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ABSTRACT Virtual Reality (VR) and Augmented Reality (AR) applications are expected to be a key
driver for the 5G network. The need of the MEC support for caching and transcoding of omnidirectional
content has been identified as a major topic of research. In this paper, we study the optimal caching problem
in an MEC-enabled VR system for tile-based viewport-adaptive 360-degree video streaming. For content
caching, the replacement of the cached content inevitably incurs content switching cost, which is largely
ignored in caching policy design. In this work, we aim to find the optimal caching policy to optimize
the long-term transmission quality by considering both transmission latency and content switching cost.
We apply the combinatorial multi-armed bandit (CMAB) theory to solve the problem with no a-priori
knowledge on content popularity. Moreover, the CUCB with switching cost (CUCBSC) algorithm is
adopted in this scenario. A transformation mechanism is designed to transform the generated single period
optimization (SPO) problem into amultiple choice knapsack problem (MCKP). Rigorous theoretical analysis
on the performance of the proposed algorithm is also provided. Finally, the effectiveness of the proposed
learning based caching policy is confirmed by simulation results in terms of learning, hit-ratio, transmission
and content switching delay.

INDEX TERMS 360-degree video streaming, tiling, mobile edge computing, switching cost, multi-armed
bandit.

I. INTRODUCTION
Digital immersion offers the merging of the physical world
with the digital data world, to create an altered and enhanced
environment. It is realized by technologies like virtual real-
ity (VR) and augmented reality (AR). As an essential com-
ponent of VR/AR systems, 360-degree video provides the
immersive experience for end users through streaming VR
contents towards VR devices, such as Head Mounted Dis-
plays (HMDs). 360-degree video requires high bit-rate, low
transmission latency and massive computation resources.
Constrained by limited power and computation resources,
HMDs cannot fulfill these requirements. Therefore, it is
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challenging for the current network to support such latency-
sensitive, computing-intensive and bandwidth consuming
services.

Inspired by the fact that the viewport of a VR user, a.k.a.
Field of View (FoV), is only about 30% of the panoramic
video [1], viewport adaptive streaming is proposed, which
effectively reduces the required transmission bit-rates of VR
videos [2]. In viewport adaptive streaming, 360-degree videos
are deliveredwith non-homogeneous quality: high-quality for
the region of FoV, and low-quality for the remaining part of
the video. Furthermore, tile-based 360-degree video [3] is one
implementation of viewport-adaptive streaming, which has
been adopted by several video vendors. On the basis of the
High Efficiency Video Coding (HEVC) encoding standard,
the idea is to split the video frame into non-overlapping tiles
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in space, and to encode them independently. Each tile is
offered at multiple quality levels, and they are delivered with
proper quality levels with respect to the user’s requests.

Furthermore, mobile edge computing (MEC) [4] is rec-
ognized as a promising network paradigm to support the
streaming of 360-degree videos, which provides caching and
computing capabilities on the edge of the network. Specifi-
cally, in an MEC-enabled VR system, MEC server can cache
popular 360-degree video content to relief the traffic burden
of backhaul links and performs computing tasks to transcode
the video into different quality versions to meet diverse user
requests.

There are some existing works in the literature in edge
caching for tile-based 360-degree video streaming. On one
hand, some works [5]–[9] study the caching policy in the
VR systems with a-priori knowledge on content popularity,
which, however, is impractical in the real world. For example,
the caching system needs to learn a lot of data in order to
obtain the content popularity in advance, which also requires
much time cost, or if the content popularity changes over
time, it is meaningless to obtain the content popularity in
advance. On the other hand, the authors in [10]–[15] adopt
the dynamic and learning-based caching replacement to over-
come the above shortcoming. However, the replacement of
the cached content is neglected in the above works, which
limits their practicality in actual usage. For content caching,
the cache replacement is also an essential process which
inevitably incurs content switching cost. Therefore, taking
the content switching cost into account, we adopt an online
algorithm based on the multi-armed bandit (MAB) theory
to solve the 360-degree video edge caching problem. More-
over, to solve the generated single period optimization (SPO)
problem for each time period, a mechanism is designed to
transform the SPO into a multiple-choice knapsack problem
(MCKP), which could be solved efficiently. Finally, the main
contributions of this paper are concluded as follows:
• We study the optimal 360-degree video caching policy
in a typical MEC-enabled VR system with no a-priori
knowledge on content popularity, where the request
latency and content switching cost are both taken into
consideration.

• We consider the joint caching and transcoding prob-
lem for tile-based 360-degree video for balancing
the trade-offs between MEC storage and computation
resource consumption. The problem is formulated as a
sequential decision making problem, which is a typical
explore-exploit (EE) problem.

• The MAB theory is utilized to analyze the joint
caching and transcoding problem. Considering the con-
tent switching cost, we adopt the CUCB with switching
cost (CUCBSC) algorithm to solve the problem and
theoretically analyze its non-trivial regret bound.

• Based on the CUCBSC algorithm, by considering the
long-tail distribution of content popularity in real world,
an improved algorithm (ICUCBSC) is also proposed
which speeds up the learning process for practical usage.

The effectiveness of the proposed algorithms are con-
firmed by simulation results.

Section II introduces the related work. In Section III, a typ-
ical 360-degree VR caching system is presented. Section IV
formulates the problem of minimizing the overall delay con-
taining request delivery latency and content switching cost.
In section V, CUCBSC is utilized to handle the problem
and its performance is theoretically analyzed. In Section VI,
the improved CUCBSC is proposed and simulation results
demonstrate the effectiveness of the proposed algorithms.
Finally Section VII summarizes the paper.

II. RELATED WORK
A. TILE-BASED 360-DEGREE VIDEO STREAMING
To improve the transmission efficiency of 360-degree video
streaming, many schemes [16]–[21] based on the tile-based
360-degree video delivery have been proposed. In [16], the
authors compare the performance of two viewport-adaptive
streaming methods: tile-based method and truncated square
pyramid (TSP) projection. The simulation results show that
the tile-based approach has slightly lower streaming perfor-
mance, but saves much more transcoding time and storage
space. In [17], the authors present an FoV rendering solution
on the edge of networks, which is designed to optimize the
bandwidth and latency during the delivery of 360-degree
videos. In [18], a QoE-driven viewport adaptation system is
proposed based on a probabilistic approach to prefetch tiles,
which can achieve a high viewport PSNR. The authors in [19]
study an optimal multicast of tile-based 360◦ video, aiming to
optimize the transmission delay and power allocation to min-
imize the average transmission energy. In [20], the authors
propose an optimal bandwidth allocation scheme in wireless
VR delivery system to minimize the maximum user transmis-
sion and computation latency. In [21], a deep reinforcement
learning-based rate adaptation algorithm is presented to han-
dle the delivery of 360-degree video streaming, in order to
maximize the QoE of users by adapting the transmitted video
quality to the time-varying network conditions.

However, the above works focus on the delivery of
360-degree video streaming. By caching 360-degree videos
in MEC, the efficiency of the VR delivery systems can be
further improved.

B. EDGE CACHING AND ONLINE CACHING FOR
360-DEGREE VIDEO STREAMING
MEC caching can improve the efficiency of 360-degree video
delivery. Consequently, a number of works have focused
on 360-degree video edge caching. In [5], the authors pro-
pose a scheme of joint collaborative caching and delivery of
360-degree videos, which shows the benefits of MEC
caching. Comparing to [5], transcoding is also considered in
the 360-degree video edge caching problem in [6]. In [7],
the authors formulate the optimization problem based on the
tradeoff of computing, caching and communication (3C) to
minimize the average transmission rate in an MEC-enabled
VR delivery framework. Dang [8] proposes a mobile
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VR delivery framework in F-RANs and formulates a similar
3C tradeoff problem to minimize the average latency. In [9],
a novel VR delivery system is proposed, which integrates
scalable multi-layer 360-degree video tiling, edge computing
and caching, and optimal resource allocation of viewport-
adaptive rate-distortion.

The above studies consider that the distribution of video
content popularity is known in advance, which is impractical
in most cases. To handle this limitation, many works use
dynamic caching replacement or online algorithms. Specif-
ically, in [10], the authors think it is impractical to obtain
all of the priori knowledge about user requests in real sce-
nario and thus propose a view synthesis based online caching
algorithm called MaxMinDistance. And [11] is devoted to
solve the 3D video caching problem using Markov Deci-
sion Process (MDP), where Depth Image Based Rendering
(DIBR) is supported to allow the view synthesis. Machine
learning [12]–[15] is also applied to seek the optimal caching
policy with no a-priori knowledge on video content popu-
larity. Based on the tradeoff between the transmission delay
and energy consumption, the authors in [12] propose a long
short-term memory auto-encoder deep deterministic pol-
icy gradient (LSTMAE-DDPG) algorithm to solve the VR
video caching problem. Taking the transcoding of VR into
the account, the authors in [13] formulate the collaborative
caching of edge MBS and SBS as a networked multi-agent
MDP, and propose a multi-agent Actor-Critic algorithm to
minimize the latency of delivery preparation. In [14], the
authors study the proactive 3C resource allocation problem
for supporting VR videos at network edge, and formulate
the problem as an MDP in terms of each kind of resource.
To handle the formulated problem, the DDPG algorithm is
introduced and learn the effective policy. In [15], the authors
propose a reactive caching scheme that assumes unknown
popularity of videos and viewports. Specifically, they first
formulate the 360◦ videos edge caching as an MDP, and
then determine the optimal caching placement using theDeep
Q-Network (DQN) algorithm.

C. MAB-BASED CACHING STRATEGY
As one typical reinforcement learning method, MAB [22]
is a common online learning method for caching replace-
ment. The authors in [23] formulate the optimal content
placement in a small cell base station as a combinatorial
MAB (CMAB) problem. And they further take the switching
cost into account and propose the CUCB with switching
cost (CUCBSC) algorithm [24]. In [25], the authors propose
an online service placement scheme in an MEC-enabled
system with no a-priori knowledge of server demand and
network states, which is analysed by CMAB. In [26], the
authors formulate the wireless caching problem as a con-
textual MAB problem, which considers that similar content
preference is often shared by the users with similar features.
In [27], the authors utilize CMAB to formulate the optimal
caching policy for 360-degree videos to co-optimize users’
quality of experience (QoE) and MEC energy consumption.

For content caching, content replacement should be con-
sidered, which inevitably incurs content switching cost. How-
ever, such switching cost is often neglected for 360-degree
video caching policy design. By joint considering the trans-
mission and switching cost, we utilize the MAB theory to
handle the 360-degree video caching policy problem through
the CUCBSC algorithm. Typically, we try to balance the
tradeoff between caching and computation resource con-
sumption to minimize both content transmission and switch-
ing cost. Moreover, for the generated SPO, a transformation
mechanism is proposed to solve the SPO by MCKP algo-
rithm, which improves the efficiency of the proposed algo-
rithm. Finally, we rigorously analyze the regret bound of the
proposed algorithm.

III. SYSTEM MODEL
A. SYSTEM OVERVIEW
The 360-degree VR caching system is illustrated in Figure 1.
The user plane function (UPF) receives the requests from
end-users and forwards the requests to theMEC or the remote
server. The MEC server is deployed at the edge of network,
which directly serves the users by providing certain caching
and computing capabilities. The maximum caching capacity
of the MEC server is denoted by C and the CPU-cycle fre-
quency is f (in cycles/s). Considering that the transmission
latency of the backhaul link is generally greater than that from
the MEC server to end-users [28], we mainly consider the
transmission latency of the backhaul link.

FIGURE 1. MEC-based 360◦ video caching system.

Note that, 360-degree video tiles stored in the remote
server are 2-dimensional (2D). To ensure an immersive
VR experience, the projection of 2D into 3D shown is
essential [7]. In order to make full use of both the caching
and computing resources of MEC servers, we consider that
MEC can perform transcoding and projection. Therefore,
one 2D tile at highest quality level, called raw tile, can be
transformed into one 3D tile at any quality level by MEC.

A set of V 360-degree videos indexed by v ∈ {1, 2, . . . ,V }
are stored in the remote server in the form of 2D raw video
with highest quality level. Each video is split into M chunks
indexed by m ∈ {1, 2, . . . ,M} and each chunk is divided
spatially into N tiles indexed by n ∈ {1, 2, . . . ,N }. Fur-
thermore, we allow the MEC server to cache both raw and
3D tiles. Each 3D tile is offered at Q quality levels indexed
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TABLE 1. Notations.

by q ∈ {1, 2, . . . ,Q}, while we use q = 0 to indicate that
this is a raw tile for convenient expression. Denote tile n
encoded into the q-th quality level in them-th chunk of video v
with lvmnq. Besides, we define the size of lvmnq as svmnq. Due
to the fact that our system is a dynamic system, we define the
total number of users watching the 360-degree videos in time
period t as U t .

B. CACHING MODEL
For 360-degree video caching in the MEC server, we
introduce 0-1 caching decision variables x tvmnq, where
x tvmnq = 1 represents that lvmnq is stored in the MEC server in
time period t and x tvmnq = 0 otherwise.
For the limited caching capacity, the size of data stored in

the MEC server cannot exceed C . Thus, we can obtain the
capacity constrain as follows:

V∑
v=1

M∑
m=1

N∑
n=1

Q∑
q=0

svmnqx tvmnq ≤ C, ∀t (1)

Caching the raw tiles in MEC consumes less storage
resources, but brings higher transcoding delay. On the con-
trary, caching the 3D tiles reduces delay by sacrificing more
storage. Hence, there is a tradeoff between caching and com-
puting resource consumption. To balance the two, we can
either cache a raw tile, or cache multiple 3D tiles at dif-
ferent quality levels which are transcoded from the former.
Such trade-off relationship between storage and computing
resources can be expressed as:

x tvmnq + x
t
vmn0 ≤ 1, ∀t, ∀v, ∀m, ∀n, ∀q(q 6= 0) (2)

C. REQUEST LATENCY
The VR device sends the user’s requests to the MEC
server, where we can denote the request of user u for tile
lvmnq (q 6= 0) in time period t by d tuvmnq. Further-
more, we can obtain the request number of lvmnq, i.e.,
τ tvmnq =

∑U t

u=1 d
t
uvmnq.

To meet the request d tuvmnq, there exist three situations as
follows:
• When lvmnq can be obtained from the MEC server, i.e.,
x tvmnq = 1, user u can meet the request directly via
the MEC.

• When lvmn0 is stored in the MEC server, i.e.,
x tvmn0 = 1, the MEC server transcodes the raw tile
into the corresponding form, and then transmits lvmnq
to the user. The delay of transcoding can be expressed
as x tvmn0

ω|svmnq−svmn0|
f , where ω (in cycle/bit) is the CPU

cycles when the MEC server processes one bit.
• Otherwise when x tvmnq = 0 and x tvmn0 = 0, the remote
server transmits the requested raw tile lvmn0 to the MEC
server. Then lvmn0 is transcoded into lvmnq, and deliv-
ered to the user. The total delay containing transmis-
sion and transcoding can be expressed as (1 − x tvmnq −

x tvmn0)(
svmn0
r +

ω|svmnq−svmn0|
f ), where r is the minimum

allowable transmission rate of backhaul link.
Therefore, we can obtain the downloading delay D_Rt in

time period t , which is expressed as follows:

D_Rt =
V∑
v=1

M∑
m=1

N∑
n=1

Q∑
q=1

τ tvmnq(
ω|svmnq − svmn0|

f
x tvmn0

+ (
svmn0
r
+
ω|svmnq − svmn0|

f
)

× (1− x tvmnq − x
t
vmn0)) (3)

D. SWITCHING COST
Since theMEC server may cache different content at different
times, the cost of switching content also needs to be consid-
ered. We define the switching cost as the required delay when
the content cached in the MEC is switched.

When one tile needs to be switched into the MEC cache,
i.e., the tile needs to be stored at the current time but not in the
cache at the previous time, there also exist three situations:
• If the tile is a raw tile, i.e., lvmn0, the MEC only needs
to request the corresponding tile from the remote server.
Its transmission delay is expressed as svmn0/r .

• If the tile is one 3D tile lvmnq and its corresponding
raw tile is stored at the previous time, the raw tile
needs to be transcoded into the corresponding quality
level by the MEC server and deleted from the cache,
where the delay consumed by transcoding is x tvmnqx

t−1
vmn0

(1− x t−1vmnq)
ω|svmnq−svmn0|

f .

• If the tile is one 3D tile lvmnq and its corresponding raw
tile is not stored at the previous time, the raw tile needs
to be transmitted to the MEC and transcoded into lvmnq.
So the total delay is x tvmnq(1− x

t−1
vmn0)(1− x

t−1
vmnq)(

svmn0
r +

ω|svmnq−svmn0|
f ).

Therefore, the switching delay D_S t in time period t can
be expressed as:

D_S t =
V∑
v=1

M∑
m=1

N∑
n=1

(x tvmn0(1− x
t−1
vmn0)

svmn0
r

+

Q∑
q=1

(x tvmnq(1− x
t−1
vmnq)((1− x

t−1
vmn0)

svmn0
r

+
ω|svmnq − svmn0|

f
)) (4)
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IV. PROBLEM FORMULATION
Our goal is to minimize the overall delay containing request
latency D_Rt and switching cost D_S t . So we can formulate
the problem as follows:

P1 : min
x

D =
T∑
t=1

(D_Rt + D_S t )

s.t : (1), (2) (5)

where T represents the limited time range, and the overall
delay D can be converted into:

D =
T∑
t=1

V∑
v=1

M∑
m=1

N∑
n=1

(x tvmn0(1− x
t−1
vmn0 −

Q∑
q=1

τ tvmnq)

·
svmn0
r
+

Q∑
q=1

x tvmnq(((1− x
t−1
vmnq)(1− x

t−1
vmn0)

− τ tvmnq)
svmn0
r
+ (1− x t−1vmnq − τ

t
vmnq)

·
ω|svmnq − svmn0|

f
)+

Q∑
q=1

τ tvmnq(
svmn0
r

+
ω|svmnq − svmn0|

f
)) (6)

where it is obvious that some terms are independent of
caching variables, which are as follows:

Cons=
T∑
t=1

V∑
v=1

M∑
m=1

N∑
n=1

Q∑
q=1

τ tvmnq(
svmn0
r
+
ω|svmnq−svmn0|

f
)

(7)

Therefore, the objective function of P1 can be further
simplified by deleting these constant terms. And then the
minimization problem can be turned into a maximization
problem.We firstly define a system reward r t in time period t ,
which is expressed as:

r t =
V∑
v=1

M∑
m=1

N∑
n=1

(x tvmn0(
Q∑
q=1

τ tvmnq + x
t−1
vmn0 − 1)

svmn0
r

+

Q∑
q=1

x tvmnq((τ
t
vmnq − (1− x t−1vmnq)(1− x

t−1
vmn0))

·
svmn0
r
+ (τ tvmnq + x

t−1
vmnq − 1)

ω|svmnq − svmn0|
f

)) (8)

Then our problem can be converted into:

P2 : max
x

T∑
t=1

r t

s.t : (1), (2) (9)

where P2 is equivalent to P1, which is a sequential decision
making problem, and its goal is to maximize the long-term
accumulated system gain over T time periods.

We observe that problem P2 can evolve into a single period
optimization (SPO) problem if tile popularity is known.

FIGURE 2. Swiching and non-switching periods.

In this case, the problem can be tackled in the initial time
period and then the caching content does not need to be
switched in the following periods. However, the assumption
of known content popularity is impractical. To tackle the
problem P2, the estimation of tile popularity is necessary in
each time period, which can be used as the parameter basis for
MEC cache. According to the estimation of tile popularity,
there are two trends in the MEC caching. On one hand, the
MEC server prefers to store what are estimated to be popular
with higher priority in order to maximize the system gain,
which reflects the VR system’s ability of exploitation. On the
other hand, theMEC intends to store those less stored, aiming
at making the estimation of tile popularity increasingly accu-
rate and the popular tiles not to be missed as far as possible,
which is the embodiment of the VR system’s exploration.
Obviously, it is a typical exploit-explore (EE) problem.

The MAB theory is applied to solve the EE problems [22].
Because MEC needs to cache multiple tiles, i.e., to play mul-
tiple base arms in each time period, traditional MAB method
is not suitable where one base arm is played in one iteration.
So the combinatorial MAB (CMAB) framework [29] is uti-
lized to analyze our model, where the set of base arms played
in time period t is called a super arm represented by S t .

V. ONLINE LEARNING-BASED CACHING ALGORITHM
A. CUCBSC ALGORITHM
In our model, each tile lvmnq is a base arm, that is, when a tile
is stored in the MEC server, the corresponding base arm is
played and otherwise the base arm is not played. So the total
number of base arms is L = V ×M ×N × (Q+ 1). Because
P2 is a sequential decision making problem, a caching deci-
sion is made on the MEC server, i.e., a super arm is played in
each time period, and then a comprehensive reward defined
by the objective function which reflects the estimated tile
popularity can be obtained. Considering the existence of
switching cost in the objective function, we introduce the
CUCB with switching cost (CUCBSC) [24] algorithm to
handle P2. The detail of CUCBSC is shown in Algorithm 1.
There are two kinds of time periods: switching periods and

non-switching periods. In a switching period arms can be
switched, that is, the content replacement is allowed in such a
time period. In contrast, in a non-switching period, the cached
contents of MEC remain unchanged, which is designed to
effectively reduce the switching cost. As shown in Figure 2,
there are F − 1 non-switching periods between two adjacent
switching periods.

Specially in switching periods, Oracle is used to choose
a super arm S in each time period. In view that problem
P2 can evolve into a SPO problem in each time period,
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Algorithm 1 CUCBSC
Input: For each arm lvmnq, maintain: (1) Tvmnq as the number

of times arm lvmnq has been played; (2) pvmnq as the
average reward of arm lvmnq so far.

Output: Super arm S t for each period.
1: Initialize: Play each base arm at least once, and update
Tvmnq and pvmnq.

2: Set t = L.
3: Switching period:
4: ∀lvmnq, set p̃vmnq =

pvmnq
pmax
+

√
3 ln t
2Tvmnq

, where pmax =
max{pvmnq}.

5: Set S t = Oracle(̃P), where P̃ = {̃pvmnq|∀lvmnq}.
6: Play S t and update Tvmnq and pvmnq, pvmnq =

pvmnqTvmnq+p
t
vmnq

Tvmnq+1
, Tvmnq = Tvmnq + 1, ∀lvmnq ∈ S t .

7: set t = t + 1.
8: Non-switching period:
9: for i = 1→ F − 1 do

10: ∀lvmnq ∈ S t , pvmnq =
pvmnqTvmnq+p

t
vmnq

Tvmnq+1
, Tvmnq =

Tvmnq + 1.
11: set S t+1 = S t , t = t + 1 and i = i+ 1.
12: end for
13: go to Line 4.

TABLE 2. Illustration of the encoding scheme.

the actual purpose of Oracle is to find an optimal caching
solution to the SPO problem according to parameters P̃ in
line 5 of Algorithm 1 which reflects the currently estimated
tile popularity.

Now, we explain that the SPO problem can be transformed
into a multiple-choice knapsack problem (MCKP) [30].
Specifically, when x tvmn0 = 1, x tvmnq(∀q(q 6= 0)) has to be
equal to 0, and when x tvmn0 = 0, x tvmnq(∀q(q 6= 0)) can
take any value between 0 and 1 within the feasible region.
We utilize a binary coding scheme to enumerate all possible
situations of x tvmn0x

t
vmn1x

t
vmn2 . . . x

t
vmnQ. And after the binary

coding, the corresponding decimal number is denoted with j,
which is shown in Table 2. Furthermore, we utilize the set
Rvmn(j) to record the quality levels of which the value is equal
to 1 among x tvmn0, x

t
vmn1, x

t
vmn2, . . . , x

t
vmnQ, i.e., Rvmn(j) =

{q|xvmnq = 1}.
Therefore, we can regard the SPO problem as an MCKP,

where there are V ∗ M ∗ N classes and each class has
2Q+ 1 options. And the SPO problem can be converted into:

P3 : max
y

V∑
v=1

M∑
m=1

N∑
n=1

2Q∑
j=0

yvmnjpvmnj

s.t. C1 :
V∑
v=1

M∑
m=1

N∑
n=1

2Q∑
j=0

yvmnjwvmnj ≤ C

C2 :
2Q∑
j=0

yvmnj = 1, ∀v,∀m,∀n

C3 : yvmnj ∈ {0, 1}, ∀v,∀m,∀n,∀j (10)

where the binary decision variable yvmnj can be interpreted
into the corresponding caching decision, of which the binary
coding x tvmn0x

t
vmn1x

t
vmn2 . . . x

t
vmnQ is numerically equivalent

to j. The profit pvmnj andweightwvmnj are defined respectively
as follows:

pvmnj =
∑

q∈Rvmn(j)

p′vmnq

wvmnj =
∑

q∈Rvmn(j)

svmnq (11)

where p′vmnq can be obtained from Eq(8), i.e., when q = 0,
p′vmn0 = (

∑Q
q=1 τ

t
vmnq + x t−1vmn0 − 1) svmn0r , and otherwise,

p′vmnq = (τ tvmnq − (1 − x t−1vmnq)(1 − x t−1vmn0))
svmn0
r + (τ tvmnq +

x t−1vmnq − 1)ω(svmnq−svmn0)f .
Due to the fact that MCKP is NP-hard, we utilize a fully

polynomial time approximation scheme (FPTAS) [31] to han-
dle P3, which is shown in Algorithm 2. Please note that
Algorithm 2 is utilized as the Oracle in Algorithm 1, which
returns the caching decision and the corresponding super arm.
Define P∗ as the optimal value of P3, and P as the value
induced by FPTAS. It has been proved that P ≥ (1 − ε)P∗,
where 0 < ε ≤ 1, i.e., the solution is (1−ε)-optimal. Besides,
the total time complexity of FPTAS is O(V 2

× M2
× N 2

×

(2Q + 1)/ε). More detailed proof and algorithm steps can be
found in [31]. Therefore, we can use FPTAS to obtain the
approximate solution of the SPO problem, i.e., to learn which
tiles to be stored in switching periods.

Algorithm 2 FPTAS for Solving Problem 3

Input: Profit P̃ = {̃pvmnq|∀lvmnq}
Output: Caching decision Y
1: Transform the MCKP (P3) into the Continuous MCKP

(CMCKP), where the constraint C3 is relaxed as: 0 ≤
yvmnj ≤ 1, ∀v, ∀m, ∀n, ∀j.

2: Solve the CMCKPwithDyer-ZemelAlgorithm. Then the
solution is Y0 and its corresponding profit is P0.

3: Set the scale factor K = εP0/L.
4: Replace p̃vmnj with avmnj = b

p̃vmnj
K c in MCKP.

5: Use the exact pseudo-polynomial time dynamic pro-
gramming algorithm to obtain a solution Y1 to MCKP
and its corresponding profit P1.

6: Return the more profitable of Y0 and Y1.

B. REGRET BOUND
In this section, we theoretically analyze the performance of
the CUCBSC algorithm. Firstly, the regret is defined as the
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difference between the accumulated reward of the optimal
caching policy and that of our policy which caches the con-
tent according to the approximation algorithm based on the
knowledge of the currently estimated tile population. Assume
that we can obtain at least α fraction of the optimal value
ofP3with a success rate of β by the approximation algorithm.
Due to the division of time periods in CUCBSC, we divide the
regret into the sampling regret and the switching regret, which
are caused by not knowing the tile popularity and switching
the caching content, respectively. The sampling regret until
time period t is defined as follows:

R_R(t) = tαβropt − E[Cons−
t∑

k=1

D_Rk ] (12)

where tαβropt is the accumulated reward of the optimal
caching which is the solution to the SPO problem solved
by Algorithm 2 until time period t . The switching regret
is defined as the expected total switching cost until time
period t , which is expressed as:

R_S(t) = E[
t∑

k=1

D_Sk ] (13)

Then, the regret of the CUCBSC algorithm is the sum of
the sampling regret and switching regret:

R(t) = R_R(t)+ R_S(t) (14)

According to the above definition, we present a regret
bound for the CUCBSC algorithm, of which the complete
proof is shown in Appendix.

Let µ = (µ1, µ2, . . . , µL) be the vector of expectations
of all base arms, where L is the number of all base arms.
According to [29], there exists a strictly increasing function
f (·) which is called bounded smoothness function, and for any
two expectation vectors µ and µ′, we have |rµ− rµ′ | ≤ f (3)
if maxi∈L|µi −µ′i| ≤ 3, where i represents the i-th base arm
and L is the set of all base arms. A super arm is bad if the
reward satisfies the following formula: rµ(S) < α·ropt , and its
corresponding time period is called a bad period. We define
SB = {S|rµ(S) < α · ropt } as the set of bad super arms.
Similarly, SG = {S|rµ(S) >= α · ropt } is defined as the set of
good super arms. Furthermore, we define 1i

max = α · ropt −
min{rµ(S)|S ∈ SB, i ∈ S}, 1i

min = α · ropt − max{rµ(S)|S ∈
SB, i ∈ S}, and 1max = maxi∈L1i

max , 1min = mini∈L1i
min.

We denote a counter for each base arm which is updated in
each bad period byNi,t . In any bad period t , we choose the i-th
base arm which has the smallest value of Ni,t−1 in S t , and set
Ni,t = Ni,t−1+1. Specially, when there exist multiple choices
to update Ni,t , only one of the counters is chosen arbitrarily
and updated. Based on the above definition,

∑
i∈L Ni,t is the

number of bad periods until time period t .
Lemma 1: The expected value of the counter Ni,t is

denoted by N t = E[
∑

i∈L Ni,t ], which is given by:

N t ≤ (1− β)bF + L(
Fπ2

3
+ F +

6 ln t
(f −1(1min))2

) (15)

where b is the number of switching periods until time period t,
and F is related to the number of continuous non-switching
periods.

On the basis ofLemma1 and (12), we can obtain the bound
of the sampling regret.
Theorem 1: The sampling regret of the CUCBSC algo-

rithm is bounded by:

R_R(t) ≤ (
Fπ2

3
+ F +

6 ln t
(f −1(1min))2

)L1max (16)

In order to bound the switching regret, we introduce SwB(t)
to count the number of switches to super arms in SB.
Lemma 2: The number of switches to super arms in SB is

at most:

SwB(t) ≤ (1− β)b+
L
F
(
Fπ2

3
+ F +

6 ln t
(f −1(1min))2

+
6 ln(1+ F−1

L+1 )

(f −1(1min))2
− 1) (17)

Theorem 2: The switching regret of the CUCBSC algo-
rithm is bounded by:

R_S(t) ≤ SwB(t) · 2(Cu − Cl)+ L · Cu + b · Cl (18)

where Cu is the maximum cost of switching between super
arms, and Cl is the maximum cost of switching between good
super arms.

Assume that there exists a unique optimal solution to the
SPO problem, and Algorithm 2 can always find the optimal
solution, where α = β = 1 and Cl = 0. In this case, we have
the following theorem which provides the regret bound of the
CUCBSC algorithm.
Theorem 3: When there exists a unique optimal solution to

the SPO problem, where α = β = 1 and Cl = 0, the regret
bound of the CUCBSC algorithm is given by:

R(t) ≤ L(
6 ln t

(f −1(1min))2
+
Fπ2

3
+ F)(1max +

2Cu
F

)

+
2LCu
F

(
6 ln(1+ F−1

L+1 )

(f −1(1min))2
− 1)+ LCu (19)

Note that, the regret in Theorem 3 grows logarithmically
in t . Furthermore, if we don’t take the switching regret into
account and F = 1, i.e., each time is a switching period,
(16) is equal to the regret bound of CUCB. Theorem 3 is
an extension of the CMAB theory [29].

VI. SIMULATION AND PERFORMANCE ANALYSIS
A. SIMULATION SETTING
In this section, numerical simulations are presented to eval-
uate the performance of CUCBSC. Regarding the content, a
360-degree video library is set to contain V = 20 files. The
length of each 360-degree video is set to 10s, and each video
is split into M = 5 chunks (i.e. each chunk is set to 2s and
contains 60 frames with 30fps [13]). Each chunk is divided
intoN = 24 tiles. Each tile can be encoded at two resolutions:
640 × 540 and 320 × 270 pixels, that is, Q = 2. So the
resolution of complete 360-degree video is 3840 × 2160 at
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high quality, and 1920×1080 at low quality [32]. And the size
of one tile is set to 12Mbits at high quality, and 4Mbits at low
quality. Due to the fact that the ratio of the tile size of 3D to
that of 2D is usually set to λ ≥ 2 [7], the size of one raw tile is
set to 6Mbits. Both the video popularity and chunk popularity
follow the Zipf distribution with parameter 0.8, while the
popularity of tiles in the same chunk follows the uniform
distribution [33]. The preference of quality level is set to be
random [6]. The number of users ranges from 50 to 100. For
the MEC server, the cache capacity of the MEC server is
C = 20G, and the CPU-cycle frequency is f = 5GHz. When
the MEC server processes one bit, the CPU cycles consumed
is ω = 10 [7]. The minimum allowable transmission rate of
the backhaul link is set to r = 640Mbps [10]. Lastly, in the
CUCBSC algorithm, F is set to 10 [24], i.e., there are 9 non-
switching periods between two adjacent switching periods.

B. BASELINE ALGORITHMS
To better evaluate the performance of the proposed
algorithms, we introduce the following algorithms for
comparison:
• LRU algorithm. The LRU algorithm is a common
replacement algorithm. Considering the particularity of
the established model, we make the MEC server cache
only 3D tiles in LRU.

• LFU algorithm. The LFU algorithm is another common
replacement algorithm. Similarly to LRU, MEC only
caches 3D tiles.

• CUCB algorithm. The CUCB algorithm is introduced
in [29], where the switching cost is not taken into
account.

• Cons-UCBSC algorithm. The Cons-UCB algorithm
is another UCB algorithm which is introduced in [28]
to solve the optimal video caching problem at mobile
edges. There are two main differences between
Cons-UCB and CUCB: (1) the perturbation term is set as

p̃vmnq =
pvmnq
pmax
+

√
2 lnCt
Tvmnq

, where C is equal to the MEC

cache capacity. (2) the approach to choose a super arm
in each iteration is to sort all the arms in descending
order by the value of p̃vmnq, and to play arms in this
order until theMEC caching capacity is full. In view that
problemP3 isMCKP, some adjustments are made on the
above approach: firstly we select one choice with larger
pvmnq for each class, and then repeat the operations of
(2) for selected choices. Similarly to CUCBSC, Cons-
UCBSC takes the switching cost into account based on
Cons-UCB.

• ICUCBSC algorithm. In light of the references [10],
[33], the popularity of VR content follows the Zipf-
like distribution. Due to the fact that popular tiles are
in the minority of total tiles in the Zipf-like distribu-
tion, the over exploration of the perturbation in line 5
of CUCBSC is unfriendly to the Zipf-like distribution,
which may result in constant caching of unpopular tiles.
Although the estimated tile popularity is increasingly

accurate as time goes on, CUCB may take quantities of
iterations to learn an optimal caching decision, of which
the time cost is unacceptable. Therefore, similarly to
the reference [23], we propose an improved CUCBSC
(ICUCBSC), where the perturbation in line 5 of
Algorithm 1 is converted into:

p̃vmnq =
pvmnq
pmax

+

√
3 ln (Umax t)
2UmaxTvmnq

(20)

where Umax is the maximum number of users served
by MEC. When parameter Umax is large, the exploita-
tion of the algorithm is promoted, which can effectively
reduce the probability of caching unpopular tiles when
the Zipf-like distribution is skewed.

• Optimal algorithm. In the optimal algorithm, it is
assumed that the tile popularity is known in advance,
which can be substituted into the SPO problem, i.e. P3.
Therefore, Algorithm 2 can be utilized to optimally
solve the problem and achieving the optimal caching
strategy.

• DRL algorithm. [12] proposes a method based on deep
reinforcement learning (DRL) which jointly considers
the deterministic offloading and the dynamic caching
replacement of 360◦ videos. And the cache part of this
method is chosen as one of algorithms to compare. Due
to the difference of the models, to make a comparable
experiment, we adopt their MDP model and replace the
prediction of the unknown tile popularity with historical
requests in the model states.

C. PERFORMANCE ANALYSIS
Firstly, we evaluate the average learning regret of the four
UCB algorithms through 1× 106 iterations. Then we change
the MEC cache size, and analyze the performance of all
algorithms, including two replacement algorithms, in terms
of average request delay, total switching delay and hit ratio.
In order to better reflect the learning performance, we set the
number of iterations as 1× 105, which is much smaller than
that in the former training. And data are collected in the last
1000 times.

1) AVERAGE LEARNING REGRET
Figure 3 shows the average learning regret of these UCB
algorithms, where the average regret of each UCB algo-
rithm is on the decrease and trends to stabilize. It is obvious
that the CUCBSC performs better than CUCB and Cons-
UCBSC. Furthermore, the learning regret of ICUCBSC is
much smaller than CUCBSC, and it is practically steady
after few time periods, which proves that the improvement
of ICUCBSC is effective and speeds up the learning process.

Figure 4 and Figure 5 show the switching regret and the
sampling regret, respectively. We observe that Cons-UCBSC
have smaller switching regret than CUCB, which results
from the fact that Cons-UCBSC takes the switching cost into
account. On the contrary, due to the limitation of the approach
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FIGURE 3. Average total learning regret of different UCB algorithms.

FIGURE 4. Average switching regret of different UCB algorithms.

FIGURE 5. Average sampling regret of different UCB algorithms.

to solve the SPOs, the sampling regret of Cons-UCBSC is
larger than CUCB.

2) REQUEST DELAY AND SWITCHING DELAY
Figure 6 shows the influence of MEC cache size on the
average request delay under eight algorithms. It is observed
that the average request delay per user is on the decrease
with the increase ofMEC cache capacity. Obviously, Optimal
and ICUCBSC perform best, followed by CUCBSC. And the
performance of optimal algorithm and ICUCBSC is almost

FIGURE 6. Average request delay under different algorithms.

FIGURE 7. Average switching delay under different UCB algorithms.

the same in terms of average request delay, which confirms
the performance of the ICUCBSC algorithm. The DRL algo-
rithm obtains better request delay than the LRU and LRU
strategies, however, comparing to the other algorithms, it has
larger request delay.

Since that once new tiles are sent to the MEC server,
caching replacement should be simultaneously considered in
LRU, LFU and DRL, and MEC only stores the theoretical
optimal solution in Optimal, Figure 7 shows only the aver-
age switching delay of each UCB algorithm. Obviously, the
switching delay of CUCB is much larger than other UCB
algorithms, which is consistent with the fact that it does not
consider switching cost. Moreover, with the increase of the
MEC cache, the content that needs to be switched increases,
and the switching delay of CUCB is on the increase. And the
curves of other UCB algorithms are more stable than that of
CUCB due to the optimization of switching cost.

3) HIT RATIO
Firstly, due to the fact that MEC stores raw tiles and 3D tiles
at the same time, but the requested tiles are 3D tiles, we define
the hit as follows: for a requested tile, either it or its raw form
which is stored in the MEC cache is a hit. So the hit ratio is
the ratio of the number of hits to that of requests.
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FIGURE 8. Hit ratio of all tiles for different algorithms.

FIGURE 9. Hit ratio of raw tiles for different algorithms.

FIGURE 10. Hit ratio of 3D tiles for different algorithms.

Figure 8 shows the effect of MEC cache size under dif-
ferent caching algorithms in terms of hit ratio. With the
increase of the MEC cache, the hit ratios of all algorithms
are on the increase. It is interesting to see that CUCB and
Optimal have almost the same performance and outperform
other algorithms, followed by ICUCBSC. To further analyze
the phenomenon, we plot the Figure 9 and Figure 10, which
show the hit ratios of raw tiles and 3D tiles, respectively.
Due to the fact that MEC stores only 3D tiles in LRU and
LFU, these two algorithms are not included in Figure 9
and Figure 10.

From Figure 9 and Figure 10, we observe that with the
increase of the MEC cache, the hit ratios of raw tiles decrease
under all algorithms except Cons-UCBSC, while the hit ratios
of 3D tiles are on the increase. Compared with other algo-
rithms, CUCB stores more raw tiles which leads to higher
total hit ratios. In contrast, Cons-UCB almost stores only
3D tiles, and thus its hit ratios of 3D tiles are the highest.
Furthermore, Optimal algorithm does not perform best in
Figure 9 and Figure 10, but the sums of its two hit ratios,
i.e. its total hit ratios, are the highest. Whilst CUCBSC and
ICUCBSC trade off between caching raw tiles and 3D tiles for
achieving a lower transmission latency and switching latency,
which is demonstrated in Figure 6 and Figure 7.

VII. CONCLUSION
In this paper, we study the optimal 360-degree video caching
problem in an MEC-enabled VR system, where edge caching
and transcoding are jointly considered. Besides, we note that
the cost during the content replacement is an important issue
which is often neglected in the exiting works. Based on the
above considerations, we model the problem as a CMAB
problem, and introduce the CUCBSC algorithm to solve the
former problem. On the basis of CUCBSC, an improved
CUCBSC (ICUCBSC) is proposed to speed up the learning
process for practical usage in the video caching scenario.
The simulation results show the superior performance of the
proposed algorithm and prove its efficiency.

PROOF OF THEOREM 1
Firstly, we consider the expected number of bad periods.
Define lt = 6 ln t

(f −1(1min))2
[29]. To bound the counterNi,t , which

is updated in bad periods, we introduce the counter Tvmnq,
which is used to count the times one base arm played in the
CUCBSC algorithm. To be consistent with the form of Ni,t ,
we use Ti,t as its new formwhere i = (v−1)·M ·N ·Q+(m−1)·
N ·Q+ (n− 1) ·Q+ q. From the two definitions, Ti,t ≥ Ni,t .
We define b as the total number of switching periods until
time period t , and cj as the time of the j-th switching period,
where j ≤ b and cb ≤ t .We denote the event thatAlgorithm2
outputs a super arm which is not α times the optimal in a
switching period t by Et . So the bound of the number of bad
periods until time t is given by:

L∑
i=1

Ni,t (21a)

=

t∑
k=L+1

I{S t ∈ SB} + L (21b)

≤

b∑
j=1

I{Scj ∈ SB} · F + L (21c)

=

b∑
j=1

L∑
i=1

I{Scj ∈ SB,Ni,cj > Ni,cj−1}

·F + L (21d)
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≤

b∑
j=1

L∑
i=1

I{Scj ∈ SB,Ni,cj > Ni,cj−1,Ni,cj−1 ≥ lt }

·F + L(1+ lt + F − 1) (21e)

=

b∑
j=1

I{Scj ∈ SB,Ni,cj−1 ≥ lt ,∀i ∈ Scj}

·F + L(lt + F) (21f)

≤

b∑
j=1

I{Scj ∈ SB,Ni,cj−1 ≥ lcj ,∀i ∈ Scj}

·F + L(lt + F) (21g)

≤

b∑
j=1

(I{Ecj , S
cj ∈ SB,Ni,cj−1 ≥ lcj ,∀i ∈ Scj}

+ I{Ecj}) · F + L(lt + F) (21h)

≤

b∑
j=1

I{Ecj , S
cj ∈ SB,Ti,cj−1 ≥ lcj ,∀i ∈ Scj} · F

+

b∑
j=1

I{Ecj} · F + L(lt + F) (21i)

where (21b) is based on the assumption that super arms
played in the initialization stage of of the CUCBSC algorithm
are bad, and I(A) indicates whether one event A is true, that
is, I(A) = 1 if A is true and otherwise I(A) = 0; in (21c)
we use the fact that only in switching periods can arms be
switched; (21d) follows from the fact that only one Ni,cj is
updated in each bad period; the first line of (21e) denotes the
counters which are larger than lt arm summed, and the second
line bounds the counters which are smaller than lt ; (21f) is
based on the updating rules of Ni,cj that only the one with the
smallest counter among the played arms can be updated in
each bad period; (21g) follows from the definition of lt , and
that t ≥ cj; we divide the first line of (21g) based on whether
there are errors in the solution of super arms, and then we
obtain (21h); (21i) follows since Ti,t ≥ Ni,t .

To obtain the bound on the expected number of bad peri-
ods until time period t , N t , it is necessary to compute the
probability of {Ecj , S

cj ∈ SB,Ti,cj−1 ≥ lcj ,∀i ∈ Scj} being
true, which means that Algorithm 2 has not failed to find
the super arm, the j-th switching period is a bad period, and
all base arms played in Scj have been chosen more than lcj
times, where cj ≤ t . With the similar techniques based on the
Chernoff-Hoeffding’s inequality in [29], we can obtain that
P{Ecj , S

cj ∈ SB,Ti,cj−1 ≥ lcj ,∀i ∈ S
cj} ≤ 2 · L · c−2j . Then

we can get

E[
b∑
j=1

I{Ecj , S
cj ∈ SB,Ti,cj−1 ≥ lcj ,∀i ∈ Scj} · F] (22a)

≤ F
b∑
j=1

2 · L · c−2j (22b)

≤ 2FL
∞∑
j=1

c−2j (22c)

≤
FLπ2

3
(22d)

where (22b) follows since we use P{Ecj , S
cj ∈ SB,Ti,cj−1 ≥

lcj ,∀i ∈ Scj} ≤ 2 · L · c−2j ; in (22c), we broaden the upper
bound to infinity; (22d) is obtained from the Riemann zeta
function with parameter 2.

Then we can obtain the upper bound on the expected
number of bad periods until time period t on the basis of (21),
(22) and the fact that E[I{Ecj}] = 1− β.

N t ≤ E[
b∑
j=1

I{Ecj , S
cj ∈ SB,Ti,cj−1 ≥ lcj ,∀i ∈ Scj}F]

+E[
b∑
j=1

I{Ecj}F]+ E[L(lt + F)] (23a)

≤ (1− β)bF + L(
Fπ2

3
+ F +

6 ln t
(f −1(1min))2

) (23b)

Note that, each time we choose a bad super arm in time
period t , the generated regret is at most 1max . Then we
plug (23) into (12), and obtain the sampling regret as follows.

R_R(t) ≤ tαβropt − (tαropt − N t1max) (24a)

≤ (
Fπ2

3
+ F +

6 ln t
(f −1(1min))2

)L1max (24b)

PROOF OF THEOREM 2
Now, we consider the regret bound corresponding to the
switching cost. Due to the fact that only in the switching
periods can the arms be switched, the switching cost remains
constant during the non-switching periods. Thus, the regret
bound of the expected switching cost until period t can be
expressed as:

R_S(t) (25a)

= E[
t∑

k=1

D_Sk ] (25b)

= E[
b∑
j=1

V∑
v=1

M∑
m=1

N∑
n=1

I{lvmn0 ∈ Scj , lvmn0 /∈ Scj−1}
svmn0
r

+

Q∑
q=1

(I{lvmnq ∈ Scj , lvmnq /∈ Scj−1 , lvmn0 /∈ Scj−1}

·
svmn0
r
+ I{lvmnq ∈ Scj , lvmnq /∈ Scj−1}

·
ω|svmnq − svmn0|

f
)]+ LCu (25c)

≤ E[
b∑
j=1

V∑
v=1

M∑
m=1

N∑
n=1

Q∑
q=0

I{lvmnq ∈ Scj , lvmnq /∈ Scj−1}

·(
svmn0
r
+
ω|svmnq − svmn0|

f
)]+ LCu (25d)
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where (25b) is the definition of the expected switching regret
until period t; the first three items of (25c) are the expansion
of (25b), which is equivalent to (4), and the last item follows
since we assume that in the initialization stage of of CUCBSC
algorithm, the switching cost is the maximum cost of switch-
ing between super arms; we relax the conditions in the second
line of (25c) and obtain (25d).

For simplicity, we use i to denote the arm lvmnq, and define
Hi as

svmn0
r +

ω|svmnq−svmn0|
f . Then, we can further boundR_S(t),

which is given by:

R_S(t) (26a)

= E[
b∑
j=1

L∑
i=1

I{i ∈ Scj , i /∈ Scj−1}Hi]+ LCu (26b)

= E[
b∑
j=1

L∑
i=1

Hi(I{i ∈ Scj , i /∈ Scj−1 , Scj ∈ SB}

+ I{i ∈ Scj , i /∈ Scj−1 , Scj /∈ SB})]+ LCu (26c)

= E[
b∑
j=1

L∑
i=1

Hi(I{Ti,cj > Ti,cj−1 , i /∈ S
cj−1 , Scj ∈ SB}

+ I{i ∈ Scj , i /∈ Scj−1 , Scj /∈ SB})]+ LCu (26d)

≤ CuE[
b∑
j=1

I{
L∑
i=1

Ti,cj >
L∑
i=1

Ti,cj−1 , i /∈ S
cj−1 , Scj ∈ SB}]

+E[
b∑
j=1

L∑
i=1

I{i ∈ Scj , i /∈ Scj−1 , Scj /∈ SB}Hi]+ LCu

(26e)

≤ CuE[
b∑
j=1

I{
L∑
i=1

Ni,cj >
L∑
i=1

Ni,cj−1}]

+E[
b∑
j=1

L∑
i=1

I{i ∈ Scj , i /∈ Scj−1 , Scj /∈ SB}Hi]+ LCu

(26f)

= Cu
b∑
j=1

N cj+1−1 − N cj−1

F︸ ︷︷ ︸
SwB(t)

+E[
b∑
j=1

L∑
i=1

I{i ∈ Scj , i /∈ Scj−1 , Scj /∈ SB}Hi]+ LCu

(26g)

≤ CuSwB(t)+ SwB(t)Cu + (b− 2SwB(t))Cl + LCu (26h)

= 2SwB(t)(Cu − Cl)+ LCu + bCl (26i)

where (26b) is equivalent to (25d); in (26c), we divide the
first item of (26b) into two parts according to whether the
super arm is bad; (26d) follows since that Ti,t is updated
when its corresponding arm is played in time period t; (26e)
follows since we use Cu to denote the maximum cost of
switching between super arms; (26f) follows based on the
fact that in each bad period only one counter Ni,t is updated;

in (26g), we use the fact that
∑
Ncj+1−1−

∑
Ncj−1

F is one if∑
Ncj+1−1 >

∑
Ncj−1, and zero otherwise, and denote∑b

j=1
N cj+1−1−N cj−1

F with SwB(t), which represents a bound
on the number of switches to bad super arms; in (26h),
we assume that when a switching period is bad, its next
switching period is good so as to minimize the number of
consecutive plays of good super arms; and (26i) proves (18).

PROOF OF THEOREM 3
From the definition of SwB(t):

SwB(t) =
N cb+1−1 − L

F
(27)

We plug (23) into (27), and use the fact that cb ≤ t < cb+1
and t ≥ L + 1. The bound of SwB(t) is given by:

SwB(t) ≤ (1− β)b+
L
F
(
Fπ2

3
+ F +

6 ln t
(f −1(1min))2

+
6 ln(1+ F−1

L+1 )

(f −1(1min))2
− 1) (28)

Therefore, we can obtain the bound of switching regret,
which is expressed as:

R_S(t) ≤ 2((1− β)b+
L
F
(
Fπ2

3
+ F +

6 ln t
(f −1(1min))2

+
6 ln(1+ F−1

L+1 )

(f −1(1min))2
− 1))(Cu − Cl)

+LCu + bCl (29)

Based on the assumption that there exists a unique optimal
solution to the SPO problem, that is, α = β = 1 and Cl = 0,
we plug (24) and (29) into (14), which proves (19).

REFERENCES
[1] J. Le Feuvre and C. Concolato, ‘‘Tiled-based adaptive streaming using

MPEG-DASH,’’ in Proc. 7th Int. Conf. Multimedia Syst., May 2016,
pp. 1–3.

[2] J. Liu, G. Simon, X. Corbillon, J. Chakareski, and Q. Yang, ‘‘Delivering
viewport-adaptive 360-degree videos in cache-aided MEC networks,’’ in
Proc. IEEE Int. Symp. Broadband Multimedia Syst. Broadcast. (BMSB),
Oct. 2020, pp. 1–6.

[3] J. Shi, L. Pu, and J. Xu, ‘‘Allies: Tile-based joint transcoding, delivery and
caching of 360◦ videos in edge cloud networks,’’ in Proc. IEEE 13th Int.
Conf. Cloud Comput. (CLOUD), Oct. 2020, pp. 337–344.

[4] J. Liu, Q. Yang, and G. Simon, ‘‘Congestion avoidance and load balancing
in content placement and request redirection for mobile CDN,’’ IEEE/ACM
Trans. Netw., vol. 26, no. 2, pp. 851–863, Apr. 2018.

[5] P. Maniotis, E. Bourtsoulatze, and N. Thomos, ‘‘Tile-based joint caching
and delivery of 360◦ videos in heterogeneous networks,’’ in Proc. IEEE
21st Int. Workshop Multimedia Signal Process. (MMSP), Sep. 2019,
pp. 1–6.

[6] Q. Lu, C. Li, J. Zou, K. Tang, Q. Wang, and H. Xiong, ‘‘Transcoding-
enabled edge caching and delivery for tile-based adaptive 360-degree
video streaming,’’ in Proc. IEEE Vis. Commun. Image Process. (VCIP),
Dec. 2019, pp. 1–4.

[7] Y. Sun, Z. Chen, M. Tao, and H. Liu, ‘‘Communications, caching, and
computing for mobile virtual reality: Modeling and tradeoff,’’ IEEE Trans.
Commun., vol. 67, no. 11, pp. 7573–7586, Nov. 2019.

[8] T. Dang, M. Peng, Y. Liu, and C. Liu, ‘‘Joint bandwidth, caching, and
computing resource allocation for mobile VR delivery in F-RANs,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.

VOLUME 10, 2022 80725



Z. Yu et al.: Bandit Learning-Based Edge Caching for 360-Degree Video Streaming With Switching Cost

[9] J. Chakareski, ‘‘Viewport-adaptive scalable multi-user virtual real-
ity mobile-edge streaming,’’ IEEE Trans. Image Process., vol. 29,
pp. 6330–6342, 2020.

[10] J. Dai, Z. Zhang, S. Mao, and D. Liu, ‘‘A view synthesis-based 360◦ VR
caching system over MEC-enabled C-RAN,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 30, no. 10, pp. 3843–3855, Oct. 2020.

[11] M. Yeh, C.-H. Wang, D.-N. Yang, J.-T. Lee, and W. Liao, ‘‘Mobile proxy
caching for multi-view 3D videos with adaptive view selection,’’ IEEE
Trans. Mobile Comput., vol. 21, no. 8, pp. 2909–2921, Aug. 2022.

[12] C. Zheng, S. Liu, Y. Huang, and L. Yang, ‘‘MEC-enabled wireless VR
video service: A learning-based mixed strategy for energy-latency trade-
off,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), May 2020,
pp. 1–6.

[13] H. Xiao, C. Xu, Z. Feng, R. Ding, S. Yang, L. Zhong, J. Liang,
and G.-M. Muntean, ‘‘A transcoding-enabled 360◦ VR video caching
and delivery framework for edge-enhanced next-generation wireless net-
works,’’ IEEE J. Sel. Areas Commun., vol. 40, no. 5, pp. 1615–1631,
May 2022.

[14] W. Chen, Q. Song, P. Lin, L. Guo, and A. Jamalipour, ‘‘Proactive
3C resource allocation for wireless virtual reality using deep reinforce-
ment learning,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2021, pp. 1–6.

[15] P. Maniotis and N. Thomos, ‘‘Viewport-aware deep reinforcement learning
approach for 360◦ video caching,’’ IEEE Trans. Multimedia, vol. 24,
pp. 386–399, 2021.

[16] A. Zare, A. Aminlou, and M. M. Hannuksela, ‘‘Virtual reality content
streaming: Viewport-dependent projection and tile-based techniques,’’ in
Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2017, pp. 1432–1436.

[17] S. Mangiante, G. Klas, A. Navon, Z. GuanHua, J. Ran, and M. D. Silva,
‘‘VR is on the edge: How to deliver 360◦ videos in mobile networks,’’
in Proc. Workshop Virtual Reality Augmented Reality Netw., Aug. 2017,
pp. 30–35.

[18] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, ‘‘360ProbDASH: Improving
QoE of 360 video streaming using tile-based HTTP adaptive streaming,’’
in Proc. 25th ACM Int. Conf. Multimedia, Oct. 2017, pp. 315–323.

[19] C. Guo, Y. Cui, and Z. Liu, ‘‘Optimal multicast of tiled 360 VR video,’’
IEEE Wireless Commun. Lett., vol. 8, no. 1, pp. 145–148, Feb. 2019.

[20] T. Xu, Y. Sun, S. Xia, H. Li, L. Luo, and Z. Chen, ‘‘Optimal bandwidth allo-
cation with edge computing for wireless VR delivery,’’ in Proc. IEEE/CIC
Int. Conf. Commun. China (ICCC), Aug. 2019, pp. 903–907.

[21] N. Kan, J. Zou, K. Tang, C. Li, N. Liu, and H. Xiong, ‘‘Deep rein-
forcement learning-based rate adaptation for adaptive 360-degree video
streaming,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2019, pp. 4030–4034.

[22] P. Auer, ‘‘Finite-time analysis of the multiarmed bandit problem,’’ Mach.
Learn., vol. 47, pp. 235–256, May 2002.

[23] P. Blasco and D. Gunduz, ‘‘Learning-based optimization of cache content
in a small cell base station,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2014, pp. 1897–1903.

[24] P. Blasco and D. Gunduz, ‘‘Multi-armed bandit optimization of cache
content in wireless infostation networks,’’ in Proc. IEEE Int. Symp. Inf.
Theory, Jun. 2014, pp. 51–55.

[25] W. He, D. He, Y. Huang, Y. Zhang, Y. Xu, G. Yun-feng, and W. Zhang,
‘‘Bandit learning-based service placement and resource allocation for
mobile edge computing,’’ inProc. IEEE 31st Annu. Int. Symp. Pers., Indoor
Mobile Radio Commun., Aug. 2020, pp. 1–6.

[26] Y. Du, P. Gao, X. Wang, B. Dong, Z. Chen, and S. Li, ‘‘Monte-carlo tree
search aided contextual online learning approach for wireless caching,’’ in
Proc. IEEE Globecom Workshops (GC Wkshps), Dec. 2018, pp. 1–7.

[27] Z. Yu, J. Liu, S. Liu, and Q. Yang, ‘‘Co-optimizing latency and energy with
learning based 360◦ video edge caching policy,’’ in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Apr. 2022, pp. 2262–2267.

[28] Y. Hao, L. Hu, Y. Qian, and M. Chen, ‘‘Profit maximization for video
caching and processing in edge cloud,’’ IEEE J. Sel. Areas Commun.,
vol. 37, no. 7, pp. 1632–1641, Jul. 2019.

[29] W. Chen, Y. Wang, and Y. Yuan, ‘‘Combinatorial multi-armed bandit:
General framework and applications,’’ in Proc. 30th Int. Conf. Int. Conf.
Mach. Learn., vol. 28, 2013, pp. I-151–I-159.

[30] H. Kellerer, U. Pferschy, and D. Pisinger, ‘‘The multiple-choice knapsack
problem,’’ in Knapsack Problems. Berlin, Germany: Springer, 2004.

[31] M. Bansal, V. Venkaiah, and C. Venkaiah, ‘‘Improved fully polynomial
time approximation scheme for the 0-1 multiple-choice knapsack prob-
lem,’’ Int. Inst. Inf. Technol., Hyderabad, India, Tech. Rep., 2004.

[32] A. Mahzari, A. T. Nasrabadi, A. Samiei, and R. Prakash, ‘‘FoV-aware edge
caching for adaptive 360◦ video streaming,’’ in Proc. 26th ACM Int. Conf.
Multimedia, Oct. 2018, pp. 173–181.

[33] J.-T. Lee, D.-N. Yang, and W. Liao, ‘‘Efficient caching for multi-view 3D
videos,’’ in Proc. IEEEGlobal Commun. Conf. (GLOBECOM), Dec. 2016,
pp. 1–7.

ZHENDONG YU received the B.S. degree in com-
munication engineering from Xidian University,
Xi’an, China, in 2019, where he is currently pursu-
ing the M.S. degree in information and communi-
cation. His research interests include mobile edge
computing and wireless VR transmission.

JIAYI LIU (Member, IEEE) received the Bachelor
of Science degree in electronic engineering from
Xidian University, Xi’an, China, in 2007, the Mas-
ter of Science degree in computer science from
Télécom Bretagne, France, in 2009, and the Ph.D.
degree from the University of Rennes 1, France,
in 2013. Since 2014, she has been working as a
Lecturer with the School of Telecommunication
Engineering, Guangzhou Institute of Technology,
Xidian University. Her research interests include

5/6G networks, content distribution, network resource scheduling, and
AI enabled network management.

CHEN WANG received the Bachelor of Science
degree in computer science from Tongji Univer-
sity, Shanghai, China, in 2007, the Master of Sci-
ence degree in computer science from Télécom
Bretagne, France, in 2009, and the Ph.D. degree
from the National Institutes of Science and Tech-
nology, France, in 2013. He worked as a Research
Scientist with Bosch China, from 2014 to 2017.
Since 2017, he has been working as a Research
Scientist with Huawei Technologies. His current

research interests include machine learning algorithms and AI applications.

QINGHAI YANG (Member, IEEE) received the
B.S. degree in communication engineering from
the Shandong University of Technology, China,
in 1998, the M.S. degree in information and
communication systems from Xidian University,
China, in 2001, and the Ph.D. degree in com-
munication engineering from Inha University,
South Korea, in 2007. From 2007 to 2008,
he was a Research Fellow with UWB-ITRC,
South Korea. Since 2008, he has been a Full Pro-

fessor with Xidian University. His current research interests include auto-
nomic communication, content delivery networks, and 6G. He has won the
University-President Award for his Ph.D. degree from Inha University.

80726 VOLUME 10, 2022


