V is a vector of ones of length V . However, this
might be an inferior approach because it utilizes only one
data sample to estimate each threshold value, and due to this
reason, another optimization problem is imposed for finding
an optimal estimate of ζ k , which is given as

ζ k = argmin
ζ k
ζ1V /|x̃k | sub.to. ζ kj ≶≶ ζ/|x̃kj | (8)

where ≶≶ indicates much much smaller and much much
greater. Finding a closed-form solution from (8) is hard, and a
greedy approachmust be adopted. An intuitive strategywould
be to rely on quadratic or cubic power of |x̃k |, but it may
produce an estimate that is not the function of any additional
data samples and thus may not lead to an estimator with min-
imum variance [56]. Computation-wise, exploiting statistical
dependencies that exist in MR images among neighbouring
voxels is a viable approach to obtain a small amount of
shrinkage to significant entries with strong neighbourhood
and vice-versa. To elaborate, a convolution operation can be
used to sum up all the values in the 3×3 grid neighbourhood
of each entry of xk as ζ kj = ζ/

(∑8
l=1 |x̃

k
l | + |x̃

k
j |

)
, where∑8

l=1 |x̃
k
l | is the sum of absolute coefficient values of 8 voxels

in the neighbourhood of |x̃kj | [9], and |
◦
x jk | =

∑8
l=1 |x̃

k
l |+|x̃

k
j |.

Moreover, this approach may generally reduce the shrinkage
amount of all coefficient entries, even those with a weak
entry and a weak neighbourhood, which can be resolved by
imposing this condition |

◦
x jk | > α|x̃kj |, where α is a tuning

parameter. So the neighbourhood values of x̃kj are used in a

different way when it itself and its neighbourhood is weak as
ζ kj =

ζ

|x̃kj |

(
1+|

◦
x jk |
)
. After a fewmathematical manipulations,

it can be shown that a solution from (5) can be obtained
for bk as

4Dpbkxkxk
>
− 4Ekxk

>
− 4FZxk

>
= 0

H⇒ bk = (D>p Dp)−1D>p
(
dk + ηÉkxk

>
)

(9)

where η = 1/xkxk>. However, after taking into account the
l0 norm constraint that was imposed on bk in problem (4), its
solution can be reformulated as a constrained problem

bk = argmin
bk

∥∥∥dk + ηÉkxk> − Dpbk
∥∥∥2
2
,

sub.to. ‖bk‖0 ≤ λ (10)

This is a well-known NP-hard minimization problem, and
finding its optimal solution is impossible. However, greedy
approaches such as OMP can be used to find an approximate
solution. In this case, a solution based on thresholding the
correlation values [57] was opted for due to this approach’s
computational efficiency. For this purpose, finding the indices
set is, which contains the indices of λ number of bases in
Dp that are most correlated with dk + ηÉkxk is the central
idea. Once the indices vector c is found by sorting |D>p (dk +

ηÉkxk
>)| in descending order, the indices corresponding to

lambda-largest values can be extracted as is = {cj}λj=1, and
(9) can be rewritten as

bk,is = (D>p,isDp,is )
−1D>p,is

(
dk + ηÉkxk

>
)

(11)
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FIGURE 3. The top row in column (a) highlights the location and shape of 12 different spatial sources, whereas its bottom row shows the corresponding
temporal sources. Columns (b-e) highlight the first four spatiotemporal sources that are common to all subjects but have spatial and temporal
variability across subjects.

The computational burden can be further reduced by con-
sidering the non-zero entries of the coefficient row, which
leads to a reduced error matrix. This is because the pro-
motion of sparsity through the use of full error matrix Ék
only affects the sparse code, and preservation of sparsity by
deploying reduced error matrix Ék,ir is enough to obtain con-
sistent estimates of bk . Particularly, in order to obtain relevant
(non-zero) indices ir ‘‘any non-zero’’ operator is defined
as (R6=0) that selects for indices corresponding to non-zero
entries in xk as ir = R6=0xk to retain only its non-zero
entries as xkir = xkR6=0xk , and corresponding columns of the

error matrix as Ék,ir = Ék,R6=0xk . Thus, the computationally
efficient update for bk is obtained as

bk,is = (D>p,isDp,is )
−1D>p,is

(
dk + ηÉk,irx

k>
ir

)
(12)

Either one can pursue a different route and obtain the block
update for Z according to the approach that was carried out
in [14] using

Z = argmin
Z

∥∥2Ym − DpBX
∥∥2
F +

∥∥DpBX− 2FZ
∥∥2
F

+ 2
V∑
j=1

ζ kj |x
k
j |,

sub.to. ‖bk‖0 ≤ λ, Z>F>FZ = I,
∥∥Dpbk

∥∥
2 = 1

or one can get the block update of Z from (5) by employing
full dictionary and coefficient matrices instead of just cur-
rently updated atom/sparse code given as

4(µ+ 2)F>FZ− 4F>DpBX = 0

H⇒ Z =
1

µ+ 2

(
(F>F)−1F>DpBX

)
By taking everything into account, the multi-subject dic-

tionary learning framework that utilizes the proposed algo-
rithms is described in Algorithm 1. Here the main idea had
been to update the dictionary atom and its respective sparse

code row together, Dc,t represents the common dictionary
at t-th iteration of the algorithm, Rcm is the common-level
residual from m-th subject, I represents the identity matrix
that has been split according to the values Kc/Km, O stands
for a matrix of zeros, and T indicates the total number of
iterations. Unlike the dual AM approach used in ShSSDL,
the proposed multi-subject DL routine given in Algorithm 1
consists of a single AM approach between common dictio-
nary/sparse code (xkc/dc,k ) update stage and subject-specific
dictionary/sparse code (xkm/dm,k ) update stage, however, each
of these dictionary/sparse code set is updated as a pair. They
are updated using the estimates obtained from the minimiza-
tion problem (4) or (13), and their algorithms are given in
Algorithm 2 and 4, respectively. Both algorithms sequentially
iterate over all dictionary columns and corresponding sparse
code rows, where R is the generic term used for the matrix of
residuals. In order to adaptively estimate each voxel’s sparse
penalty, Algorithm 2 deploys the 2D convolution operation
via Algorithm 3.

B. rgBACESW
In contrast, a rather simplistic approach was adopted in the
rgBACESW algorithmwhere regular basis expansion is used,
the autocorrelation of dictionary atoms is not maximized,
and neighbouring voxel values are not utilized while esti-
mating the adaptive sparse penalty. Its algorithm is presented
as Algorithm 4. Here, dictionary and sparse code are still
updated as a pair, but there is no sparsity constraint on
the mixing matrix, and the prior spatiotemporal information
about fMRI data is not taken into account. It is based on the
following formulation [31], [32].

{bk , xk} = arg min
bk ,xk

∥∥∥Ek − Dpbkxk
∥∥∥2
F
+

V∑
j=1

ζ kj |x
k
j |,

sub.to.
∥∥Dpbk

∥∥
2 = 1 (13)
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FIGURE 4. a) and b) show the mean values of mcTC and mcSM, respectively over 100 trails for the first recovery scheme, i.e., when sources are
recovered with respect to GT-TCs, whereas c) and d) show the mean values of mcTC and mcSM, respectively over 100 trials when sources are retrieved
with respect to GT-SMs. T.std and S.std labels along the x-axis indicate the standard deviation for temporal and spatial noise, respectively.

Update for dk = Dpbk and xk as a pair obtained by solving
the Lagrangian expression for (13) is given by

xk = sgn
(
b>k D

>
p Ek

)
◦

(
|b>k D

>
p Ek | −

ζ k

2

)
+

bk = (D>p Dp)−1D>p
(
dk + ηEkxk

>
)

The dictionary learning process is presented in Fig. 2 showing
how to utilize sgBACES or its variant rgBACESW for multi-
subject fMRI analysis.

V. EXPERIMENTS
In this section, the performance of the proposed algorithm
is evaluated and compared to existing MS-DL algorithms
using two different multi-subject datasets. The comparative
study involved the sICA, CODL, ShSSDL, rgBACESW, and
sgBACES algorithms. The first was a synthetic fMRI dataset
for 8 subjects generated using Simtb toolbox [58]. The sec-
ond dataset was an experimental (motor task-based 3T MRI
unprocessed dataset) fMRI dataset acquired by randomly
selecting 24 subjects without taking into account their gender
and age from the quarter 3 release of the Human Connectome
Project (HCP) [59]. The resulting datasets consisted of young
adults (male and female) aged between 22 and 35 years,
except one subject whose age was over 36 years. Using both

datasets, the performance of all algorithms is compared in
terms of their ability to retrieve the common and subject-
specific spatiotemporal patterns.

A. MATLAB CODES
All algorithms are implemented in Matlab 2021b. The Mat-
lab implementation of sICA was based on the derivations
described in the spatial ICA paper [16] using fastICA [60]
package.1 The Matlab implementation of the dictionary part
of the CODL algorithm was performed according to the
derivations in the paper [26] whereas the Matlab code for
l1 norm-based sparse coding was obtained from the spams
toolbox (mexLasso).2 The Matlab code for ShSSDL was
taken from theGithub link provided by the authors,3 however,
the spams toolbox’s mexOMP was used for its sparse coding
instead ofOMP-Box of [61]. The simulation code (in the form
ofmat files) of sgBACES and its variant rgBACESWhas been
made available online at the time of this paper’s submission.4

All results, including the computation time reported in this

1https://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml
2http://thoth.inrialpes.fr/people/mairal/spams/downloads.html
3https://github.com/AsifIqbal8739/ShSSDL_2017
4https://codeocean.com/capsule/0579804/tree
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FIGURE 5. a) Over 100 trials and 12 noise instances mean of the std values for four correlation cases, and over 100 trials and 12 noise instances, the
correlation matrix between the ground truth TCs and SMs (TS) and the trained atoms and sparse code (DX) respectively obtained using atoms/SC from
b) ShSSDL and, c) sgBACES.

TABLE 2. Table of tested values for parameter selection for the synthetic
dataset.

paper for rgBACESW and sgBACES, are based on the mex
version of the mat files.

B. SYNTHETIC DATASET GENERATION
This section used the Simtb toolbox to generate a realistic
fMRI dataset for eight different subjects. Twelve distinct
temporal and spatial sources were used to obtain these eight
datasets, consisting of 230 timepoints with a repetition time
(TR = 2 secs) and 60 × 60 voxels, respectively. Out of
these twelve, five spatiotemporal sources were used for each
subject’s data generation, where four sources were common
to all subjects with some variability across subjects as shown
in Fig. 3, whereas one of the sources was unique to each sub-
ject’s dataset. To elaborate, there were 12 sources, four com-
mon to all subjects, while each of the remaining eight sources
is unique to each of the 8 subjects. Thus, temporal sources
TC ∈ R230×5 and reshaped spatial sources SM ∈ R5×3600

for M = 8 subjects have been created. For the common
spatial maps, the intersubject variability has been introduced
using parameters of the Gaussian distribution (mean (ω) and
standard deviation (std) (σ )) via random translation in x and
y direction (ω = 0, σ = 0.6), random rotation (ω = 0,
σ = 0.9), and random scaling (ω = 3, σ = 0.03). Similarly,
variability in temporal sources was added by varying the
HRF parameters according to the suggestions given in the
Simtb manual. The resulting common spatial and temporal
sources are shown in Fig. 3b-e. The first subject’s common

TABLE 3. Learning time (LT) on a ASUS RoG system with 48 GB 2400 MHz
RAM, Intel i7 -7700 HQ 8 CPUs, and Nvidia GTX1070 display.

and unique and all other unique spatiotemporal sources are
shown in Fig. 3a, which are also treated as the ground truth
TCs and SMs. By using these sources each subject’s dataset
was generated using a linear mixture model given as Ym =

(TCm+0T )(SMm+0s). Here randommatrices0T ∈ R230×5,
and0S ∈ R5×3600 were produced usingGaussian distribution
with (ω = 0, σ = nt ), and (ω = 0, σ = ns), respectively,
where nt and ns are the std values for temporal and spatial
noise. The generated datasets {Ym}

M
m=1 were passed on to all

participating algorithms for source retrieval.

C. SYNTHETIC DATASET DICTIONARY LEARNING
For an unbiased comparison, the parameter settings were kept
the same across all algorithmswherever possible. As the exact
number of sources for real fMRI data is not known, instead
of learning the same number of components as the number
of generating sources, more components were allowed to
be trained for the simulated dataset. In this regard, the total
number of components to be learned was set to 16 for sICA,
and CODL, and accordingly, the common dictionary size was
set to Kc = 12 and subject-specific to Km = 4 in the case of
ShSSDL, rgBACESW, and sgBACES. All dictionary learning
algorithms were iterated for 20 iterations, whereas CODL
was iterated for 60 iterations. After testing the initialization
scenario among data, random, and DCT bases for each algo-
rithm individually, each algorithm’s best-performing initial-
ization was provided. Concatenated data was used for CODL,
random initialization (as recommended in their paper) was
used for ShSSDL, and DCT bases were used for rgBACESW
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FIGURE 6. The recovered TCs and SMs by three different algorithms, a) sICA, b) ShSSDL, and c) sgBACES, along with the temporal and spatial correlation
values (ρ) for each source, and the sum of these correlation values shown at the top.

and sgBACES dictionary initialization. Sixteen components
were kept after both subject-wise and group-wise temporal
reduction using PCA in the case of sICA. For a fair com-
parison with other dictionary learning algorithms, temporal
reduction of the datasets was not performed for CODL, its
batch size was set to b = 3600, and its sparsity parameter
was set to β = 1.5. For ShSSDL, the sparsity parameter was
set to ζc = 2 and ζm = 1, internal iteration for sparse coding
between Xc and Xm was set to 3, incoherence penalty was
set to η = 2, and rest of its parameters that were provided
with the publicly shared algorithm were left untouched. For

rgBACESW, the sparsity parameter was set to ζc = 2 and
ζm = 14, tolerance parameter for mixing matrix convergence
was set to ε = 10−5, and number of DCT basesKpc/Kpm were
set to 120. In the case of sgBACES, the sparsity parameter
was set to ζc = 11 and ζm = 125, tuning parameter for
adaptive penalization was set to α = 1.5, Lagrangian mul-
tiplier was set to µ = 3, sparsity parameter for sparse basis
expansion was set to λ = 105, and number of DCT bases
Kpc/Kpm were set to 120. Although, α = 5 produced better
performance, the results showed more deviation from the
mean than those obtained with α = 1.5. Multiple parameter
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FIGURE 7. The effect of hyperparameters a) µ, b) α, and c) λ on the performance of sgBACES.

values were tried for all these tuning parameters, and the ones
that produced the best performance in terms of correlation
value between the retrieved and the ground truth TCs and
SMs were kept. The tested values of tuning parameters for
all algorithms are given in Table 2 for the dataset used in
this section, where the colon operator indicates a Matlab
increment by the given factor.

D. SYNTHETIC DATASET RESULTS
To establish that the proposed algorithm is robust and
consistent, multiple multi-subject datasets (each dataset con-
sisting of 8 subjects) of different noise intensities were gen-
erated. This was realized by varying the std values of spatial
and temporal noise i.e. nt = {0, 0.3, 0.6, 0.9} and ns =
{0.06, 0.12, 0.18}, and using their different combinations.
Twelve different combinations of these std values generated
12 different noise instances. In addition, the learning process
was repeated 100 times for each of the 12 noise instances.
Recovered TCs/SMswere obtained by correlating every algo-
rithm’s trained dictionary/sparse code pair with the ground
truth (GT) TCs/SMs pair and using the highest absolute cor-
relation coefficient values indices. The corresponding highest
correlation values were also saved as cTC/cSM. Specifically,
the correlation values were computed with respect to GT-TCs
or GT-SMs, thus producing two different recovery schemes.
The first recovery scheme computes cTCt/cSMt that consists
of finding those recovered TCs that are maximally correlated
with the GT-TCs and then obtaining their corresponding
recovered SMs, which is generally the convention in real
fMRI data analysis. Whereas the second scheme computes
cTCs/cSMs that are obtained by finding those recovered SMs
that are maximally correlated with the GT-SMs and then
obtaining their corresponding temporal components, which
in regards to real fMRI data analysis requires the knowledge
of functional brain networks that can be obtained from brain
atlases [34].

Moreover, for sICA and CODL, correlation values
were computed between GT-TCs/GT-SMs and the group-
level retrieved components. In the case of other algo-
rithms, common GT-TCs and GT-SMs were correlated with

common dictionary/sparse code, and unique GT-TCs and
GT-SMs were correlated with subject-specific dictionary/
sparse code. For each trial, the mean of the cTCt/cTCs
values (mcTCt/mcTCs) and the mean of the cSMt/cSMs
values (mcSMt/mcSMs) over all sources were saved and
their mean over all trials is plotted in Fig. 4 for all
12 noise instances. For all algorithms, the std values of
mcTCt/mcTCs/mcSMt/mcSMs over all trials was computed
and the mean of these std values over all noise instances is
shown in Fig. 5a. The sum of the highest correlation between
atoms of each dictionary (Dc-D9) and GT-TCs (t1-t12) and
the highest correlation between a coefficient row of each
sparse code matrix (Xc-X9) and GT-SMs (s1-s12) are saved,
and their mean is taken over all trials and all noise instances
to produce a correlation matrix in Fig. 5b and 5c for two
different algorithms.

From Fig. 4, it can be concluded that sgBACES performed
consistently better in terms of recovered TCs correlation with
the GT-TCs over all trials and appeared less sensitive to
high noise levels as it held to the highest correlation val-
ues almost over all noise instances and for both recovery
schemes, although higher TC correlations are observed for
the second recovery scheme. In contrast, SM correlations
for sgBACES were consistently higher for all noise instances
and both schemes, whereas, sICA was a runner-up in the first
recovery scheme and rgBACESW emerged as a runner-up in
the second scheme.

Fig. 5a could have been presented differently by using
error bars to show the deviations from the mean correlation
values across trails, however, visually, it did not lead to any
conclusive results. Therefore, the mean values were plotted
that revealed sICA across trials is more consistent with its
source recovery results than dictionary learning algorithms.
Among DL algorithms, however, sgBACES has shown the
lowest variance.

As described earlier in this section, Fig. 5b shows the
correlation matrix between the ground truth TCs and SMs
(ts) and the trained atoms and sparse code (DX), respectively,
by ShSSDL. Here it can be seen that the most correlated com-
ponents with first four common sources (ts1, ts2, ts3, ts4) were
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FIGURE 8. Correlation matrix between the MHRs and the trained dictionaries by a) ShSSDL, and b) sgBACES.

found in common dictionary/sparse code (DXc) whereas the
most correlated components with rest of the unique sources
(ts5-ts12) were found in subject-specific dictionary/sparse
code (DX1-DX8). This phenomenon is more highlighted in
the case of the proposed algorithm as shown in Fig. 5c, where
common dictionary/sparse code seems to be more uncor-
related with the subject-specific dictionaries/sparse codes
than Fig. 5b.

For component-wise visual inspection, a dataset was gen-
erated using nt = 1.2, ns = 0.12, and Matlab’s seed genera-
tor rng(1, ‘philox’). Both recovered TCs, and unthresholded
SMs, and their correlation values are shown in Fig. 6 for
sICA, ShSSDL, and sgBACES. The sum of cSMs and cTCs is
shown at the top for each of these three algorithms, where the
proposed algorithm, whose results are given in column (c),
has performed better in terms of SMs and TCs correlation
with the ground truth. The recovered spatiotemporal dynam-
ics by the proposed algorithm are less noisy while, at the same
time, TCs are smooth, and SMs are more specific compared
to the other two algorithms. The results from CODL and
rgBACESW are not shown due to lack of space. It is also
noteworthy that the best value of α = 5 was selected for
sgBACES in this case. Furthermore, for all algorithms, the
average computation time in seconds over all trials and noise
instances is given in Table 3.

E. EFFECT OF HYPERPARAMETERS
This section discusses the impact that sgBACES’ tuning
parameters µ, α, and λ have on dictionary performance.
The effect of these parameters has been highlighted in
Fig. 7, wherein all three sub-figures, the results are based
on 5 trials over all 12 noise instances, and for differ-
ent values of µ, α, and λ. The mean of mcTCt/mcTCs/

mcSMt/mcSMs values over 5 trials is saved as mmcTCt/

mmcTCs/mmcSMt/mmcSMs. In Fig. 7a the mean of
mmcTCt+mmcTCs over all noise instances is plotted against
different values of µ when values of α and λ were fixed at
5 and 105, respectively. It is obvious here that the autocorre-
lation of recovered TCs is maximized whenµ = 3. Similarly,
mean of mmcSMt + mmcSMs over all noise instances is
plotted against different values of α in Fig. 7b when µ is
fixed at its best value 3, and λ = 105. In this case, the

performance in terms of correlation increases slightly with
the increasing values of α before it falls when α exceeds 5.
In contrast, at µ = 3, and α = 5, the performance of
sgBACES in terms of mean of mmcTCt+mmcTCs continues
to rise dramatically as more number of bases are incorporated
until their effect becomes negligible after λ = 90 as shown
in Fig. 7c. Although, best correlation value is attained at
λ = 120, this would lead to regular basis expansion and a
case of overfitting. A phenomenon where reconstructed time
sources attempt to capture all temporal variability in the
training data resulting in low SNR and lower autocorrelations
at all lags.

F. MULTI-SUBJECT fMRI DATASET
In order to recover common and individual spatiotempo-
ral dynamics from multi-subject fMRI data, an unprocessed
motor task dataset of 24 randomly selected subjects was
obtained from the Q3 release of the HCP [59]. FunctionalMR
images of all 24 datasets were acquired using Siemens 3 Tesla
scanner equipped for gradient echo planar imaging (EPI) with
parameters: TR = 0.72 s, echo time (TE) = 33.1 ms, field of
view (FOV) = 208× 180 mm, flip angle (FA) = 52o, matrix
size = 104× 90, slice thickness = 2 mm with 72 contiguous
slices, and 2 mm isotropic voxels, echo spacing = 0.58 ms,
BW = 2290 Hz/Px, and 284 EPI volumes were collected
for each scan. More details on this data acquisition can be
found in [59].

This task was motivated by the experiments in [62] during
which visual cues were presented to the participants asking
them to tap their right or left fingers, or squeeze their right or
left toes, or move their tongue in order to map motor areas of
the brain. In each of the two runs, all subjects were presented
a 3 second visual cue followed by one of the 10 movement
types (hand movement 2 left 2 right, foot movement 2 left
2 right, and 2 tongue movements) that lasted for 12 seconds.
Besides, there were 3 fixation blocks per run that lasted
15 seconds each. Six different modeled HRF (MHR) were
generated by convolving the six task stimuli related to the
aforementioned movement types (left toe (LT), left finger
(LF), right toe (RT), right finger (RF), tongue (T), visual
cue (VC)) with canonical HRF to obtain GT-TCs.
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TABLE 4. Table of tested values for parameter selection for fMRI data.

G. fMRI DATASET PREPROCESSING
The image pre-processing of every subject’s fMRI dataset
was carried out in Matlab 2021b using SPM-12 [4] whose
pre-processing pipeline consisted of realignment, normal-
ization, spatial smoothing, masking, and temporal filtering.
All functional images were realigned to the first image in
order to correct for any head movements that may have
occurred during the course of the experiment. In the next step,
all images were spatially normalized to a standard Tailarach
template, resampled to 2 × 2 × 2 mm3 voxels, and spatially
smoothed using a 6×6×6 mm3 full-width at half-maximum
(FWHM) Gaussian kernel. Images were masked to remove
any data outside the scalp, and only those voxels were kept,
which exceeded a masking threshold. The 4-dimensional
datasets collected from the masked images were rearranged
and stored into a 2-dimensional matrix Ym to be used as a
whole brain’s dataset for the m-th subject. After carrying out
the steps mentioned above, the size of Y for each subject
was found to be 284 × 236115. From all datasets, low-
frequency trends were removed using a DCT basis set with
a cutoff of 1/150 Hz, and high-frequency fluctuations were
removed using FWHM of 2 s. Each column of Y obtained
after pre-processing was normalized to have zero mean and
unit variance for all subjects.

H. fMRI DATASET DICTIONARY LEARNING
After trying different numbers between 50 and 150, the total
number of components to be learned was set to 120 for sICA,
whereas, 70 for CODL, and accordingly 40 + 30 in the case
of ShSSDL, rgBACESW, and sgBACES, where Kc = 40 is
the common, and Km = 30 is the subject-specific dictionary
size. All dictionary learning algorithms were iterated for
15 iterations, whereas CODL was iterated for 30 iterations.
For dictionary initialization, the same approach as in the case
of the simulated dataset was followed. Concatenated data was
used for CODL, the common dictionary was initialized from
the first subject’s dataset, and subject-specific dictionaries
were initialized from their respective datasets (as recom-
mended in their paper) for ShSSDL, and DCT bases were
used for rgBACESW and sgBACES dictionary initialization.
For sICA, 120 components were kept after both subject-
wise, and group-wise temporal reduction had been performed
using PCA. For a fair comparison with other dictionary learn-
ing algorithms, temporal reduction of the datasets was not

performed in the case of CODL, and its batch size was set
to b = 236115, and its sparsity parameter was set to β = 6.
For ShSSDL, the sparsity parameter was set to ζc = 1 and
ζm = 2, internal iteration was set to 5, incoherence penalty
was set to η = 100, and the rest of the parameters that
were provided with the algorithm were left untouched. For
rgBACESW, the sparsity parameter was set to ζc = 25 and
ζm = 100, tolerance parameter was set to ε = 10−5, and
number of DCT basesKpc/Kpm were set to 60. For sgBACES,
the sparsity parameter was set to ζc = 75 and ζm = 250,
tuning parameter for adaptive penalization was set to α = 2,
Lagrangian multiplier was set to µ = 3, sparsity parameter
for sparse basis expansion was set to λ = 50, and num-
ber of DCT bases Kpc/Kpm were set to 60. Multiple values
were tried for all these tuning parameters, and the ones that
produced the best performance in terms of correlation value
between the retrieved and the ground truth TCs/SMs were
kept. The tested values of tuning parameters for all algorithms
are given in Table 4.

I. fMRI DATASET RESULTS
In the absence of ground truth for SMs, the first recovery
approach was adopted by considering the six MHRs. Accord-
ing to the initial model (3), the common spatiotemporal
dynamics are expected to be contained in Dc/Xc and subject-
specific dynamics in subject-level dictionary/sparse codes i.e.
D1/X1 − D24/X24. Therefore, it was anticipated to find the
components that are most correlated to six MHRs in the com-
mon dictionary Dc and its corresponding spatial maps in Xc.
This was confirmed by correlating the six MHRs with atoms
from dictionary D0 as well as subject-specific dictionaries
D1 −D24 and saving the highest correlation values as shown
in Fig. 8. This figure shows that the most correlated atoms
with MHRs are found in Dc for both a) ShSSDL and b)
sgBACES. It can be further observed from this correlation
matrix that even by selecting the best incoherence value for
ShSSDL, the tongue component was still found in subject-
specific dictionaries, whereas its leakage to other dictionaries
was to a lesser extent in the case of sgBACES. However, some
sgBACES’s components that were substantially correlated
with visual cue MHR were found in subject-specific dictio-
naries, yet it cannot be considered a complication because
sgBACES did not impose the strict condition of incoherence
among dictionaries.

As the first recovery approach was adopted, the recovered
TCs that were most correlated with MHRs were considered,
and their values were saved. In the case of sICA and CODL,
MHRs were correlated with the group-level retrieved TCs,
whereas in the case of the other three algorithms, the atoms
from the common dictionary were correlated with MHRs.
These correlation values are specified in Table 5 in rows
categorized as cTC, and their corresponding spatial maps
are shown in Fig. 9. This figure shows that sgBACES pro-
duced activation maps that are very specific and localized
to the motor and visual area of the brain compared to maps
recovered by the other three algorithms. Here, the SMs from
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FIGURE 9. Recovered spatial maps thresholded at p < 0.001 for the six MHRs by a) sICA, b) CODL, c) ShSSDL, and d) sgBACES. All spatial maps were
converted to Z-score, then absolute values of the Z-score were used to calculate the right-tailed p-values. Using these p-values, original spatial maps
were thresholded at p < 0.001, and their absolute value is plotted here.

rgBACESW are not shown due to lack of space. These results
are comparable to those reported in other papers for the same
dataset [36], [41]. Also, from Table 5 the highest correla-
tion values of recovered TCs with MHRs were observed for
sgBACES.

A similar strategy is adopted to analyze subject-specific
dictionaries as presented in [42]. They found ten well-
established resting-state networks (R1-R10) [63] that may be
present in every subject’s subject-specific sparse code matri-
ces irrespective of the similarity of the corresponding tempo-
ral dynamics. By considering the resting state network (RSN)
templates from [63] all subject-specific sparse codes X1-X24
were correlated with them, and the most correlated RSNs
were saved. By taking an absolute mean of these most corre-
lated RSNs from every subject, ten averaged SMs (R1-R10)
were generated, which are presented in Fig. 10. The ten aver-
aged SMs were then correlated with the RSN templates, and
the most correlated values were saved and given in Table 5 in
the rows highlighted by cSM. This table shows that the SMs
recovered by sgBACES produced the highest correlation with
the RSN templates.

Overall, the mean of all correlation values between the
recovered spatiotemporal dynamics and the ground truth is
highest for sgBACES. It is also noticeable from Fig. 10 that

all spatial maps retrieved by sgBACES show better similar-
ity with RSN templates, specifically the default mode net-
work (R4), where all its activated areas are more prominent
than those recovered by other algorithms.

Furthermore, the convergence rate of dictionary learn-
ing as a function of algorithm iterations is presented in
Fig. 11a, which shows all algorithms converged around
the fifteenth iteration with some fluctuations exhibited by
ShSSDL and rgBACESW.Over the course of learning, the six
values obtained by keeping the maximum correlation values
between the recovered TCs from the common dictionary and
MHRs (cTCt) were summed and plotted in Fig. 11b as a
function of algorithm iterations. In this plot, sgBACES is
shown to perform consistently better than all other algorithms
except for some initial iterations when sICA’s correlation is
superior. Similarly, the ten values obtained by keeping the
maximum correlation values between the averaged recovered
SMs from subject-specific sparse code matrices, and RSN
templates (cSMs) were summed and plotted in Fig. 11c as
a function of algorithm iterations. Once more, sgBACES
performed consistently better than the rest of the algorithms,
other than some initial iterations.

In Fig. 12a, the effect of taking the atom’s autocorrelation
into account is shown as a function of µ. Here, the mean of
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FIGURE 10. Thresholded spatial maps at p < 0.001 obtained from a) RSN templates, b) CODL, c) ShSSDL, and d) sgBACES.

FIGURE 11. As a function of algorithm iterations, a) dictionary convergence, b) sum of highest correlations between common dictionary atoms and
MHRs, and c) sum of highest correlations between averaged subject-specific sparse codes and RSN templates.

the sum of highest correlations between common dictionary
atoms andMHRs and the sum of highest correlations between
averaged subject-specific sparse codes and RSN templates

is plotted against the different values of µ. It shows that,
at µ = 2, the maximum autocorrelation of atoms is achieved.
However, µ = 3 was selected because cTC values for all
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TABLE 5. cTC) Highest absolute correlation values between the MHRs and atoms, a) from the group-level dictionary in the case of sICA and CODL, and
b) from the common dictionary in the case of the other three algorithms. cSM) Highest absolute correlation values between the RSN templates and
a) SMs from the group-level coefficient matrix in the case of sICA and CODL, b) averaged RSNs obtained using the subject-specific SC of the other three
algorithms.

FIGURE 12. a) Effect of µ values on the mean of the sum of TC and SM
correlations, b) Spatial map recovered by rgBACESW thresholded at
p < 0.001 for visual cue MHR.

6 MHRs were found to be above 0.80 at this particular value
of µ. After trying many different combinations of sparsity
parameters for rgBACESW, in addition to what is mentioned
in Table 4, the best spatial map recovered by rgBACESW for
visual cue MHR is shown in Fig. 12b. It is clear from this
figure that rgBACESW’s spatial map is not comparable to
other algorithms.

The computation time consumed by all algorithms to
process 24 whole-brain fMRI datasets to learn group-level
dynamics is given in Table 3.

VI. CONCLUSION
A new dictionary learning algorithm for multi-subject fMRI
data analysis is presented in this paper, which outperformed
spatial ICA and existing MS dictionary learning algorithms.
The effectiveness of sgBACES is demonstrated using syn-
thetic and motor-task based fMRI datasets. Its performance
was found to be consistent across trials and datasets, and
robust against high noise levels. Although, it is slightly expen-
sive in terms of computation time compared to CODL and
ShSSDL, it produced spatial maps and temporal dynamics
that were less noisy and closer to the ground truth. Instead
of the columns, it enforced sparsity on the rows of the
sparse code matrix, and column sparsity was still found to
be recoverable. Thus, it can simultaneously learn common
and distinct neural activity without requiring a separate sparse
code stage. The improvements exhibited by the sgBACES
algorithm for MS-fMRI analysis can be attributed mainly to
i) the incorporation of fMRI data’s prior information in the
minimization problem, ii) the estimation of dictionary/sparse
code as a pair, and iii) utilization of the DCT bases through
sparse mixing matrix.

It is essential to highlight some concerns regarding the pro-
posed MS-DL algorithm, such as tuning parameter selection,
memory limitations, and numerical cost. The memory con-
straints limited the number of subjects I could incorporate in
the experimental fMRI study. The analysis on the ASUS RoG
systemwith 48 GB RAM could only be performed on 24 sub-
jects while 95% memory was consumed. In contrast, there
was no bound in the simulation study, and many more sub-
jects than just 8 could have been considered, but this would
have resulted in increased simulation cost in terms of time,
because the experiments had to be repeated 100 times over
12 noise instances. The selection of seven tuning parameters
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can be a formidable task, but some guidance and direction
have been provided in this paper with the help of a simulation
study and experimental fMRI data.

The computational cost of the proposed algorithm can be
further reduced in the future by considering online learning
that is scalable in both matrix dimensions [64]. One can
also consider using a correlation-based DL algorithm with
a weighted least square approach that during each iteration
updates only a subset of dictionary atoms resulting in a
computationally efficient online learning [65].
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