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ABSTRACT Rough set theory was introduced by Pawlak, in 1982, as a methodology to discover structural
relationships within imprecise and uncertain data. This theory has been generalized using the idea of
neighborhood systems to be more efficient to get rid of uncertainty and deal with a wide scope of practical
applications. Motivated by this idea, in this work, we initiate novel generalized rough set models using the
concepts of ‘‘maximal left neighborhoods and ideals.’’ Their basic features are studied and the relationships
between them are revealed. The main merits of these models, as we prove, are first to preserve almost
all major properties of approximation operators with respect to the Pawlak model. Second, they keep the
monotonic property, which leads to an efficient evaluation of the uncertainty in the data, and third, these
models enlarge the knowledge gotten from the information systems because they minimize the vagueness
regions more than some previous models. We complete this manuscript by applying the proposed approach
to analyze educational data and illustrate its role to improve the obtained classifications of objects and show
the great performance of the present approach against other ones. Elucidative examples that support the
obtained results are provided.

INDEX TERMS Approximation space, ideals, maximal left neighborhoods, rough set.

I. INTRODUCTION
Uncertainty is presented in several practical decision-making
issues and real-life problems due to the incompleteness
of knowledge. There are various approaches to handle
uncertainty in these areas such as rough set theory, introduced
by Pawlak [28], [29]. Rough set theory contributed to solve
some issues such as characterization of a subset in terms of
attribute values, finding dependency between the attributes,
reduction of superfluous attributes, determining the most
important attributes and decision rule generation.

This theory has rapidly progressed since it was advent
in several directions; one of them is to reproduce the
approximations operators and their related notions from
neighborhoods generated by different binary relations instead
of equivalence classes inspired by equivalence relations.
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This trend started by Yao [35], [36] in the nineties of the
last century. He defined new approximation spaces induced
from the right and left neighborhoods with respect to an
arbitrary relation. These approximation spaces relax the
strict condition of an equivalence relation and expand the
scope of applications. On the other hand, these models lead
to evaporate some properties of the original model given
by Pawlak as well as the measures of accuracy exceed
one in some cases, which requires some treatments [11].
Following the pioneeringworks of Yao, many researchers and
scholars interested in the rough set theory introduced novel
sorts of neighborhood systems and applied to establish new
generalized rough set paradigms. Among these neighborhood
systems, minimal left neighborhoods and minimal right
neighborhoods [2], intersection of minimal left and right
neighborhoods [25], and maximal neighborhoods [4], [9].

Mareay [27] familiarized four kinds of approximation
spaces using new neighborhoods defined by the equality
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relation between Yao’s neighborhoods. Further types of
these sorts of neighborhoods were established in [8].
Recently, Al-shami [3] discussed new approximation spaces
inspired by containment neighborhoods which are defined
using the inclusion relation. Then, he and Ciucci [6]
initiated novel rough set models induced from subset
neighborhoods which are defined using the superset relation.
These neighborhoods and their approximation spaces were
exploited to rank suspected individuals of COVID-19. In fact,
many characterizations of Pawlak’s models are still valid
by these rough paradigms [3], [6]; especially, those are
related to the properties of Pawlak’s approximation operators
and the property of monotonicity. These rough paradigms
were debated under arbitrary binary relations. In contrast,
investigation of some rough paradigms was conducted under
specific type of relations such as quasiorder [31] and
similarity [32].

In 2013, Kandi et al. [23] proposed a new technique to
study approximation spaces by using ‘‘ideal structure’’ to
high the accuracy measure which refers to the complete-
ness of knowledge. This development helps to deal with
uncertainty and get rid of obstacles in decision-making
problems as shown in [13], [22], [33]. Topological spaces
are another significant approach to investigate approximation
operators [5], [10], [24], [26], [37]. These approaches
applied with ideal to construct new rough set models.
In this trend, Hosny [14]–[16] has recently displayed
topological approximation spaces via ideals. Afterwards,
Güler et al. [12] studied rough approximations induced from
containment neighborhoods via ideals. Another technique
of studying rough set paradigms is presented by Abu-
Donia [1]. He explored approximation spaces using a class
of binary relations instead of one binary relation. This idea
was exploited to build the previous approximation spaces in
terms of finite number of binary relations and ideals; see, for
example [7], [18], [20].

The aim of this study is to provide another interesting and
novel version of approximation spaces induced from ‘‘max-
imal left neighborhoods and ideals.’’ The main motivation
for us to introduce and study this version is to improve the
approximation operators and increase the accuracy values
of subsets, and to preserve as many properties as possible
of Pawlak’s approximation spaces and the property of
monotonicity.

This article has been structured in the following manner.
Section 2 presents an overview of rough neighborhood
systems and ideals, which is required for the understanding
of this work. The aim of Section 3 is to establish four rough
set models and discuss their essential characterizations. The
currently proposed models are compared in Section 4 and
shown their advantages in comparison with the previous
models. After that, a numerical example is shown that the
current approach can be effectively applied to some practical
issues in Section 5. Finally, Section 6 concludes with a
summary of this manuscript and a suggestion for further
research.

II. PRELIMINARIES
This section is dedicated to mentioning the main notions and
ideas that will be used in the coming sections.
Definition 1 [21]: We call a non-empty family P of the

power set of U 6= φ an ‘‘ideal’’ over U if it is closed under
finite unions and subsets. That is, V ,W ∈ P ⇒ V ∪W ∈ P ,
and if V ∈ P then every subset of V is a member of P .
Definition 2 [22]: Assume that P1,P2 are ideals on a set

U 6= φ. The smallest collection generated byP1,P2, denoted
by P1 ∨ P2, is defined as

P1 ∨ P2 = {G ∪ F : G ∈ P1,F ∈ P2}. (1)

Proposition 3 [22]: The collection P1 ∨ P2 has the
following properties.
(1) P1 ∨ P2 6= φ,
(2) V ∈ P1 ∨ P2, W ⊆ V ⇒ W ∈ P1 ∨ P2,
(3) V ,W ∈ P1 ∨ P2 ⇒ V ∪W ∈ P1 ∨ P2.
That is, the collection P1 ∨ P2 is an ideal on U .
Definition 4 [28]: Consider δ as an equivalence relation

on a universe U and let [ν]δ be the equivalence class
containing ν. It can be associated each subsetV ofU with two
other sets called ‘‘lower approximation apr(V )’’ and ‘‘upper
approximation apr(V )’’ given as follows.

apr(V ) = {ν ∈ U : [ν]δ ⊆ V }. (2)

apr(V ) = {ν ∈ U : [ν]δ ∩ V 6= φ}. (3)

The main characterizations of these approximation opera-
tors are listed in the following.
(L1) apr(V c) = [apr(V )]c, where V c is the complement of

V .
(L2) apr(U ) = U .
(L3) apr(φ) = φ.
(L4) apr(V ) ⊆ V .
(L5) apr(V ∩W ) = apr(V ) ∩ apr(W )
(L6) apr(V ∪W ) ⊇ apr(V ) ∪ apr(W )
(L7) V ⊆ W ⇒ apr(V ) ⊆ apr(W ).
(L8) apr(apr(V )) = apr(V ).
(L9) apr(V ) ⊆ apr(apr(V )).
(U1) apr(V c) = [apr(V )]c.
(U2) apr(U ) = U .
(U3) apr(φ) = φ.
(U4) V ⊆ apr(V ).
(U5) apr(V ∪W ) = apr(V ) ∪ apr(W ).
(U6) apr(V ∩W ) ⊆ apr(V ) ∩ apr(W ).
(U7) V ⊆ W ⇒ apr(V ) ⊆ apr(W ).
(U8) apr(apr(V )) = apr(V ).
(U9) apr(apr(V )) ⊆ apr(V ).
Definition 5 [28]: Let δ be an equivalence relation on

a universe U . Then accuracy measure AccR(V ) of any
nonempty subset V is defined as follows: AccR(V ) =
|apr(V )|
|apr(V )| . If δ1 and δ2 are equivalence relations on a
universe U such that δ1 ⊆ δ2. Then the approximations
induced from these relations have the monotonic property if
Accδ2 (V ) ≤ Accδ1 (V ).
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Definition 6 [4], [9], [35], [36]: Take δ as an arbitrary
binary relation on a finite set U 6= φ and let ν ∈ U . Then,

1) the right neighborhood of ν, denoted by Nr (ν) is given
by Nr (ν) = {λ ∈ U : (ν, λ) ∈ δ}.

2) the left neighborhood of ν, denoted by Nl(ν) is given
by Nr (ν) = {λ ∈ U : (λ, ν) ∈ δ}.

3) θr (ν) is the union of all right neighborhoods containing
ν.

4) θl(ν) is the union of all left neighborhoods containing
ν.

5) θu(ν) = θr (ν) ∪ θl(ν).
Theorem 7 [4]: Let U be a universal set and δ1, δ2 be

two binary relations on U . If δ1 ⊆ δ2, then θ1l(ν) ⊆ θ2l(ν),
∀ν ∈ U .
Definition 8 [4]: Let δ be a binary relation on a nonempty

set U . For any subset φ 6= V ⊆ U . The lower and upper
approximations, boundary regions, accuracy and roughness
of V induced from maximal left neighborhoods according to
δ are defined respectively by:

Lδ(V ) = {ν ∈ U : θl(ν) ⊆ V }. (4)

U δ(V ) = {ν ∈ U : θl(ν) ∩ V 6= φ}. (5)

Bndδδ (V ) = U δ(V )− Lδ(V ). (6)

Accδ(V ) = |
Lδ(V ) ∩ V
U δ(V ) ∪ V

|. (7)

Roughδ(V ) = 1− Accδ(V ). (8)

Definition 9 [4]: Let δ be a binary relation on a nonempty
set U . For any subset φ 6= V ⊆ U . The lower and upper
approximations, boundary regions, accuracy and roughness
of V induced from maximal union neighborhoods according
to δ are defined respectively by:

Lowδ(V ) = {ν ∈ U : θu(ν) ⊆ V }. (9)

Uppδ(V ) = {ν ∈ U : θu(ν) ∩ V 6= φ}. (10)

Boundaryδδ(V ) = Uppδ(V )− Lowδ(V ). (11)

Accuracyδ(V ) = |
Lowδ(V ) ∩ V
Uppδ(V ) ∪ V

|. (12)

Roughnessδ(V ) = 1− Accuracyδ(V ). (13)

Definition 10 [19]: Let δ and P be binary relation and
ideal on a set U 6= φ. The first form of generalized approxi-
mations (lower and upper), boundary-regions, accuracy and
rough values of a nonempty subset V of U produced by
maximal union neighborhoods according to δ and P are
respectively given by

Low1
Pδ(V ) = {ν ∈ U : θu(ν) ∩ V c

∈ P}. (14)

Upp1Pδ(V ) = {ν ∈ U : θu(ν) ∩ V 6∈ P}. (15)

Boundary1Pδ(V ) = Upp1Pδ(V )− Low1
Pδ(V ). (16)

Accuracy1Pδ(V ) =
|Low1

Pδ(V ) ∩ V |

|Upp1Pδ(V ) ∪ V
|. (17)

Roughness1Pδ(V ) = 1− Accuracy1Pδ(V ). (18)

Definition 11 [19]: Let δ and P be binary relation
and ideal on a set U 6= φ. The second form of
generalized approximations (lower and upper), boundary-
regions, accuracy and rough values of a nonempty subset V
of U produced by maximal union neighborhoods according
to δ and P are respectively given by

Low2
Pδ(V ) = {ν ∈ A : θu(ν) ∩ V c

∈ P}. (19)

Upp2Pδ(V ) = V ∪ Upp1Pδ(V ). (20)

Boundary2Pδ(V ) = Upp2Pδ(V )− Low2
Pδ(V ). (21)

Accuracy2Pδ(V ) =
|Low2

Pδ(V )|

|Upp2Pδ(V )|
, Upp2Pδ(V ) 6= φ.

(22)

Roughness2Pδ(V ) = 1− Accuracy2Pδ(V ). (23)

Definition 12 [19]: Let δ and P be binary relation and
ideal on a set U 6= φ. The third form of generalized approxi-
mations (lower and upper), boundary-regions, accuracy and
rough values of a nonempty subset V of U produced by
maximal union neighborhoods according to δ and P are
respectively given by

Low3
Pδ(V ) = ∪{θu(ν) : θu(ν) ∩ V c

∈ P}. (24)

Upp3Pδ(V ) = (Low3
Pδ(V c))c. (25)

Boundary3Pδ(V ) = Upp3Pδ(V )− Low3
Pδ(V ). (26)

Accuracy3Pδ(V ) =
|Low3

Pδ(V ) ∩ V |

|Upp3Pδ(V ) ∪ V
|. (27)

Roughness3Pδ(V ) = 1− Accuracy3Pδ(V ). (28)

Definition 13 [19]: Let δ and P be binary relation and
ideal on a set U 6= φ. The fourth form of generalized
approximations (lower and upper), boundary-regions, accu-
racy and rough values of a nonempty subset V ofU produced
by maximal union neighborhoods according to δ and P are
respectively given by

Upp4Pδ(V ) = ∪{θu(ν) : θu(ν) ∩ V 6∈ P}. (29)

Low4
Pδ(V ) = (Upp4Pδ(V c))c. (30)

Boundary4Pδ(V ) = Upp4Pδ(V )− Low4
Pδ(V ). (31)

Accuracy4Pδ(V ) =
|Low4

Pδ(V ) ∩ V |

|Upp4Pδ(V ) ∪ V |
. (32)

Roughness4Pδ(V ) = 1− Accuracy4Pδ(V ). (33)

III. SOME NEW ROUGH SET MODELS INDUCED FROM
θl (ν)-NEIGHBORHOODS AND IDEALS
In this section, we display four types of rough set models
defined by maximal left neighborhoods and ideals under any
arbitrary relation. Their main features and characterizations
are scrutinized and some counterexamples are provided to
clarify the obtained facts and relationships.

A. FIRST TECHNIQUE TO GENERATE GENERALIZED
ROUGH SETS VIA IDEALS
Definition 14: Let δ and P be binary relation and ideal on

a set U 6= φ. The first form of generalized approximations
(lower and upper), boundary-regions, accuracy and rough
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values of a nonempty subsetV ofU produced bymaximal left
neighborhoods according to δ andP are respectively given by

L1Pδ(V ) = {ν ∈ U : θl(ν) ∩ V c
∈ P}. (34)

U1
Pδ(V ) = {ν ∈ U : θl(ν) ∩ V 6∈ P}. (35)

Bnd1Pδ(V ) = U1
Pδ(V )− L1Pδ(V ). (36)

Acc1Pδ(V ) =
|L1Pδ(V ) ∩ V |

|U1
Pδ(V ) ∪ V

|. (37)

Rough1Pδ(V ) = 1− Acc1Pδ(V ). (38)

Proposition 15: Let P and T be ideals and δ be a binary
relation on U such that V ,W ⊆ U Then,
(1) U1

Pδ(φ) = φ.
(2) V ⊆ W ⇒ U1

Pδ(V ) ⊆ U1
Pδ(W ).

(3) U1
Pδ(V ∩W ) ⊆ U1

Pδ(V ) ∩ U1
Pδ(W ).

(4) U1
Pδ(V ∪W ) = U1

Pδ(V ) ∪ U1
Pδ(W ).

(5) U1
Pδ(V ) = (L1Pδ(V c))c.

(6) If V ∈ P, then U1
Pδ(V ) = φ.

(7) If P ⊆ T , then U1
T δ(V ) ⊆ U1

Pδ(V ).
(8) If P = P(U ), then U1

Pδ(V ) = φ.
(9) U1

(P∩T )δ(V ) = U1
Pδ(V ) ∪ U1

T δ(V ).
(10) U1

(P∨T )δ(V ) = U1
Pδ(V ) ∩ U1

T δ(V ).
Proof:

(1) U1
Pδ(φ) = {ν ∈ U : θl(ν) ∩ φ 6∈ P} = φ.

(2) Let ν ∈ U1
Pδ(V ). Then, θl(ν) ∩ V 6∈ P .

Since V ⊆ W and P is an ideal. It follows that
θl(ν) ∩ W 6∈ P. Therefore, ν ∈ U1

Pδ(W ). Hence,
U1

Pδ(V ) ⊆ U1
Pδ(W ).

(3) It directly comes from (2).
(4) U1

Pδ(V ) ∪ U1
Pδ(W ) ⊆ U1

Pδ(V ∪ W ) according to
(2). Let ν ∈ U1

Pδ(V ∪ W ). Then, θl(ν) ∩ (V ∪ W ) 6∈
P . It follows that ((θl(ν) ∩ V ) ∪ (θl(ν) ∩ W )) 6∈ P .
Therefore, θl(ν)∩V 6∈ I or θl(ν)∩W 6∈ P , which gives
ν ∈ U1

Pδ(V ) or ν ∈ U1
Pδ(W ). Then, ν ∈ U1

Pδ(V ) ∪
U1

Pδ(W ).Thus,U1
Pδ(V∪W ) ⊆ U1

Pδ(V )∪U1
Pδ(W ).

Hence, U1
Pδ(V ∪W ) = U1

Pδ(V ) ∪ U1
Pδ(W ).

(5) (L1Pδ(V c))c = ({ν ∈ U : θl(ν) ∩ V ∈ P})c = {ν ∈
U : θl(ν) ∩ V 6∈ P} = U1

Pδ(V ).
(6) The proof is straightforward by Definition 14.
(7) Let ν ∈ U1

T δ(V ). Then, θl(ν)∩V 6∈ T . Since P ⊆ T .
So, θl(ν) ∩ V 6∈ P. Therefore, ν ∈ U1

Pδ(V ). Hence,
U1

T δ(V ) ⊆ U1
Pδ(V ).

(8) The proof is straightforward by Definition 14.
(9) U1

(P∩T )δ(V ) = {ν ∈ U : θl(ν) ∩ V 6∈ P ∩ T }
= {ν ∈ U : θl(ν)∩V 6∈ P} or {ν ∈ U : θl(ν)∩V 6∈ T }
= {ν ∈ U : θl(ν)∩V 6∈ P} ∪ {ν ∈ U : θl(ν)∩V 6∈ T }
= U1

(P∪T )δ(V ).
(10) U1

(P∨T )δ(V ) = {ν ∈ U : θl(ν) ∩ V 6∈ P ∨ T }
= {ν ∈ U : θl(ν) ∩ V 6∈ P ∪ T }
= {ν ∈ U : θl(ν) ∩ V 6∈ P} and {ν ∈ U : θl(ν) ∩ V 6∈
T }
= {ν ∈ U : θl(ν)∩V 6∈ P} ∩ {ν ∈ U : θl(ν)∩V 6∈ T }
= U1

(P∩T )δ(V ).
Proposition 16: Let P and T be ideals and δ be a binary

relation on U such that V ,W ⊆ U Then,
(1 ) L1Pδ(U ) = U .
(2) V ⊆ W ⇒ L1Pδ(V ) ⊆ L1Pδ(W ).

(3) L1Pδ(V ) ∪ L1Pδ(W ) ⊆ L1Pδ(V ∪W ).
(4) L1Pδ(V ∩W ) = L1Pδ(V ) ∩ L1Pδ(W ).
(5) L1Pδ(V ) = (U1

Pδ(V c))c.
(6) If V c

∈ P, then L1Pδ(V ) = U .
(7) If P ⊆ T , then L1Pδ(V ) ⊆ L1T δ(V ).
(8) If P = P(U ), then L1Pδ(V ) = U .
(9) L1(P∩T )δ(V ) = L1Pδ(V ) ∩ L1T δ(V ).

Proof:
(1) L1Pδ(U ) = {ν ∈ U : θl(ν) ∩ φ ∈ P} = U .
(2) Let ν ∈ L1Pδ(V ). Then, θl(ν) ∩ V c

∈ P . Since
W c
⊆ V c and P is an ideal. So, θl(ν) ∩ W c

∈

P. Therefore, ν ∈ L1Pδ(W ). Hence, L1Pδ(V ) ⊆
L1Pδ(W ).

(3) It directly comes from (2).
(4) L1Pδ(V )∩ L1Pδ(W ) ⊇ L1Pδ(V ∩W ) according to (2).

Let ν ∈ L1Pδ(V )∩L1Pδ(W ). Then, θl(ν)∩V c
∈ P and

θl(ν)∩W c
∈ P. It follows that (θl(ν)∩(V c

∪W c)) ∈ P .
So, (θl(ν) ∩ (V ∩W )c) ∈ P. Therefore, ν ∈ L1Pδ(V ∩
W ). Thus, L1Pδ(V )∩L1Pδ(W ) ⊆ L1Pδ(V∩W ).Hence,
L1Pδ(V ) ∩ L1Pδ(W ) = L1Pδ(V ∩W ).

(5) (U1
Pδ(V c))c = ({ν ∈ U : θl(ν) ∩ V c

6∈ P})c = {ν ∈
U : θl(ν) ∩ V c

∈ P} = L1Pδ(V ).
(6) The proof is straightforward by Definition 14.
(7) Let ν ∈ L1Pδ(V ). Then, θl(ν)∩V c

∈ P. Since P ⊆ T .
It follows that θl(ν)∩V c

∈ T . Therefore, ν ∈ L1Pδ(V ).
Hence, L1Pδ(V ) ⊆ L1T δ(V ).

(8) The proof is straightforward by Definition 14.
(9) L1(P∩T )δ(V ) = {ν ∈ U : θl(ν) ∩ V c

∈ P ∩ T }
= {ν ∈ U : θl(ν)∩V c

∈ P} and {ν ∈ U : θl(ν)∩V c
∈

T }
= {ν ∈ U : θl(ν)∩V c

∈ P}∩{ν ∈ U : θl(ν)∩V c
∈ T }

= L1Pδ(V ) ∩ L1T δ(V ).
With the help of the next counterexample, we elucidate that

the converse of (2), (6), (7) and (8) of Proposition 15 and
Proposition 16 is generally false. Also, we illustrate that the
inclusion relations of (3) in Proposition 15 and Proposition 16
are proper, in general.
Example 17:
(i) Let

U = {a, b, c, d},
P = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

and

δ = {(a, c), (b, a), (c, a), (c, b), (d, b), (d, c)}

be a binary relation defined on U thus
θl(a) = {a, d}, θl(b) = {b, c}, θl(c) = {b, c, d} and
θl(d) = {a, c, d}. For (2), take
(a) V = {a} and W = {d}; then, U1

Pδ(V ) = φ

andU1
Pδ(W ) = {a, c, d}.Therefore,U1

Pδ(V ) ⊆
U1

Pδ(W ), but V * W .
(b) V = {b} and W = {a, c, d}; then, L1Pδ(V ) =
{b} and L1Pδ(W ) = U . Therefore, L1Pδ(V ) ⊆
L1Pδ(W ), but V * W .

(ii) Let U = {a, b, c, d}, T = {φ, {a}},P = {φ, {d}} and
δ = {(a, a), (b, b), (c, c)} be a binary relation defined
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on U; thus, θl(a) = {a}, θl(b) = {b}, θl(c) = {c} and
θl(d) = φ.
(1) For (6), take

(a) V = {a, d}; then, U1
T δ(V ) = φ. Therefore,

U1
T δ(V ) = φ, but V 6∈ T .

(b) V = {b, c}; then, L1T δ(V ) = U . Therefore,
L1T δ(V ) = U , but V c

6∈ T .
(2) For (7), take

(a) V = {a, d}; then, U1
Pδ(V ) = {a} and

U1
T δ(V ) = φ. Therefore, U1

T δ(V ) ⊆
U1

Pδ(V ), but P * T .
(b) V = {b, c}; then, L1Pδ(V ) = {b, c, d}

and L1T δ(V ) = U . Therefore, L1Pδ(V ) ⊆
L1T δ(V ), but P * T .

(3) For (8), take
(a) V = {a, d}; then, U1

T δ(V ) = φ, but
T 6= P(U ).

(b) V = {b, c}; then, L1T δ(V ) = U , but
T 6= P(U ).

(iii) Let U = {a, b, c, d},P = {φ, {d}} and δ =

1 ∪ {(a, b), (a, c), (a, d)} thus, θl(a) = U , θl(b) =
{a, b}, θl(c) = {a, c} and θl(d) = {a, d}. For (3), take
V = {a, d},W = {b, c} and
(a) V ∩ W = φ; then, U1

Pδ(V ) = U ,U1
Pδ(W ) =

{a, b, c} and U1
Pδ(V ∩ W ) = φ. Therefore,

U1
Pδ(V ) ∩ U1

Pδ(W ) = {a, b, c} 6= φ =

U1
Pδ(V ∩W ).

(b) V∪W = U; then, L1Pδ(V ) = {d},L1Pδ(W ) = φ
and U1

Pδ(V ∪ W ) = U . Therefore, L1Pδ(V ) ∪
L1Pδ(W ) = {d} 6= U = L1Pδ(V ∪W ).

Remark 18: Some properties of Pawlak are not satisfy by
this type as we show in the following.
(i) Considering Example 17 (i), take

(1) V = {a}; then, U1
Pδ(V ) = φ. Hence,

V * U1
Pδ(V ).

(2) V = {b, c, d}; then, L1Pδ(V ) = U . Hence,
L1Pδ(V ) * V .

(3) V = U; then, U1
Pδ(U ) = {a, c, d}. Hence,

U1
Pδ(U ) 6= U .

(4) V = φ; then, L1Pδ(φ) = {b}. Hence,
L1Pδ(φ) 6= φ.

(ii) Considering Example 17 (iii), take
(1) V = {b, c}; then, U1

Pδ(V ) = {a, b, c} and
U1

Pδ(U1
Pδ(V )) = U . Hence, U1

Pδ(V ) 6=
U1

Pδ(U1
Pδ(V )).

(2) V = {a, d}; then, L1Pδ(V ) = {d} and
L1Pδ(L1Pδ(V )) = φ. Hence, L1Pδ(V ) 6=
L1Pδ(L1Pδ(V )).

(iii) Example 19: Let U = {a, b, c, d},P = {φ, {a}}
and δ = 1∪{(a, b), (a, c), (a, d), (b, a), (b, c), (b, d)}.
Then θl(a) = θl(b) = U , θl(c) = {a, b, c} and
θl(d) = {a, b, d}. It is clear that, if
(1) V = {c}; then, U1

Pδ(V ) = {a, b, c} and
L1Pδ(U1

Pδ(V )) = {c}. Hence, U1
Pδ(V ) *

L1Pδ(U1
Pδ(V )).

(2) V = {a, b, d}; then, L1Pδ(V ) = {d} and
U1

Pδ(L1Pδ(V )) = {a, b, d}. Hence,

U1
Pδ(L1Pδ(V )) * L1Pδ(V ).

Proposition 20: Let P be an ideal and δ be a binary
relation on U such that V is a nonempty subset of U . Then,
1) 0 ≤ AccPδ1 (V ) ≤ 1.
2) AccPδ1 (U ) = 1.
Proof: We prove (1) only and (2) is straightforward.

Since, φ 6= V ⊆ U , then UPδ
1 (V ) ∪ V 6= φ. Hence, φ ⊆

LPδ1 (V )∩V ⊆ UPδ
1 (V )∪V . Therefore, 0 ≤ |LPδ1 (V )∩V | ≤

|UPδ
1 (V ) ∪ V |. So, 0 ≤

|LPδ1 (V )∩V |
|UPδ

1 (V )∪V |
≤ 1. It means that,

0 ≤ AccPδ1 (V ) ≤ 1.
Theorem 21: Let P and T be ideals and δ be a binary

relation on U such that P ⊆ T . Then,
(1) Bnd1T δ(V ) ⊆ Bnd1Pδ(V ).
(2) Acc1Pδ(V ) ≤ Acc1T δ(V ).
(3) Rough1T δ(V ) ≤ Rough1Pδ(V ).

Proof:
(1) Let ν ∈ Bnd1T δ(V ). Then, ν ∈ U1

T δ(V ) − L1T δ(V ).
So, ν ∈ U1

T δ(V ) and ν ∈ (L1T δ(V ))c. Hence, ν ∈
U1

Pδ(V ) and ν ∈ (L1Pδ(V ))c according to (7) of
Propositions 15 and 16. It follows that ν ∈ Bnd1Pδ(V ).
Therefore, Bnd1T δ(V ) ⊆ Bnd1Pδ(V ).

(2) Acc1Pδ(V ) = |
L1Pδ(V )∩V
U1

Pδ(V )∪V
| ≤ |

L1T δ(V )∩V
U1

T δ(V )∪V
| =

Acc1T δ(V ).
(3) Straightforward by (2).
Remark 22: In Theorem 21 the converse of (1) and (2) is

generally false. To validate this consider Example 17 (ii) and
let V = {b, c}. Then,
(1) Bnd1T δ(V ) = φ ⊆ φ = Bnd1Pδ(V ), but P * T .
(2) Acc1Pδ(V ) = 1 ≤ 1 = Acc1T δ(V ), but P * T .
(3) Rough1T δ(V ) = 0 ≤ 0 = Rough1Pδ(V ), but P * T .
Theorem 23: Let φ 6= V ⊆ U , P be an ideal on U and

δ1, δ2 be two binary relations on U . If δ1 ⊆ δ2, then
(1) U1

Pδ1 (V ) ⊆ U1
Pδ2 (V ).

(2) L1Pδ2 (V ) ⊆ L1Pδ1 (V ).
(3) Bnd1Pδ1 (V ) ⊆ Bnd1Pδ2 (V ).
(4) Acc1Pδ2 (V ) ≤ Acc1Pδ1 (V ).
(5) Rough1Pδ1 (V ) ≤ Rough1Pδ2 (V ).

Proof:
(1) Let ν ∈ U1

Pδ1 (V ). Then, θ1l(ν) ∩ V 6∈ P. Since
θ1l(ν) ⊆ θ2l(ν) (by Theorem 7 [4]). It follows that
θ2l(ν) ∩ V 6∈ P. Thus, ν ∈ U1

Pδ2 (V ). Hence,
U1

Pδ1 (V ) ⊆ U1
Pδ2 (V ).

(2) Let ν ∈ L1Pδ2 (V ). Then, θ2l(ν) ∩ V c
∈ P. Since

θ1l(ν) ⊆ θ2l(ν) (by Theorem 7 [4]). It follows that
θ1l(ν) ∩ V c

∈ P. Thus, ν ∈ L1Pδ1 (V ). Hence,
L1Pδ2 (V ) ⊆ L1Pδ1 (V ).

(3) Let ν ∈ Bnd1Pδ1 (V ). Then, ν ∈ U1
Pδ1 (V )−L1Pδ1 (V ).

So, ν ∈ U1
Pδ1 (V ) and ν ∈ (L1Pδ1 (V ))c. Thus,

ν ∈ U1
Pδ2 (V ) and ν ∈ (L1Pδ2 (V ))c according to

(1) and (2). Hence, ν ∈ Bnd1Pδ2 (V ). Therefore,
Bnd1Pδ1 (V ) ⊆ Bnd1Pδ2 (V ).
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(4) Acc1Pδ2 (V ) = |
L1Pδ2 (V )∩V
U1

Pδ2 (V )∪V
| ≤ |

L1Pδ1 (V )∩V
U1

Pδ1 (V )∪V
| =

Acc1Pδ1 (V ).
(5) Straightforward by (4).
To show that the inclusion and less than relation in

Theorem 23 is proper, we provide the next example.
Example 24: Let

U = {a, b, c, d},

P = {φ, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {b, c, d}}
δ1 = 1∪{(a, b), (b, a)} and δ2=1∪{(a, b), (b, a), (c, a),

(a, c)}

be two relations defined on U; thus,

θ1l(a) = θ1l(b) = {a, b}, θ1l(c) = {c}, θ1l(d) = {d},

θ2l(a) = θ2l(b) = θ2l(c) = {a, b, c} and θ2l(d) = {d}.

Take
(i) V = {a, d}; then,

(1) U1
Pδ1 (V ) = {a, b} 6= {a, b, c} = U1

Pδ2 (V ).
(2) Acc1Pδ1 (V ) = 2

3 6=
1
2 = Acc1Pδ2 (V ).

(3) Rough1Pδ1 (V ) = 1
3 6=

1
2 = Rough1Pδ2 (V ).

(ii) V = {b, c}; then, L1Pδ1 (V ) = {c, d} 6= {d} =
L1Pδ2 (V ).

B. SECOND TECHNIQUE TO GENERATE GENERALIZED
ROUGH SETS VIA IDEALS
Definition 25: Let δ and P be binary relation and ideal on

a setU 6= φ. The second form of generalized approximations
(lower and upper), boundary-regions, accuracy and rough
values of a nonempty subset V of U produced by maximal
union neighborhoods according to δ and P are respectively
given by

L2Pδ(V ) = {ν ∈ A : θl(ν) ∩ V c
∈ P}. (39)

U2
Pδ(V ) = V ∪ U1

Pδ(V ). (40)

Bnd2Pδ(V ) = U2
Pδ(V )− L2Pδ(V ). (41)

Acc2Pδ(V ) =
|L2Pδ(V )|

|U2
Pδ(V )|

,U2
Pδ(V ) 6= φ. (42)

Rough2Pδ(V ) = 1− Acc2Pδ(V ). (43)

Proposition 26: Let P and T be ideals and δ be a binary
relation on U such that V ,W ⊆ U Then,
(1) V ⊆ U2

Pδ(V ) equality holds if V = φ or U .
(2) V ⊆ W ⇒ U2

Pδ(V ) ⊆ U2
Pδ(W ).

(3) U2
Pδ(V ) ⊆ U2

Pδ(U2
Pδ(V )).

(4) U2
Pδ(V ∩W ) ⊆ U2

Pδ(V ) ∩ U2
Pδ(W ).

(5) U2
Pδ(V ∪W ) = U2

Pδ(V ) ∪ U2
Pδ(W ).

(6) U2
Pδ(V ) = (L2Pδ(V c))c.

(7) If V ∈ P, then U2
Pδ(V ) = V .

(8) If P ⊆ T , then U2
T δ(V ) ⊆ U2

Pδ(V ).
(9) If P = P(U ), then U2

Pδ(V ) = V .
(10) U2

(P∩T )δ(V ) = U2
Pδ(V ) ∪ U2

T δ(V ).
(11) U2

(P∨T )δ(V ) = U2
Pδ(V ) ∩ U2

T δ(V ).
Proof: Similar to Proposition 15.

Proposition 27: Let P and T be ideals and δ be a binary
relation on U such that V ,W ⊆ U Then,
(1) L2Pδ(V ) ⊆ V equality holds if V = φ or U .
(2) V ⊆ W ⇒ L2Pδ(V ) ⊆ L2Pδ(W ).
(3) L2Pδ(L2Pδ(V )) ⊆ L2Pδ(V ).
(4) L2Pδ(V ) ∪ L2Pδ(W ) ⊆ L2Pδ(V ∪W ).
(5) L2Pδ(V ∩W ) = L2Pδ(V ) ∩ L2Pδ(W ).
(6) L2Pδ(V ) = (U2

Pδ(V c))c.
(7) If V c

∈ P, then L2Pδ(V ) = V .
(8) If P ⊆ T , then L2Pδ(V ) ⊆ L2T δ(V ).
(9) If P = P(U ), then L2Pδ(V ) = V .

(10) L2(P∩T )δ(V ) = L2Pδ(V ) ∩ L2T δ(V ).
Proof: Similar to Proposition 16.

Remark 28: (i) It follows from Example 17 (i) that the
converse of (2), (7) and (9) of Proposition 26 and
Proposition 27 is generally false.
(a) For (2), take

(1) V = {a} and W = {d}; then, U2
Pδ(V ) =

{a} ⊆ {a, c, d} = U2
Pδ(W ), but V * W .

(2) V = {a, b, c} and W = {b, c, d}; then,
L2Pδ(V ) = {b} ⊆ {b, c, d} = L2Pδ(W ), but
V * W .

(b) For (7), take
(1) V = {a, c, d}; then, U2

Pδ(V ) = V , but
V 6∈ P.

(2) V = {b}; then, L2Pδ(V ) = V , but V c
6∈ P.

(c) For (9), take
(1) V = {a, c, d}; then, U2

Pδ(V ) = V , but
P 6= P(U ).

(2) V = {b}; then, L2Pδ(V ) = V , but P 6= P(U ).
(ii) It can be seen from Example 17 (ii) that the converse

of (8) of Proposition 26 and Proposition 27 is generally
false. To show that, let
(1) V = {a, d}. Then, U2

T δ(V ) = V ⊆ V =
U2

Pδ(V ), but P * T .
(2) V = {b, c}; then, L2Pδ(V ) = V ⊆ V =

L2T δ(V ), but P * T .
(iii) Example 17 (iii) illustrates that the inclusion relations

of (3) and (4) of Proposition 26 and Proposition 27 are
proper.
(a) For (3), take

(1) V = {b, c}; then, U2
Pδ(V ) = {a, b, c}

and U2
Pδ(U2

Pδ(V )) = U . Therefore,
U2

Pδ(V ) = {a, b, c} 6= U =

U2
Pδ(U2

Pδ(V )).
(2) V = {a, d}; then, L2Pδ(V ) = {d} and

L2Pδ(L2Pδ(V )) = φ. Therefore, L2Pδ(V ) =
{d} 6= φ = L2Pδ(L2Pδ(V )).

(b) For (4), take V = {a, d},B = {b, c} and
(1) V ∩ W = φ. Hence, U2

Pδ(V ) = U and
U2

Pδ(W ) = {a, b, c}. Therefore, U2
Pδ(V ) ∩

U2
Pδ(W ) = {a, b, c} 6= φ = U2

Pδ(V ∩W ).
(2) V ∪ W = U . Hence, L2Pδ(V ) = {d}

and L2Pδ(W ) = φ. Therefore, L2Pδ(V ) ∪
L2Pδ(W ) = {d} 6= U = L2Pδ(V ∪W ).
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Remark 29: Some properties given in the first type are not
hold by this type as we show in the following.
(i) Considering Example 17 (i), take

(1) V = {a} ∈ P; then, U2
Pδ(V ) = V . Hence,

if V ∈ P ; U2
Pδ(V ) = φ.

(2) V c
= {a} ∈ P; then, L2Pδ(V ) = V . Hence,

if V c
∈ P ; L2Pδ(V ) = U .

(ii) Considering Example 17 (ii), take

(1) T = P(U ) and V = {a, d}; then, U2
T δ(V ) = V .

Hence, if T = P(U ); U2
T δ(V ) = φ.

(2) T = P(U ) and V = {b, c}; then, L2T δ(V ) = V .
Hence, if T = P(U ); L2T δ(V ) = U .

Remark 30: Some properties of Pawlak are not satisfy by
this type as we show in the following. In Example 19, take

(1) V = {c}; then, U2
Pδ(V ) = {a, b, c} and

L2Pδ(U2
Pδ(V )) = {c}. Therefore, U2

Pδ(V ) =
{a, b, c} * {c} = L2Pδ(U2

Pδ(V )).
(2) V = {a, b, d}; then, L2Pδ(V ) = {d} and

U2
Pδ(L2Pδ(V )) = {a, b, d}. Therefore,

U2
Pδ(L2Pδ(V )) = {a, b, d} * {d} = L2Pδ(V ).

Proposition 31: Let P be an ideal and δ be a binary
relation on U such that V is a nonempty subset of U . Then,

1) 0 ≤ AccPδ2 (V ) ≤ 1.
2) AccPδ2 (U ) = 1.

Proof: It is similar to Proposition 20.
Theorem 32: Let P and T be ideals and δ be a binary

relation on U such that P ⊆ T . Then,

(1) Bnd2T δ(V ) ⊆ Bnd2Pδ(V ).
(2) Acc2Pδ(V ) ≤ Acc2T δ(V ).
(3) Rough2T δ(V ) ≤ Rough2Pδ(V ).

Proof: Similar to the proof of Theorem 21.
Remark 33: In Theorem 32 the converse of (1) and (2) is

generally false as illustrated in (ii) of Example 17. To show
that let V = {b, c}. Then,
(1) Bnd2T δ(V ) = φ ⊆ φ = Bnd2Pδ(V ), but P * T .
(2) Acc2Pδ(V ) = 1 ≤ 1 = Acc2T δ(V ), but P * T .
(3) Rough2T δ(V ) = 0 ≤ 0 = Rough2Pδ(V ), but P * T .
Theorem 34: Let φ 6= V ⊆ U , P be an ideal on U and

δ1, δ2 be two binary relations on U . If δ1 ⊆ δ2, then

(1) U2
Pδ1 (V ) ⊆ U2

Pδ2 (V ).
(2) L2Pδ2 (V ) ⊆ L2Pδ1 (V ).
(3) Bnd2Pδ1 (V ) ⊆ Bnd2Pδ2 (V ).
(4) Acc2Pδ2 (V ) ≤ Acc2Pδ1 (V ).
(5) Rough2Pδ1 (V ) ≤ Rough2Pδ2 (V ).

Proof: Similar to Theorem 23.
Remark 35: In Theorem 34 the inclusion and less than

relation is proper as showed in Example 24. To validate that
let V = {a, d}. Then,

(1) U2
Pδ1 (V ) = {a, b, d} 6= U = U2

Pδ2 (V ).
(2) Bnd2Pδ1 (V ) = {b} 6= {b, c} = Bnd2Pδ2 (V ).
(3) Acc2Pδ1 (V ) = 2

3 6=
1
2 = Acc2Pδ2 (V ).

(4) Rough2Pδ1 (V ) = 0.3 6= 0.5 = Rough2Pδ2 (V ).

C. THIRD TECHNIQUE TO GENERATE GENERALIZED
ROUGH SETS VIA IDEALS
Definition 36: Let δ and P be binary relation and ideal on

a set U 6= φ. The third form of generalized approximations
(lower and upper), boundary-regions, accuracy and rough
values of a nonempty subset V of U produced by maximal
union neighborhoods according to δ and P are respectively
given by

L3Pδ(V ) = ∪
ν∈U
{θl(ν) : θl(ν) ∩ V c

∈ P}. (44)

U3
Pδ(V ) = (L3Pδ(V c))c. (45)

Bnd3Pδ(V ) = U3
Pδ(V )− L3Pδ(V ). (46)

Acc3Pδ(V ) =
|L3Pδ(V ) ∩ V |

|U3
Pδ(V ) ∪ V

|. (47)

Rough3Pδ(V ) = 1− Acc3Pδ(V ). (48)

Proposition 37: Let P and T be ideals and δ be a binary
relation on U such that V ,W ⊆ U Then,
(1) V ⊆ W ⇒ L3Pδ(V ) ⊆ L3Pδ(W ).
(2) L3Pδ(V ) ∪ L3Pδ(W ) ⊆ L3Pδ(V ∪W ).
(3) L3Pδ(V ∩W ) ⊆ L3Pδ(V ) ∩ L3Pδ(W ).
(4) L3Pδ(V ) = (U3

Pδ(V c))c.
(5) If P ⊆ T , then L3Pδ(V ) ⊆ L3T δ(V ).
(6) L3(P∩T )δ(V ) = L3Pδ(V ) ∩ L3T δ(V ).

Proof:
(1) Let V ⊆ W and ν ∈ L3Pδ(V ). Then, ∃ y ∈ U such

that ν ∈ θl(y) ∩ V c
∈ P. Hence, ν ∈ θl(y) ∩W c

∈ P
(by W c

⊆ V c, and the properties of an ideal). Thus,
ν ∈ L3Pδ(W ). Therefore, L3Pδ(V ) ⊆ L3Pδ(W ).

(2) It is directly obtained by (1).
(3) It is directly obtained by (1).
(4) It immediately follows from Definition 36.
(5) Let P ⊆ T and ν ∈ L3Pδ(V ). Then, ∃ y ∈ U such that

ν ∈ θl(y) ∩ V c
∈ P ⊆ T . So, ν ∈ L3T δ(V ), and hence

L3Pδ(V ) ⊆ L3T δ(V ).
(6) L3(P∩T )δ(V ) = ∪

ν∈U
{θl(ν) : θl(ν) ∩ V c

∈ P ∩ T }
= ( ∪

ν∈U
{θl(ν) : θl(ν) ∩ V c

∈ P}) and
( ∪
ν∈U
{θl(ν) : θl(ν) ∩ V c

∈ T })
= ( ∪

ν∈U
{θl(ν) : θl(ν) ∩ V c

∈ P}) ∩ ( ∪
ν∈U
{θl(ν) : θl(ν) ∩

V c
∈ T })

= L3Pδ(V ) ∩ L3T δ(V ).
Proposition 38: Let P and T be ideals and δ be a binary

relation on U such that V ,W ⊆ U Then,
(1) V ⊆ W ⇒ U3

Pδ(V ) ⊆ U3
Pδ(W ).

(2) U3
Pδ(V ∩W ) ⊆ U3

Pδ(V ) ∩ U3
Pδ(W ).

(3) U3
Pδ(V ) ∪ U3

Pδ(W ) ⊆ U3
Pδ(V ∪W ).

(4) U3
Pδ(V ) = (L3Pδ(V c))c.

(5) If P ⊆ T , then U3
T δ(V ) ⊆ U3

Pδ(V ).
(6) U3

(P∩T )δ(V ) = U3
Pδ(V ) ∪ U3

T δ(V ).
Proof:

(1) Let V ⊆ W . Thus, W c
⊆ V c, and L3Pδ(W c) ⊆

L3Pδ(V c) (by (1) in Proposition 37). So, (L3Pδ(V c))c ⊆
(L3Pδ(W c))c. Consequently, U3

Pδ(V ) ⊆ U3
Pδ(W ).

(2) The proof directly follows by (1).
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(3) The proof directly follows by (1).
(4) The proof is straightforward by Definition 36.
(5) Let P ⊆ T and ν ∈ U3

T δ(V ). Then, ν ∈

(L3T δ(V c))c ⊆ (L3Pδ(V c))c, (by (5) in Proposi-
tion 37). Thus, ν ∈ (L3Pδ(V c))c = U3

Pδ(V ).
Therefore, U3

T δ(V ) ⊆ U3
Pδ(V ).

(6) U3
(P∩T )δ(V ) = (L3(P∩T )δ(V c))c

= (L3Pδ(V c) ∩ L3T δ(V c))c (by (6) in Proposition 37)
= (L3Pδ(V c))c ∪ (L3T δ(V c))c

= U3
Pδ(V ) ∪ U3

T δ(V ).
Remark 39: (1) In Proposition 37 and Proposition 38

the converse of (1) is generally false. To elucidate that
consider Example 17 (i) and let
(a) V = {a} and W = {d}; then, U3

Pδ(V ) = φ

and U3
Pδ(W ) = {a, d}. Therefore, U3

Pδ(V ) ⊆
U3

Pδ(W ), but V * W .
(b) V = {b} and W = {a, c, d}; then, L3Pδ(V ) =
{b, c} and L3Pδ(W ) = U . Therefore, L3Pδ(V ) ⊆
L3Pδ(W ), but V * W .

(2) In Proposition 37 and Proposition 38 the inclusion
relation of (2) is proper as (iii) of Example 17 shows.
For this, let V = {a, d} and W = {b, c}. Then
(a) U3

Pδ(V ) = U ,U3
Pδ(W ) = W and U3

Pδ(V ∩
W ) = φ. Therefore, U3

Pδ(V ) ∩ U3
Pδ(W ) =

W 6= φ = U3
Pδ(V ∩W ).

(b) L3Pδ(V ) = V ,L3Pδ(W ) = φ and L3Pδ(V ∪
W ) = U . Therefore, L3Pδ(V )∪L3Pδ(W ) = V 6=
U = L3Pδ(V ∪W ).

(3) Example 40: Let U = {a, b, c, d},P = {φ, {a}} and
δ = {(a, a), (a, b), (a, d), (b, b), (b, d), (c, a), (c, b),
(d, a)}. Then θl(a) = θl(c) = U , θl(b) = {a, b, c} and
θl(d) = {a, c, d}. To show that the inclusion relations
of (3) of Proposition 37 and Proposition 38 are proper,
take
(a) V = {a, c, d},W = {a, b, c} and V ∩ W =

{a, c}; then, L3Pδ(V ) = V ,L3Pδ(W ) = W
and L3Pδ(V ∩ W ) = φ. Therefore, L3Pδ(V ) ∩
L3Pδ(W ) = {a, c} 6= φ = L3Pδ(V ∩W ).

(b) V = {b},W = {d} and V ∪ W = {b, d}; then,
U3

Pδ(V ) = V ,U3
Pδ(W ) = W and U3

Pδ(V ∪
W ) = U . Therefore, U3

Pδ(V ) ∪ U3
Pδ(W ) =

{b, d} 6= U = U3
Pδ(V ∪W ).

(4) The converse of (5) in Proposition 37 and Proposi-
tion 38 is generally false. To elucidate this consider (ii)
of Example 17 and let
(a) V = {a, d}; then, U3

Pδ(V ) = {a, d} and
U3

T δ(V ) = {d}. Therefore, U3
T δ(V ) ⊆

U3
Pδ(V ), but P * T .

(b) V = {b, c}; then, L3Pδ(V ) = {b, c} and
L3T δ(V ) = {a, b, c}. Therefore, L3Pδ(V ) ⊆
L3T δ(V ), but P * T .

Remark 41: Some properties in the second type are not
satisfy by this type as we show in the following.
(i) Considering Example 17 (i), take

(1) V = {a}; then, U3
Pδ(V ) = φ. Hence, V *

U3
Pδ(V ).

(2) V = {b, c, d}; then, L3Pδ(V ) = U . Hence,
L3Pδ(V ) * V .

(3) V = U; then, U3
Pδ(U ) = {a, d}. Hence,

U3
Pδ(U ) 6= U .

(4) V = φ; then, L3Pδ(φ) = {b, c}. Hence,
L3Pδ(φ) 6= φ.

(ii) Example 42: Let U = {a, b, c, d},P = {φ, {a}} and
δ = {(a, a)} be a binary relation defined on U; thus,
θl(a) = {a} and θl(b) = θl(c) = θl(d) = φ. Take
(1) V = U; then, L3Pδ(U ) = {a}. Hence,

L3Pδ(U ) 6= U .
(2) V = φ; then, U3

Pδ(φ) = {b, c, d}. Hence,
U3

Pδ(φ) 6= φ.
Remark 43: Some properties given in the firrst/second

type are not satisfy by this type as we show in the following.
In Example 42, take
(1) V = {b, c, d}; then, V c

∈ P and L3Pδ(V ) = {a}.
Hence, if V c

∈ P ; L3Pδ(V ) = U or V .
(2) V = {a} ∈ P; then, U3

Pδ(V ) = {b, c, d}. Hence,
if V ∈ P ; U3

Pδ(V ) = φ or V .
(3) V = {b, c, d} and P = P(U ); then, L3Pδ(V ) = {a}.

Hence, if P = P(U ); L3Pδ(V ) = U , or V .
(4) V = {a} and P = P(U ); then, U3

Pδ(V ) = {b, c, d}.
Hence, if P = P(U ); U3

Pδ(V ) = φ, or V .
Proposition 44: Let P be an ideal and δ be a binary

relation on U such that V is a nonempty subset of U . Then,
1) 0 ≤ AccPδ3 (V ) ≤ 1.
2) AccPδ3 (U ) = 1.
Proof: It is similar to Proposition 20.

Theorem 45: Let P and T be ideals and δ be a binary
relation on U such that P ⊆ T . Then,
(1) Bnd3T δ(V ) ⊆ Bnd3Pδ(V ).
(2) Acc3Pδ(V ) ≤ Acc3T δ(V ).
(3) Rough3T δ(V ) ≤ Rough3Pδ(V ).

Proof: Similar to Theorem 21.
Remark 46: It follows from (ii) of Example 17 that the

converse of (1) and (2) of Theorem 45 is generally false.
To demonstrate that let V = {b, c}. Then,
(1) Bnd3T δ(V ) = {d} ⊆ {d} = Bnd3Pδ(V ), but P * T .
(2) Acc3Pδ(V ) = 2

3 ≤
2
3 = Acc3T δ(V ), but P * T .

(3) Rough3T δ(V ) = 1
3 ≤

1
3 = Rough3Pδ(V ), but P * T .

The approximations operators, boundary-regions, mea-
sures of accuracy and roughness induced from the this type
do not have monotonicity. The next example illustrates this
fact.
Example 47: Let U = {a, b, c, d, e, f , g},P = {φ, {a}}

and δ1, δ2 be two relations on U where δ1 = 1 ∪

{(a, c), (c, a), (c, g), (d, f ), (e, g), (f , d), (g, c), (g, e)}. and
δ2 = 1 ∪ {(a, c), (a, d), (a, e), (b, f ), (c, a), (c, g), (d, a),
(d, f ), (e, a), (e, g), (f , b), (f , d), (g, c), (g, e)}. Thus,
θ1l(a) = {a, c, g}, θ1l(b) = {b}, θ1l(c) = θ1l(g) =
{a, c, e, g}, θ1l(d) = θ1l(f ) = {d, f }, θ1l(e) =

{c, e, g}, θ2l(a) = {a, c, d, e, f , g}, θ2l(b) = {b, d, f },
θ2l(c) = θ2l(e) = {a, c, d, e, g}, θ2l(d) = {a, b, c, d, e, f },
θ2l(f ) = {a, b, d, f } and θ2l(g) = {a, c, e, g}. Take
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(1) V = {a, b, c, d, e, f }; then, L3Pδ1 (V ) = {b, d, f } and
L3Pδ2 (V ) = V . Therefore, L3Pδ1 (V ) + L3Pδ2 (V ).

(2) V = {g}; then, U3
Pδ1 (V ) = {a, c, e, g} and

U3
Pδ2 (V ) = {g}. Therefore, U3

Pδ1 (V ) * U3
Pδ2 (V ).

(3) V = {a, b, c, d, e, f }; then, L3Pδ1 (V ) = {b, d, f },
U3

Pδ1 (V ) = U ,L3Pδ2 (V ) = V and U3
Pδ2 (V ) = U .

Therefore,
(a) Bnd3Pδ1 (V ) = {a, c, e, g} * {g} = Bnd3Pδ2 (V ).
(b) Acc3Pδ1 (V ) = 3

7 <
6
7 = Acc3Pδ2 (V ).

(c) Rough3Pδ1 (V ) = 4
7 >

1
7 = Rough3Pδ2 (V ).

Although, δ1 ⊆ δ2.

D. FOURTH TECHNIQUE TO GENERATE GENERALIZED
ROUGH SETS VIA IDEALS
Definition 48: Let δ and P be binary relation and ideal on

a set U 6= φ. The fourth form of generalized approximations
(lower and upper), boundary-regions, accuracy and rough
values of a nonempty subset V of U produced by maximal
union neighborhoods according to δ and P are respectively
given by

U4
Pδ(V ) = ∪

ν∈U
{θl(ν) : θl(ν) ∩ V 6∈ P}. (49)

L4Pδ(V ) = (U4
Pδ(V c))c. (50)

Bnd4Pδ(V ) = U4
Pδ(V )− L4Pδ(V ). (51)

Acc4Pδ(V ) =
|L4Pδ(V ) ∩ V |

|U4
Pδ(V ) ∪ V |

. (52)

Rough4Pδ(V ) = 1− Acc4Pδ(V ). (53)

Proposition 49: Let P and T be ideals and δ be a binary
relation on U such that V ,W ⊆ U Then,
(1) U4

Pδ(φ) = φ.
(2) V ⊆ W ⇒ U4

Pδ(V ) ⊆ U4
Pδ(W ).

(3) U4
Pδ(V ∩W ) ⊆ U4

Pδ(V ) ∩ U4
Pδ(W ).

(4) U4
Pδ(V ∪W ) = U4

Pδ(V ) ∪ U4
Pδ(W ).

(5) U4
Pδ(V ) = (L4Pδ(V c))c.

(6) If V ∈ P, then U4
Pδ(V ) = φ.

(7) If P ⊆ T , then U4
T δ(V ) ⊆ U4

Pδ(V ).
(8) If P = P(U ), then U4

Pδ(V ) = φ.
(9) U4

(P∩T )δ(V ) = U4
Pδ(V ) ∪ U4

T δ(V ).
(10) U4

(P∨T )δ(V ) = U4
Pδ(V ) ∩ U4

T δ(V ).
Proof:

(1) U4
Pδ(φ) = ∪{θl(ν) : θl(ν) ∩ φ 6∈ P} = φ.

(2) Let V ⊆ W and ν ∈ U4
Pδ(V ). Then, ∃ y ∈ U such that

ν ∈ θl(y) and θl(y)∩V 6∈ P. Thus, θl(y)∩W 6∈ P. So,
ν ∈ U4

Pδ(W ). Consequently, U4
Pδ(V ) ⊆ U4

Pδ(W ).
(3) It is immediately obtained by (2).
(4) U4

Pδ(V ∪W ) = ∪
ν∈U
{θl(ν) : θl(ν) ∩ (V ∪W ) 6∈ P}.

= ( ∪
ν∈U
{θl(ν) : θl(ν) ∩ V 6∈ P}) ∪ ( ∪

ν∈U
{θl(ν) : θl(ν) ∩

W 6∈ P}).
= ( ∪

ν∈U
{θl(ν) : θl(ν)∩V 6∈ P}) or ( ∪

ν∈U
{θl(ν) : θl(ν)∩

W 6∈ P}).
= U4

Pδ(V ) ∪ U4
Pδ(W ).

(5)

(L4Pδ(V c))c = ((U4
Pδ(V ))c)c.

= U4
Pδ(V ).

(6) The proof is straightforward by Definition 48.
(7) LetP ⊆ T , ν ∈ U4

T δ(V ).Then, ∃ y ∈ U such that ν ∈
θl(y) and θl(y)∩V 6∈ T . Thus, θl(y)∩V 6∈ P asP ⊆ T .
So, ν ∈ U4

Pδ(V ). Hence, U4
T δ(V ) ⊆ U4

Pδ(V ).
(8) The proof is straightforward by Definition 48.
(9) U4

(P∩T )δ(V ) = ∪
ν∈U
{θl(ν) : θl(ν) ∩ V 6∈ P ∩ T }

= ( ∪
ν∈U
{θl(ν) : θl(ν)∩V 6∈ P}) or ( ∪

ν∈U
{θl(ν) : θl(ν)∩

V 6∈ T })
= ( ∪

ν∈U
{θl(ν) : θl(ν) ∩ V 6∈ P}) ∪ ( ∪

ν∈U
{θl(ν) : θl(ν) ∩

V 6∈ T })
= U4

Pδ(V ) ∪ U4
T δ(V ).

(10) U4
(P∨T )δ(V ) = ∪{θl(ν) : θl(ν) ∩ V 6∈ P ∨ T }

= ∪{θl(ν) : θl(ν) ∩ V 6∈ P ∪ T }
= (∪{θl(ν) : θl(ν) ∩ V 6∈ P}) and (∪{θl(ν) : θl(ν) ∩
V 6∈ T })
= (∪{θl(ν) : θl(ν) ∩ V 6∈ P}) ∩ (∪{θl(ν) : θl(ν) ∩ V 6∈
T })
= U4

Pδ(V ) ∩ U4
T δ(V ).

Proposition 50: Let P and T be ideals and δ be a binary
relation on U such that V ,W ⊆ U Then,
(1) L4Pδ(U ) = U .
(2) V ⊆ W ⇒ L4Pδ(V ) ⊆ L4Pδ(W ).
(3) L4Pδ(V ) ∪ L4Pδ(W ) ⊆ L4Pδ(V ∪W ).
(4) L4Pδ(V ∩W ) = L4Pδ(V ) ∩ L4Pδ(W ).
(5) L4Pδ(V ) = (U4

Pδ(V c))c.
(6) If V c

∈ P, then L4Pδ(V ) = U .
(7) If P ⊆ T , then L4Pδ(V ) ⊆ L4T δ(V ).
(8) If P = P(U ), then L4Pδ(V ) = U .
(9) L4(P∩T )δ(V ) = L4Pδ(V ) ∩ L4T δ(V ).

(10) L4(P∨T )δ(V ) = L4Pδ(V ) ∪ L4T δ(V ).
Proof:

(1) L4Pδ(U ) = (U4
Pδ(φ))c = φc = U by (1) in

Proposition 49.
(2) Let V ⊆ W . Thus, W c

⊆ V c and U4
Pδ(W c) ⊆

U4
Pδ(V c) (by (2) in Proposition 49). Then,

(U4
Pδ(V c))c ⊆ (U4

Pδ(W c))c. So, L4Pδ(V ) ⊆
L4Pδ(W ).

(3) The proof is directly by (2).
(4) L4Pδ(V ∩W ) = (U4

Pδ(V ∩W )c)c

= (U4
Pδ(V c

∪W c))c

= (U4
Pδ(V c)∪U4

Pδ(W c))c (by (4) in Proposition 49)
= (U4

Pδ(V c))c ∩ (U4
Pδ(W c))c

= L4Pδ(V ) ∩ L4Pδ(W ).
(5) The proof is straightforward by Definition 48.
(6) Let V c

∈ P; then, L4Pδ(V ) = (U4
Pδ(V c))c = (φ)c =

U according to Proposition 49 (6).
(7) Let P ⊆ T . Then, U4

T δ(V c) ⊆ U4
Pδ(V c)

according to Proposition 49 (7). Thus, (U4
Pδ(V c))c ⊆

(U4
T δ(V c))c. Hence, L4Pδ(V ) ⊆ L4T δ(V ).

(8) Let P = P(U ); then, L4Pδ(V ) = (U4
Pδ(V c))c =

(φ)c = U according to Proposition 49 (8).
(9) L4(P∩T )δ(V ) = (U4

(P∩T )δ(V c))c

= (U4
Pδ(V c) ∪ U4

T δ(V c))c (by (9) in Proposition 49)
= (U4

Pδ(V c))c ∩ (U4
T δ(V c))c

= L4Pδ(V ) ∩ L4T δ(V ).
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(10) L4(P∨T )δ(V ) = (U4
(P∨T )δ(V c))c

= (U4
Pδ(V c)∩U4

T δ(V c))c by (10) in Proposition 49)
= (U4

Pδ(V c))c ∪ (U4
T δ(V c))c

= L4Pδ(V ) ∪ L4T δ(V ).
Remark 51: (1) To show that the converse of (2) of

Proposition 49 and Proposition 50 is generally false
take (i) of Example 17 and let
(a) V = {a} and W = {d}; then, U4

Pδ(V ) = φ

and U4
Pδ(W ) = U . Therefore, U4

Pδ(V ) ⊆
U4

Pδ(W ), but V * W .
(b) V = {b} and W = {a, c, d}; then, L4Pδ(V ) =

φ and L4Pδ(W ) = U . Therefore, L4Pδ(V ) ⊆
L4Pδ(W ), but V * W .

(2) In Proposition 49 and Proposition 50 the converse of
(6), (7) and (8) is generally false as illustrated by ii) of
Example 17
(i) For (6), take

(a) V = {a, d}; then, U4
T δ(V ) = φ. Therefore,

U4
T δ(V ) = φ, but V 6∈ T .

(b) V = {b, c}; then, L4T δ(V ) = U . Therefore,
L4T δ(V ) = U , but V c

6∈ T .
(ii) For (7), take

(a) V = {a, d}; then, U4
Pδ(V ) = {a} and

U4
T δ(V ) = φ. Therefore, U4

T δ(V ) ⊆
U4

Pδ(V ), but P * T .
(b) V = {b, c}; then, L4Pδ(V ) = {b, c, d}

and L4T δ(V ) = U . Therefore, L4Pδ(V ) ⊆
L4T δ(V ), but P * T .

(iii) For (8), take
(a) V = {a, d}; then, U4

T δ(V ) = φ, but T 6=
P(U ).

(b) V = {b, c}; then, L4T δ(V ) = U , but T 6=
P(U ).

(3) Example 17 (iii) elaborates that the inclusion relations
given in (3) of Proposition 49 and Proposition 50 are
proper. To illustrate that, let V = {a, d} and W =

{b, c}. Then,
(a) U4

Pδ(V ) = U4
Pδ(W ) = U and U4

Pδ(V ∩W ) =
φ. Therefore, U4

Pδ(V ) ∩ U4
Pδ(W ) = U 6= φ =

U3
Pδ(V ∩W ).

(b) L4Pδ(V ) = L4Pδ(W ) = φ and L4Pδ(V ∪ W ) =
U . Therefore, L4Pδ(V ) ∪ L4Pδ(W ) = φ 6= U =
L4Pδ(V ∪W ).

Remark 52: Some properties given in the second type are
not satisfy by this type as we show in the following.
(i) Considering Example 17 (i), take

(1) V = {a}; then, U4
Pδ(V ) = φ. Hence, V *

U4
Pδ(V ).

(2) V = {b, c, d}; then, L4Pδ(V ) = U . Hence,
L4Pδ(V ) * V .

(ii) Considering Example 17 (ii), take
(1) V = U; then, U4

Pδ(U ) = {a, b, c}. Hence,
U4

Pδ(U ) 6= U .
(2) V = φ; then, L4Pδ(φ) = {d}. Hence,

L4Pδ(φ) 6= φ.

Proposition 53: Let P be an ideal and δ be a binary
relation on U such that V is a nonempty subset of U . Then,
1) 0 ≤ AccPδ4 (V ) ≤ 1.
2) AccPδ4 (U ) = 1.
Proof: It is similar to Proposition 20.

Theorem 54: Let P and T be ideals and δ be a binary
relation on U such that P ⊆ T . Then,
(1) Bnd4T δ(V ) ⊆ Bnd4Pδ(V ).
(2) Acc4Pδ(V ) ≤ Acc4T δ(V ).
(3) Rough4T δ(V ) ≤ Rough4Pδ(V ).

Proof: Similar to Theorem 21.
Remark 55: According to (ii) of Example 17, the converse

of (1) and (2) in Theorem 54 is generally false. To clarify that,
let V = {b, c}. Then,
(1) Bnd4T δ(V ) = φ ⊆ φ = Bnd4Pδ(V ), but P * T .
(2) Acc4Pδ(V ) = 1 ≤ 1 = Acc4T δ(V ), but P * T .
(3) Rough4T δ(V ) = 0 ≤ 0 = Rough4Pδ(V ).
Theorem 56: Let φ 6= V ⊆ U , P be an ideal on U and

δ1, δ2 be two binary relations on U . If δ1 ⊆ δ2, then
(1) U4

Pδ1 (V ) ⊆ U4
Pδ2 (V ).

(2) L4Pδ2 (V ) ⊆ L4Pδ1 (V ).
(3) Bnd4Pδ1 (V ) ⊆ Bnd4Pδ2 (V ).
(4) Acc4Pδ2 (V ) ≤ Acc4Pδ1 (V ).
(5) Rough4Pδ1 (V ) ≤ Rough4Pδ2 (V ).

Proof:
(1) Let ν ∈ U4

Pδ1 (V ). Then, ∃ y ∈ U such that
ν ∈ θ1l(y) ∩ V 6∈ P. Since θ1l(y) ⊆ θ2l(y) (by
Theorem 7 [4]), it follows that ν ∈ θ2l(y) ∩ V 6∈ P.
Thus, ν ∈ U4

Pδ2 (V ). Hence, U4
Pδ1 (V ) ⊆ U4

Pδ2 (V ).
(2) ν ∈ L4Pδ2 (V ) = (U4

Pδ2 (V c))c ⊆ (U4
Pδ1 (V c))c

(according to (1)) = L4Pδ1 (V ).
(3) Let ν ∈ Bnd4Pδ1 (V ). Then, ν ∈ U4

Pδ1 (V )−L4Pδ1 (V ).
So, ν ∈ U4

Pδ1 (V ) and ν ∈ (L4Pδ1 (V ))c. Thus,
ν ∈ U4

Pδ2 (V ) and ν ∈ (L4Pδ2 (V ))c according to
(1) and (2). Hence, ν ∈ Bnd4Pδ2 (V ). Therefore,
Bnd4Pδ1 (V ) ⊆ Bnd4Pδ2 (V ).

(4) Acc4Pδ2 (V ) = |
L4Pδ2 (V )∩V
U4

Pδ2 (V )∪V
| ≤ |

L4Pδ1 (V )∩V
U4

Pδ1 (V )∪V
| =

Acc4Pδ1 (V ).
(5) Straightforward by (4).
Remark 57: According to Example 24, the inclusion and

less than relation in Theorem 56 is proper. To clarify that,
take
(i) V = {a, d}; then,

(1) U4
Pδ1 (V ) = {a, b} 6= {a, b, c} = U4

Pδ2 (V ).
(2) Acc4Pδ1 (V ) = 1 6= 2

3 = Acc4Pδ2 (V ).
(3) Rough4Pδ1 (V ) = 0 6= 1

3 = Rough4Pδ2 (V ).
(ii) V = {b, c}; then, L4Pδ1 (V ) = {c, d} 6= {d} =

L4Pδ2 (V ).

IV. COMPARISON THE PROPOSED METHODS AND THEIR
ADVANTAGES COMPARED TO THE PREVIOUS ONES
A. COMPARISON THE PROPOSED METHODS IN TERMS
APPROXIMATIONS AND ACCURACY MEASURES OF
SUBSETS
Theorem 58: Let P be an ideal and δ be a binary relation

on U such that V ⊆ U Then,
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(1) U1
Pδ(V ) ⊆ U2

Pδ(V ).
(2) L2Pδ(V ) ⊆ L1Pδ(V ).
(3) Bnd1Pδ(V ) ⊆ Bnd2Pδ(V ).
(4) Acc2Pδ(V ) = Acc1Pδ(V ).
(5) Rough1Pδ(V ) = Rough2Pδ(V ).

Proof: directly follows from Definitions 14 and 25.
Remark 59: The inclusion and less than relations in

the above theorem are proper. To elaborates that consider
Example 24 and let V = {a, c, d}. Then,
(1) U1

Pδ1 (V ) = {a, b} 6= U = U2
Pδ1 (V ).

(2) L2Pδ1 (V ) = {a, c, d} 6= U = L1Pδ1 (V ).
(3) Bnd1Pδ1 (V ) = φ 6= {b} = Bnd2Pδ1 (V ).
Theorem 60: LetP be an ideal and δ be a reflexive relation

on U such that V ⊆ U Then,
1) L2Pδ(V ) ⊆ L1Pδ(V ) ⊆ L3Pδ(V ).
2) U3

Pδ(V ) ⊆ U1
Pδ(V ) ⊆ U2

Pδ(V ).
3) Bnd3

Pδ
(V ) ⊆ Bnd1

Pδ
(V ) ⊆ Bnd2

Pδ
(V ).

4) Acc2
Pδ

(V ) ≤ Acc1
Pδ

(V ) ≤ Acc3
Pδ

(V ).
5) Rough3

Pδ
(V ) ≤ Rough1

Pδ
(V ) ≤ Rough2

Pδ
(V ).

Proof:
(1) By Theorem 58, we have L2Pδ(V ) ⊆ L1Pδ(V ). To

prove, L1Pδ(V ) ⊆ L3Pδ(V ). Let ν ∈ L1Pδ(V ), then
θl(ν) ∩ V c

∈ P. Hence, θl(ν) ⊆ L3Pδ(V ). Since, δ
is a reflexive relation, thus ν ∈ θl(ν) ⊆ L3Pδ(V ).
Therefore, ν ∈ L3Pδ(V ).

(2) To prove, U3
Pδ(V ) ⊆ U1

Pδ(V ). Let ν ∈

U3
Pδ(V ) = (L3Pδ(V c))c, then ν 6∈ L3Pδ(V c).

Hence, by Definition 36, we get θl(ν) ∩ V 6∈ P. It
follows that ν ∈ U1

Pδ(V ). By Theorem 58, we have
U1

Pδ(V ) ⊆ U2
Pδ(V ).

(3)-(5) Straightforward from (1) and (2).
Remark 61: In Theorem 60 the inclusion and less than

relations are proper. To demonstrate that consider (iii) of
Example 17 and let V = {b, c}. Then, U3

Pδ(V ) = {b, c}  
{a, b, c} = U1

Pδ(V ).Moreover, take V = {a, d}, then
(1) L1Pδ(V ) = {d}  {a, d} = L3Pδ(V ).
(2) Bnd3Pδ(V ) = {b, c}  {a, b, c} = Bnd1Pδ(V ).
(3) Acc1Pδ(V ) = 1

4 �
1
2 = Acc3Pδ(V ).

(4) Rough3
Pδ

(V ) = 1
2 �

3
4 = Rough1

Pδ
(V ).

Theorem 62: LetP be an ideal and δ be a reflexive relation
on U such that V ⊆ U Then,
1) L4Pδ(V ) ⊆ L1Pδ(V ) ⊆ L3Pδ(V ).
2) U3

Pδ(V ) ⊆ U1
Pδ(V ) ⊆ U4

Pδ(V ).
3) Bnd3

Pδ
(V ) ⊆ Bnd1

Pδ
(V ) ⊆ Bnd4

Pδ
(V ).

4) Acc4
Pδ

(V ) ≤ Acc1
Pδ

(V ) ≤ Acc3
Pδ

(V ).
5) Rough3

Pδ
(V ) ≤ Rough1

Pδ
(V ) ≤ Rough4

Pδ
(V ).

Proof:
(1) By Theorem 60, we have L1Pδ(V ) ⊆ L3Pδ(V ). To

prove, L4Pδ(V ) ⊆ L1Pδ(V ), let ν ∈ L4Pδ(V ) =
U4

Pδ(V c)c. Then, ν 6∈ U4
Pδ(V c). Thus, by Defi-

nition 48, θl(ν) ∩ V c
∈ P. It follows that θl(ν) ⊆

L1Pδ(V ). Since, δ is a reflexive relation, then ν ∈
θu(ν) ⊆ L1Pδ(V ). Therefore, ν ∈ L1Pδ(V ).

(2) By Theorem 60, we have U3
Pδ(V ) ⊆ U1

Pδ(V ).
To prove U1

Pδ(V ) ⊆ U4
Pδ(V ), let ν ∈ U1

Pδ(V ).

TABLE 1. Comparison between the first and second methods in terms of
the properties given in Definition 4.

Then θl(ν)∩V 6∈ P. It follows that θu(ν) ⊆ U4
Pδ(V ).

Since, δ is a reflexive relation, then ν ∈ θl(ν) ⊆
U4

Pδ(V ). Therefore, ν ∈ U4
Pδ(V ).

(3)-(5) Straightforward from (1) and (2).
Remark 63: To clarify that the inclusion and less than

relations in Theorem 62 are proper, consider (iii) of
Example 17 and take V = {b, c}. Then, U1

Pδ(V ) =
{a, b, c}  U = U4

Pδ(V ).Moreover, take V = {a, d}; then,
(1) L4Pδ(V ) = φ  {d} = L1Pδ(V ).
(2) Bnd1Pδ(V ) = {a, b, c}  U = Bnd4Pδ(V ).
(3) Acc4Pδ(V ) = 0 � 1

4 = Acc1Pδ(V ).
(4) Rough1Pδ(V ) = 3

4 � 1 = Rough4Pδ(V ).
Remark 64: It can be seen from the above findings that

there are several techniques to study approximation operators
and measures of the subsets. The third technique, displayed
in Section III-C, is the best one to approximate the subsets
because it reduces (or cancels) the boundary regions, and
increases the measures of accuracy more than the other types
displayed in the other sections.

In Tables 1 and 2, we compare the proposed four
approaches in terms of Pawlak properties. In these tables •
means that the property holds and ◦ means that the property
does not hold.

B. COMPARISON THE PROPOSED METHODS WITH THE
PREVIOUS ONES
Theorem 65: Let P be an ideal and δ be a binary relation

on U such that V ⊆ U Then,
(1) U1

Pδ(V ) ⊆ U δ(V ).
(2) Lδ(V ) ⊆ L1Pδ(V ).
(3) Bnd1Pδ(V ) ⊆ Bndδ(V ).
(4) Accδ(V ) ≤ Acc1Pδ(V ).
(5) Rough1Pδ(V ) ≤ Roughδ(V ).

Proof:
(1) Let ν ∈ U1

Pδ(V ). Then, θl(ν) ∩ V 6∈ P. Hence,
θl(ν) ∩ V 6= φ. Therefore, ν ∈ U δ(V ). So,
U1

Pδ(V ) ⊆ U δ(V ).
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TABLE 2. Comparison between the third and fourth approaches in terms
of the properties in Definition 4.

(2) Let ν ∈ Lδ(V ). Then, θl(ν) ⊆ V . Hence, θl(ν) ∩
V c
∈ P. Therefore, ν ∈ L1Pδ(V ). So,Lδ(V ) ⊆

L1Pδ(V ).
(3)-(5) It is immediately obtained by (1) and (2).
Remark 66: In Theorem 65 the inclusion and less than

relations are proper as illustrated by Example 24. To this end,
Take V = {a, d}. Then,
(1) U1

Pδ1 (V ) = {a, b} 6= {a, b, d} = Uδ1 (V ).
(2) L1Pδ1 (V ) = U 6= {d} = Lδ1 (V ).
(3) Bnd1Pδ1 (V ) = φ 6= {a, b} = Bndδ1 (V ).
(4) Acc1Pδ1 (V ) = 2

3 6=
1
3 = Accδ1 (V ).

(5) Rough1Pδ1 (V ) = 1
3 6=

2
3 = Roughδ1 (V ).

Theorem 67: Let P be an ideal and δ be a binary relation
on U such that V ⊆ U Then,
(1) U1

Pδ(V ) ⊆ Uppδ(V ).
(2) Lowδ(V ) ⊆ L1Pδ(V ).
(3) Bnd1Pδ(V ) ⊆ Boundaryδ(V ).
(4) Accuracyδ(V ) ≤ Acc1Pδ(V ).
(5) Rough1Pδ(V ) ≤ Roughnessδ(V ).

Proof:
(1) Let ν ∈ U1

Pδ(V ). Then, θl(ν) ∩ V 6∈ P. Hence,
θu(ν) ∩ V 6∈ P. So, θu(ν) ∩ V 6= φ. Therefore,
ν ∈ Uppδ(V ). So, U1

Pδ(V ) ⊆ Uppδ(V ).
(2) Let ν ∈ Lowδ(V ). Then, θu(ν) ⊆ V . Hence, θu(ν) ∩

V c
∈ P. Since, θl(ν) ⊆ θu(ν). So, θl(ν) ∩ V c

∈ P.
Therefore, ν ∈ L1Pδ(V ). So,Lowδ(V ) ⊆ L1Pδ(V ).

(3)-(5) The proof is immediately by (1) and (2).
Remark 68: In Theorem 67 the inclusion and less than

relations are proper. To clarify that consider Example 24 and
let V = {a, d}. Then,
(1) U1

Pδ1 (V ) = {a, b} 6= {a, b, d} = Uppδ1 (V ).
(2) L1Pδ1 (V ) = U 6= {d} = Lowδ1 (V ).
(3) Bnd1Pδ1 (V ) = φ 6= {a, b} = Boundaryδ1 (V ).
(4) Accu1Pδ1 (V ) = 2

3 6=
1
3 = Accuracyδ1 (V ).

(5) Rough1Pδ1 (V ) = 1
3 6=

2
3 = Roughnessδ1 (V ).

According to Theorems 65 and 67 it can be seen that
the present methods reduce the boundary region with the
comparison of Al-shami’s methods [4]. This means that the
current approximation spaces are proper generalizations of
Al-shami’s approximations [4].

One can easily prove the next result which shows that Al-
shami’s approximations [4] are special cases of the current
approximations.
Proposition 69:

(1) If the ideal P is the empty set, then the approximation
spaces given herein and the approximation spaces given
in Definition 8 [4] are identical.

(2) If the ideal P is the empty set and binary relation
is a similarity relation, then the approximation spaces
given herein and the approximation spaces given in
Definition 9 [4] are identical.

Theorem 70: Let P be an ideal and δ be a binary relation
on U such that V ⊆ U Then,

(1) U1
Pδ(V ) ⊆ Upp1Pδ(V ).

(2) Low1
Pδ(V ) ⊆ L1Pδ(V ).

(3) Bnd1Pδ(V ) ⊆ Boundary1Pδ(V ).
(4) Accuracy1Pδ(V ) ≤ Acc1Pδ(V ).
(5) Rough1Pδ(V ) ≤ Roughness1Pδ(V ).

Proof:

(1) Let ν ∈ U1
Pδ(V ). Then, θl(ν) ∩ V 6∈ P. Since,

θl(ν) ⊆ θu(ν). Hence, θu(ν) ∩ V 6∈ P. Therefore,
ν ∈ Upp1Pδ(V ). So, U1

Pδ(V ) ⊆ U δ(V ).
(2) Let ν ∈ Low1

Pδ(V ). Then, θu(ν) ∩ V c
∈ P. Hence,

θl(ν) ∩ V c
∈ P. Therefore, ν ∈ L1Pδ(V ). So,

Low1
Pδ(V ) ⊆ L1Pδ(V ).

(3)-(5) It is immediately obtained by (1) and (2).

Remark 71: The inclusion and the less than in Theorem 70
can not be replaced by equality relation in general. In Exam-
ple 17 (i), take P = {φ, {d}} and V = {b}, then U1

Pδ(V ) =
{b, c} 6= {a, b, c} = Upp1Pδ(V ). Additionally, in Example 17
(i), take P = {φ, {a}} and V = {a, c, d}, then
(1) Low1

Pδ(V ) = {d} 6= {a, d} = L1Pδ(V ).
(2) Bnd1Pδ(V ) = {b, c} 6= {a, b, c} = Boundary1Pδ(V ).
(3) Accuracy1Pδ(V ) = 1

4 6=
1
2 = Acc1Pδ(V ).

(4) Rough1Pδ(V ) = 1
2 6=

3
4 = Roughness1Pδ(V ).

Theorem 72: Let P be an ideal and δ be a binary relation
on U such that V ⊆ U Then,

(1) U2
Pδ(V ) ⊆ Upp2Pδ(V ).

(2) Low2
Pδ(V ) ⊆ L2Pδ(V ).

(3) Bnd2Pδ(V ) ⊆ Boundary2Pδ(V ).
(4) Accuracy2Pδ(V ) ≤ Acc2Pδ(V ).
(5) Rough2Pδ(V ) ≤ Roughness2Pδ(V ).

Proof: Similar to the proof of Theorem 70.
Remark 73: In Theorem 72 the inclusion and the less than

relations are proper as (i) of Example 17 shows. To this end,
let P = {φ, {d}} and V = {b}. Then U2

Pδ(V ) = {b, c} 6=
{a, b, c} = Upp2Pδ(V ). Additionally, in Example 17 (i), take
P = {φ, {a}} and V = {a, c, d}, then
(1) Low2

Pδ(V ) = {d} 6= {a, d} = L2Pδ(V ).
(2) Bnd2Pδ(V ) = {b, c} 6= {a, b, c} = Boundary2Pδ(V ).
(3) Accuracy2Pδ(V ) = 1

4 6=
1
2 = Acc2Pδ(V ).

(4) Rough2Pδ(V ) = 1
2 6=

3
4 = Roughness2Pδ(V ).
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Theorem 74: Let P be an ideal and δ be a binary relation
on U such that V ⊆ U Then,
(1) U3

Pδ(V ) ⊆ Upp3Pδ(V ).
(2) Low3

Pδ(V ) ⊆ L3Pδ(V ).
(3) Bnd3Pδ(V ) ⊆ Boundary3Pδ(V ).
(4) Accuracy3Pδ(V ) ≤ Acc3Pδ(V ).
(5) Rough3Pδ(V ) ≤ Roughness3Pδ(V ).

Proof: Similar to the proof of Theorem 70.
Remark 75: In Theorem 74 the inclusion and the less than

relations are proper as illustrated by (iii) of Example 17.
To this end, let V = {a, d}. Then,
(1) U3

Pδ(V ) = {a, b, c} 6= U = Upp3Pδ(V ).
(2) Low3

Pδ(V ) = φ 6= {d} = L3Pδ(V ).
(3) Bnd3Pδ(V ) = {a, b, c} 6= U = Boundary3Pδ(V ).
(4) Accuracy3Pδ(V ) = 0 6= 1

4 = Acc3Pδ(V ).
(5) Rough3Pδ(V ) = 3

4 6= 1 = Roughness3Pδ(V ).
Theorem 76: Let φ 6= V ⊆ U , P be an ideal on U and δ

be a binary relation on a non-empty set U . Then,
(1) U4

Pδ(V ) ⊆ Upp4Pδ(V ).
(2) Low4

Pδ(V ) ⊆ L4Pδ(V ).
(3) Bnd4Pδ(V ) ⊆ Boundary4Pδ(V ).
(4) Accuracy4Pδ(V ) ≤ Acc4Pδ(V ).
(5) Rough4Pδ(V ) ≤ Roughness4Pδ(V ).

Proof: The proof is similar to that of Theorem 70.
Remark 77: In Theorem 76 the inclusion and the less

than relations are proper. To illustrate that consider (i) of
Example 17. Then,
(i) Take P = {φ, {a}} and V = {b}, then

(1) U4
Pδ(V ) = {b, c, d} 6= U = Upp4Pδ(V ).

(2) Bnd4Pδ(V )={b, c, d} 6=U=Boundary4Pδ(V ).
(ii) Take P = {φ, {a}} and V = {a, c, d}, then

(1) Low4
Pδ(V ) = φ 6= {a} = L4Pδ(V ).

(2) Accuracy4Pδ(V ) = 0 6= 1
4 = Acc4Pδ(V ).

(3) Rough4Pδ(V ) = 3
4 6= 1 = Roughness4Pδ(V ).

One can easily prove the next result which shows that
Hosny’s and Al-shami’s approximations [19] are special
cases of the current approximations.
Proposition 78: If the binary relation is a similarity

relation, then the approximation spaces given herein and the
approximation spaces given in [19] are identical.

Finally, we draw attention to that the maximal left neigh-
borhoods and maximal right neighborhoods are independent
of each other. In Example 40, the maximal left neighborhood
of b is θl(b) = {a, b, c} 6= {a, b, d} = θr (b) the maximal right
neighborhood of b. Consequently, the approximation spaces
generated by the maximal left neighborhoods and maximal
right neighborhoods via ideals are independent of each other.
To validate that, in Example 40 take V = {b}, then the
lower, upper approximations and boundary by the previous
third method in [17] are φ, φ and φ, respectively. Meantime,
the lower, upper approximations and boundary by the present
third method are φ, {c} and {c}, respectively. Therefore, the
previous boundary = φ * {c} = the present boundary.
If we take another set say W = {a, c, d}, then the lower,
upper approximations and boundary by the previous third

TABLE 3. Information system of students’ rank for each subject.

method in [17] are φ, {c} and {c}, respectively. While, the
lower, upper approximations and boundary by the present
third method are {a, c, d}, φ and φ, respectively. So, the
present boundary = φ * {c} = the previous boundary. That
is, the proposed approaches and their counterparts introduced
in [17] are different in general.

V. NUMERICAL EXAMPLE
In this section, we analysis the obtained computations from
six students exams in four subjects in terms of the current
first approach and those were introduced in two recent
manuscripts [4], [19]. We illustrate this matter by considering
six students S = {si : i = 1, 2, . . . , 6} have been examined
in four subjects; say, biology, chemistry, mathematics, and
physics. The evaluation of students’ performance is given by
five ranks or levels as follows.

Rank1 : excellent

Rank2 : very good

Rank3 : good

Rank4 : fair

Rank5 : failed

These ranks are ordered as follows: excellent � very good
� good � fair � failed, where � means ‘‘greater than.’’
The relation that associates between students is defined by:

xRy iff student x has at least two subjects with a rank greater
than the rank of the corresponding subjects of student y.
For instance, s4δs3 because the student’s ranks s4 in biology,
mathematics, and physics are greater than the student’s ranks
s3 in these subjects. But, (s3, s4) 6∈ δ because the student
s3 has only one subject’s rank greater than student s4.

The approximation space of the students’ information sys-
tem is constructed firstly by converting Table 3 to the follow-
ing binary relation: δ = {(s1, s3), (s2, s1), (s2, s4), (s2, s5),
(s4, s2), (s4, s3), (s4, s6), (s5, s3), (s5, s6), (s6, s4)}. It should
be noted that this relation is irreflexive because (s, s) 6∈ δ

for each s ∈ S, not symmetry because (s3, s1) 6∈ δ in spite of
(s1, s3) ∈ δ, also, it is not transitive because (s5, s4) 6∈ δ in
spite of (s5, s6) ∈ δ and (s6, s4) ∈ δ.
Secondly, the left neighborhood Nl and maximal left

neighborhood Ml are calculated for each s ∈ S

Nl(s1) = Nl(s5) = {s2} Nl(s4) = {s2, s6}

Nl(s2) = {s4} Nl(s6) = {s4, s5}

Nl(s3) = {s1, s4, s5}
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Ml(s1) = Ml(s4) = Ml(s5) = {s1, s4, s5}

Ml(s2) = Ml(s6) = {s2, s6}

Ml(s3) = φ

Let T = {φ, {s4}} be an ideal on S. Then, we examine
the performance of the present approach in Definition 14 and
their counterparts approaches studied in [4], [19]. To this end,
let F = {s3, s4, s6}. In what follows, we calculate its lower
and upper approximations, boundary regions and accuracy
values utilizing a method of maximal left neighborhoods
given in [4] and the first method given herein.
• It follows from Al-shami’s approach [4](see, Defini-
tion 8) that:

Lδ(F) = {s3};
U δ(F) = {s1, s2, s4, s5, s6};
Bndδ(F) = {s1, s2, s4, s5, s6};

Accδ(F) =
1
6
;

Roughδ(F) =
5
6
.

(54)

• It follows from our approach given in Definition 14 that

L1Pδ(F) = {s3};
U1

Pδ(F) = {s2, s6};
Bnd1Pδ(F) = {s2, s6};

Acc1Pδ(F) =
1
4
;

Rough1Pδ(F) =
3
4
.

(55)

The proposed approach is compared with its counterpart
given in [19] by calculating the right neighborhood Nr , then
the maximal right neighborhood Mr and finally the maximal
union neighborhood Mu for each s ∈ S.

Nr (s1) = {s3} Nr (s4) = {s2, s3, s6}

Nr (s2) = {s1, s4, s5} Nr (s5) = {s3, s6}

Nr (s3) = φ Nr (s6) = {s4}

Mr (s1) = Mr (s4) = Mr (s5) = {s1, s4, s5}

Mr (s2) = Mr (s3) = Mr (s6) = {s2, s3, s6}

Mu(s1) = Mu(s4) = Mu(s5) = {s1, s4, s5}

Mu(s2) = Mu(s3) = Mu(s6) = {s2, s3, s6}

According to the approach given in [19] (see, Defini-
tion 10) we find that

Low1
Pδ(F) = φ;

Upp1Pδ(F) = {s2, s3, s6};
Boundary1Pδ(F) = {s2, s3, s6};
Accuracy1Pδ(F) = 0;
Roughness1Pδ(F) = 1.

(56)

It follows from the above calculations that the boundary
regions of the set F generated by approaches given in [4]
and [19] are {s1, s2, s4, s5, s6} and {s2, s3, s6}, respectively.

Whereas, the boundary region of the set F generated
by the suggested approach introduced in Definition 14 is
{s2, s6}, which implies that the uncertainty/vagueness area is
minimized by the proposed approach more than approaches
displayed in [4], [19]. Hence, a decision made according to
the calculations of the present approach is more accurate.
According to the above discussion, it can be seen that there

are various methods or approaches used to approximate the
subsets. The current technique ‘‘ maximal left neighborhoods
and ideals’’ is a vital tool to eliminate the ambiguity
of the data in the real-life issues and produces more
accurate decisions since it decreases the boundary region by
enlarging the lower approximations and dwindling the upper
approximations, and hence, increases the value of accuracy
compared to the other types such those were discussed in [4],
[19].

VI. CONCLUSION
One of the recent successfully tool to handel uncertainty
problems is rough set. It was proposed with the goal
of the induction of approximations of concepts; it offers
mathematical tools to discover patterns hidden in data. This
manuscript had been written to contribute to this field
by introducing some novel kinds of approximation spaces
generated by ‘‘maximal left neighborhoods and ideals’’
which generalize the old concepts and get preferable results
by reducing the boundary regions.
First, we scrutinized their main properties and provided

some illustrative counterexample to elucidate the obtained
results. By the way, it was proved that the current approach
preserved main characterizations of Pawlak’s model and kept
the property of monotonicity. Then, we compared between
the proposed methods and discussed their advantages com-
pared to the previous methods in terms of improvement
the approximation operators and accuracy measures. Finally,
a numerical example was given and demonstrated how the
current methods expanded the knowledge obtained from the
information systems.
As it is well-known that the interior and closure topo-

logical operators behave similarly to the lower and upper
approximations; so, in forthcoming works, we plan to study
the counterparts of these models via topological structures.
In addition, we will benefit from the hybridization of rough
set theory with some approaches such as soft sets and fuzzy
sets [30], [34] to introduce these approximation spaces via
these hybridized frames and show their role in efficiently
dealing with uncertain knowledge.
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