
Received 13 June 2022, accepted 26 June 2022, date of publication 28 July 2022, date of current version 2 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3194650

Spectral-Spatial Classification of Hyperspectral
Images Using BERT-Based Methods With
HyperSLIC Segment Embeddings
IBRAHIM ONUR SIGIRCI AND GOKHAN BILGIN
Department of Computer Engineering, Yildiz Technical University (YTU), Davutpasa Campus, 34220 Istanbul, Turkey
Signal and Image Processing Laboratory (SIMPLAB), Yildiz Technical University (YTU), 34220 Istanbul, Turkey

Corresponding author: Gokhan Bilgin (gbilgin@yildiz.edu.tr)

This work was supported by Yildiz Technical University, Scientific Research Projects Coordination Unit,
under Project 2014–04-01–KAP01.

ABSTRACT The classification performance is highly affected because hyperspectral images include many
bands, have high dimensions, and have few labeled training samples. This challenge is reduced by using rich
spatial information and an effective classifier. The classifiers in this study are BERT-based (Bidirectional
Encoder Representations from Transformers) models, which have recently been applied in natural language
processing. The BERT model and its performance-improved version, the ALBERT (A Lite BERT) model,
are utilized as transformer-based models. Because of their structure, these models can also accept spatial
information via ‘segment embeddings’. Segmentation algorithms are commonly used in the literature to get
spatial information. Superpixel methods have shown superior results in the segmentation literature due to
the utility of working at the superpixel level rather than the conventional pixel level. HyperSLIC, a modified
version of the SLIC superpixel method for hyperspectral images, is employed as input to BERT-basedmodels
in this study. In addition, HyperSLIC segmentation results are merged with the DBSCAN algorithm for
similar superpixels to increase the size of spatially similar areas and called as HyperSLIC-DBSCAN. The
effects of segment embedding information on classification accuracy in BERT-based models is studied
experimentally. Experimental results show that BERT-based models outperform conventional and deep
learning-based 1D/2D convolutional neural network classifiers when spatial information is used with the
help of segment embedding information.

INDEX TERMS ALBERT, BERT, classification, hyperspectral images, hyperSLIC, segmentation,
transformers.

I. INTRODUCTION
Hyperspectral images are obtained through sensors that can
capture the reflection of electromagnetic waves in the vis-
ible and infrared regions of the electromagnetic spectrum.
It contains rich information both spatially and spectrally, as it
consists of bands received at frequent intervals over a wide
area of the spectrum. Therefore, it is used in many fields, such
as earth sciences, astronomy, medical imaging, agriculture,
food security, surveillance in defense and civil applications,
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target detection, land use, and urban planning. The values of
the pixels in the same location in all bands create a mean-
ingful signal specific to the substances in the area called the
spectral signature. Spectral signatures containing different
values for each object/material provide a discriminative input
for classification and segmentation applications in terms of
pattern recognition and machine learning. For this reason,
it is basically used as an input feature in machine learning
problems.

In the early stages of research in this area, only spectral
signatures have been used as a feature in hyperspectral
image classification tasks [1]–[3]. However, differences in
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spectral signatures occur due to atmospheric effects, differ-
ent angles of sunlight to the ground, and the presence of
various substances/objects in a pixel region in hyperspec-
tral images. In addition, the scarcity of data in this area
makes it difficult to conduct adequate comparative experi-
ments, while insufficient training data reduces the classifi-
cation performances in the experiments. Studies conducted
in those years showed that support vector machines (SVM)
using radial basis kernel (RBF) gave better results among
classifiers [4], [5]. In the following years of the literature,
since spectral information did not give a satisfactory perfor-
mance, spatial information began to be used effectively in
classification [6]–[8]. In various studies, spatial information
has been included in the system with different approaches
in feature extraction, modeling, and post-processing
stages, resulting in a significant increase in classification
performance.

Tarabalka et al. have made essential studies on the use of
both spectral and spatial information together in hyperspec-
tral image classification. In [9], a single gradient was obtained
using the robust color morphological gradient method with
spectral signatures for the use of spatial information [10].
Then, a watershed segmentation algorithm was applied to the
gradient and a segmentation map was obtained. The obtained
segmentation map and pixel-based SVM classification map
were combined with the majority voting method. In addition
to [9] in [11], the concept of reliable point (marker) has
been defined and included in the system. The reliable point
information is the pixels selected on the probability map
obtained at the output of the SVM classification algorithm.
In [12], reliable pixel neighborhoods were classified using
the minimum spanning tree method [13], and results were
combined with the classification map by the majority vot-
ing method. The method proposed by Kazanskiy et al. [14]
have combined the K-means++ segmentation map with the
pixel-based SVM classification map using majority voting.
Zhang et al. [15] have added the spatial information to the
K-means algorithm in their proposedmethod. Thus, they have
made a classification with the unsupervised learning method.

As in most image classification studies, the use of appro-
priate segmentation approaches to obtain spatial information
in the classification of hyperspectral images seems to increase
the classification performance. Superpixels, which contain
more spatial information than fixed-size pixel regions, rep-
resent small areas that can be adapted to the size and
shape of objects in the hyperspectral scene. Superpixel-based
approaches used for grouping pixels that share a common
signal characteristics were employed to generate segmenta-
tion maps [16], [17]. Bai et al. [18] used the adaptive graph
structure method while using the SLIC superpixel algorithm
for the required segmentation information. To include spa-
tial information into their system, they used the attention
matrix created by using the adjacency matrix of superpixels.
Zhao et al. [19], developed a graph-based method based on
superpixel maps of varying sizes to resolve the challenge
of low accuracy and limited labeled data. Xie et al. [20]

included superpixel techniques into the convolutional neu-
ral network they used for hyperspectral image classifica-
tion. Pooling approaches on the network are built utilizing
superpixel segmentation to solve the challenge of insufficient
labeled training data.

During the development of neural network approaches as
well as traditional machine learning approaches, extreme
learning machines have been used for hyperspectral image
classification [21], [22]. Many studies have been carried out
using deep learning networks, which have gained consider-
able popularity in parallel with the development of fast pro-
cessors and graphics processing units as hardware. In terms
of hyperspectral image classification, many deep learning
frameworks have been developed for spectral features, spa-
tial features, and spatial-spectral features together [23], [24].
One- [25]–[27], two- [28] and three- [24] dimensional con-
volutional neural network (CNN) architectures are generally
used in the hyperspectral studies. Chen et al. have used 3-D
CNN-based feature model with combined regularization to
extract effective spectral-spatial features [29]. Deep transfer
learning aims to reuse a machine learning model trained for
a similar problem by changing some weights of the model
without changing the model architecture much, and is an
important study area and approach for complex data such
as hyperspectral images [30]. In the field of deep learn-
ing, many architectures such as GAN (Generative Adver-
sarial Networks) [31], [32] and RNN (Recurrent Neural
Networks) [33], [34] continue to be used by researchers.

The fact that spectral signatures are one-dimensional data
and are treated as words related to materials has led to
the evaluation of natural language processing algorithms
in hyperspectral image classification [35]. In recent years,
there have been significant developments in natural lan-
guage processing with the deep learning approach. One
of the most important of these advances is presenting
the transformer-based BERT (Bidirectional Encoder Rep-
resentations from Transformers) model developed to learn
the semantic relationships between word tokens by Google to
the literature [36]. He et al. have used the BERTmodel for the
first time in hyperspectral images [37]. In the BERT model
of their study, pixels and location information in specific
windows were used as input and performance evaluation was
made by training them according to different parameters.
In the following months, Google has improved the BERT
model and introduced the ALBERT (A Lite BERT) model to
the literature [38]. Especially in the field of natural language
processing, the ALBERT model showed higher performance
than the BERT model. In addition, BERT’s basic model con-
sists of 108million parameters, while ALBERT’s basicmodel
consists of 12 million parameters. Thus, while the ALBERT
model takes up less memory, the training/testing processes
are made faster at the same time. Recently, transformer-based
approaches have been used in hyperspectral image classifica-
tion in addition to the BERTmodel. Hong et al. [39] has used
transformer structures as a backbone in their deep learning
model, which they named SpectralFormer. In their work, they
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used input embeddings and position embeddings; but they did
not use the ‘segment embeddings’ structure. He et al. [40] has
utilized transformer encoders without ‘segment embeddings’
in the convolutional neural network-based method they pro-
posed in their study.

In this study, the SLIC (Simple Linear Iterative Clustering)
super pixel algorithm [41], which has a fast and compre-
hensible structure, is used in order to increase the classifi-
cation performance of BERT models. In this study, the SLIC
algorithm is modified to take into account spatial informa-
tion in hyperspectral images. The modified approach called
HyperSLIC is one of the novelties of the study. In addition
to the BERT model in the literature, the ALBERT model
is used to classify hyperspectral images by using spectral
and spatial information together. Another innovative aspect
of the study is that BERT and ALBERT models can use
spectral/spatial information together by giving HyperSLIC
superpixel information to the model as a segment embedding
vector.

The remainder of this paper is structured as follows.
Section II describes the SLIC superpixel algorithm and intro-
duces the proposed HyperSLIC for hyperspectral images.
Section III explains the structure of the BERT-based models.
The proposed framework for the classification of hyperspec-
tral images using HyperSLIC and the BERT-based models
is described with using figures and flowchart in Section IV.
Hyperspectral datasets and experimental results are presented
in Section V. Section VI concludes this study with the final
remarks and points out future work.

II. HyperSLIC
The Simple Linear Iterative Clustering (SLIC) algorithm,
which performs a local clustering of pixels, is a k-means
based algorithm that works with a defined distance metric
using the CIELab color space and the x, y pixel position [41].
Although the algorithm is simple, it offers a very efficient
approach to image segmentation. The first difference between
the SLIC than k-means is that the distance calculations are
limited by the superpixel size. Therefore, complexity of the
method depends on the number of pixels and the number of
superpixels. The second difference is that color and spatial
proximity features are combined to control the size and com-
pactness of superpixels.

Algorithm 1 shows the steps of the SLIC algorithm. The
k parameter represents the approximate number of superpix-
els desired to be obtained from all the pixel counts (N ) in
the scene. Initially, pixel samples are selected from regions of
dimensions S × S for k superpixels. The cluster centers (Ck )
determined with the help of the lowest gradient in the window
created in size of 3×3 within each region are updated. Then,
the distance between Ck and each pixel in the 2S× 2S region
around cluster center is determined. When calculating the
distance between each pixel and all cluster centers in the
k-means algorithm; in the SLIC method, only the distances
between the pixels in the 2S × 2S region and the cluster
centers are calculated. Next, each pixel is assigned to the

nearest cluster center. The difference between the previous
cluster centers and the new cluster centers is calculated as an
error and the process continues until the error values found
reach a certain threshold value..

Algorithm 1 Superpixel Segmentation With SLIC

1: S ←
√
N
k and lt ←−1 and distancet ←∞

2: Ck ← [xk , yk , lk , ak , bk ] by sampling pixels at each grid steps
S

3: Cluster centers are moved to the lowest gradient position in a
3× 3 neighborhood.

4: repeat
5: for each Ck do
6: for each pixel t in 2S × 2S region with center Ck do
7: Dist← calculateDistance(Ck , t, S,m)
8: if Dist < distancet then
9: distancet ← Dist
10: lt ← k
11: Re-computation cluster centers Ck
12: error←

∑
k ||C

new
k − Cold

k ||L2
13: until error ≤ threshold

Since superpixels contain pixel values and position infor-
mation, distance calculations are made taking this informa-
tion into account. The Equation (1) and Equation (2) show the
distance measurement between two coordinates (dists) and
the distance between two pixel values (distc), respectively.

dists ←
√
(xi − xj)2 + (yi − yj)2 (1)

distc ←
√
(li − lj)2 + (ai − aj)2 + (bi − bj)2 (2)

The calculated distance metrics dists and distc are normal-
ized to eliminate the negative influence of each other. While
the parameter S is used to normalize dists, the experimentally
selected m value between [1, 10] is used for distc. These
distance metrics can be combined to get a single distance
measure as follows:

dist←

√
(
distc
m

)2 + (
dists
S

)2 ≡

√
dist2c + (

dists
S
· m)2 (3)

The values of a pixel/spectral signature in a hyperspectral
image can be represented as pi = [pi1, pi2, . . . , pid ], where
d indicates the number of spectral bands. According to this,
Equation (2) can be changed as follows:

distc←
√
(pi1 − pj1)2 + (pj2 − pj2)2 + · · · + (pid − pjd )2

(4)

The coordinate distance dists is calculated with the same
formula and the S value can be used for normalization. In this
situation, m parameter should be determined. If 1 ≤ k ≤ d
and 0 ≤ pik ≤ 255 so 0 ≤ (pik − pjk )2 ≤ 2552, the value of
m can be determined as follows:

0 ≤ distc ≤ 255
√
d = m (5)

For adaptation to hyperspectral images, Equation (3) can
be updated as in Equation (6). In this study, the distance
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FIGURE 1. An example of merging superpixels by DBSCAN; (a) SLIC result
and (b) SLIC-DBSCAN result.

metric in the SLIC method is changed and named as the
HyperSLIC metric as follows:

dist←

√
dist2c + dist2s · (

255
√
d

S
)2 (6)

A. HyperSLIC-DBSCAN
In Kovesi’s study [42], superpixels obtained with SLIC are
clustered with the DBSCAN algorithm [43]. Thus, superpix-
els similar to each other according to the Euclidean metric
are merged to form large segments. Algorithm 2 shows the
DBSCAN steps of the SLIC-DBSCAN algorithm. According
to the SLIC-DBSCAN algorithm, all superpixels are pro-
cessed starting from any of the superpixels. If the inspected
superpixel is previously included in a cluster, it is passed to
the other superpixel without further processing. If the super-
pixel is not included in any cluster, a regionQuerySimilarity
is used to find the superpixel neighborhood at ε distance.
If the number of neighbors is greater than MinPTS, this
superpixel and its neighbors are treated as a new cluster.
With expandClustering, new neighbors are found by the
new regionQuerySimilarity for each previously unclustered
neighbor. Neighborhood finding is the most computationally
demanding part of the DBSCAN algorithm. As an exam-
ple, the merging of superpixels in Fig. 1(a) can be shown
in Fig. 1(b).

Algorithm 2 Clustering of Superpixels Using DBSCAN
1: C ← 0
2: Visitedall superpixel ← 0, mark unvisited all superpixel
3: for each unvisited superpixel s do
4: Visiteds = 1
5: NeighborSuperpixels← regionQuerySimilarity(s, ε)
6: if sizeof(NeighborSuperpixels) < MinPts then
7: Visiteds ← 2, mark noise
8: else
9: C ← next cluster

10: expandCluster(P, NeighborSuperpixels,C, ε,MinPts)

With a similar approach, the HyperSLIC segmenta-
tion result is also merged with DBSCAN and called the
HyperSLIC-DBSCAN segmentation. As a novel inspired
approach, the similarities between the superpixels in the
HyperSLIC-DBSCAN algorithm are computed based on the
universal image quality index as introduced in [44]. This sim-
ilarity metric is named as spectral similarity index (simssi).
As in Algorithm 2, superpixels similar to the simssi with a

FIGURE 2. Overall structure of the BERT model architecture.

predefined ε threshold are found as follows Equation (7):

simssi =
4σxyx̄ȳ

(σ 2
x + σ

2
y )[x̄2 + ȳ2]

=
σxy

σxσy
·

2x̄ȳ
x̄2 + ȳ2

·
2σxσy
σ 2
x + σ

2
y
(7)

where x and y show representative/mean pixels of a super-
pixel patch. x̄ and ȳ show the averages of representative
pixels, σ 2

x and σ 2
x show the variance of representative pixels

and σxy show the covariance of pixels.

III. BERT-BASED MODELS
Google introduced the encoder-based BERT [36] model to
the literature in November 2018. With its high performance
on the SQuAD [45] dataset, it has shown that an important
milestone has been reached in the field of natural language
processing. Since the model includes many parameters due
to its architectural structure, the training process takes a long
time. However, it provides a significant performance boost in
understanding the context in the text. BERT language model
is constructed by training in two tasks: next sentence predic-
tion (NSP) and masked language prediction (MLP). In the
NSP task, the model is trained on whether two sentences
come together semantically. In the MLP task, the model is
trained to predict the masked tokens correctly.

Fig. 2 shows the overall structure of the BERT model. The
BERT has 12 encoders in the base model and 24 encoders in
the large model. The BERT model takes the following infor-
mation as input: (i) the embedding vectors corresponding to
the word tokens, (ii) the position embedding vectors for the
positions of the word in the sentence and, (iii) the segment
embedding vectors using the order in which the sentence
containing the word appears in the input. These vectors are
summed and given as input to the encoder. Encoders can
be added consecutively because the input and output data of
the encoders are the same size. After the last encoder, fully
connected layers are added, then the weights are updated by
calculating the losses.

In 2019, Google introduced the ALBERT [38] model to
the literature and eliminated the disadvantages of the BERT
model, such as high memory space and consuming too much
time for the language model training. There are three differ-
ences between ALBERT and BERT models:

1) Sentence Order Prediction (SOP): Implementation of
SOP task instead of NSP in language model training.

2) Matrix factorization: Using the product of two smaller
matrices for input embedding vectors instead of a single
large matrix.
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FIGURE 3. The flowchart of the input format formation for the classification by using the hyperspectral images and the segmentation results obtained by
the superpixel method together.

3) Parameter Sharing: Sharing parameters between
encoders.

In the ALBERT, the BERT model parameters have been
reduced from 108 million to 12 million using the matrix
factorization and parameter sharing arrangements. With
the SOP, the context understanding of the model is also
increased. Thus, the ALBERT model, which is faster, using
less memory, and understands the context, is presented to
the literature. A detailed review of the ALBERT model and
transition approaches from natural language processing to
hyperspectral image processing are described in the proposed
approach (Section IV).

IV. THE PROPOSED METHOD
In order to understand the overall proposed system structure,
the stages of input format formation for classification by
using the hyperspectral images and the segmentation results
obtained by the superpixel method together for ALBERT
model are shown in Fig. 3. The complementary flowchart
for the classification of the final embeddins of a ‘pixel of
interest’ with the BERT-based architecture is given in Fig. 4.

FIGURE 4. The complementary flowchart for the classification of the final
embeddins of a ‘pixel of interest’ with the BERT-based architecture.

Please note that, the term ‘pixel of interest’ is used for training
and testing pixels together.

Fig. 3 and 4 depict the proposed technique. Under the
proposed method section, Fig. 3 is describe in A and B,
whereas Fig. 4 is describe in C and D.

A. OBTAINING THE SubCube OF A PIXEL OF INTEREST
AND FLATTENING
For each pixel of interest in the hyperspectral image cube,
a small ‘SubCube’ is created by windowing around a pixel,
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FIGURE 5. ‘Pixel of Interest’ neighborhood relations and flattening phase
in SubCube structure.

containing its neighbors at a certain distance. So, the dimen-
sion of each SubCube is w × w × d , where d indicates the
number of spectral bands of hyperspectral image andw shows
the dimension of the window taken around the center pixel as
in Fig. 3. Then the SubCubes are flattened to be a matrix of
dimensions m× d as shown in Fig. 5, where m = w2 and the
‘pixel of interest’ is set to be in the middle row of the matrix.

B. EMBEDDING VECTORS
BERT-basedmodels use the sum of three different embedding
vectors: i) token embeddings, ii) position embeddings and
iii) segment embeddings.

1) TOKEN EMBEDDINGS
Token embeddings are constant-size vectors expressing
numerical representations of word tokens. In this study, spec-
tral signatures correspond to these vectors; however, the
size of spectral signatures differs according to hyperspectral
datasets. Also, the size of the vector lengths is limited due to
the architecture of the encoders. This problem can be solved
by making the spectral signatures a fixed-size using a linear
transformation. For transformation, signatures of d length
are multiplied by the W transformation matrix to become
signatures of g length. Since theW matrix is designed as part
of the BERT-based models, its values are learned during the
training.

2) POSITION EMBEDDINGS
Position embeddings are fixed-size vectors that represent the
order of word tokens in the input. In this study, the location of
the pixel in the matrix (from 1 to m) after flattening is taken
as the position embedding.

3) SEGMENT EMBEDDINGS
In NLP studies, two sentences are entered into to the
ALBERT model during language model training. The vector
representations that show which sentence the word tokens
belongs to are called segment embedding. In this part, which
is one of the novelties in this study, segmentation maps are
used as segment embedding, showing which segment the
pixels belongs to. Segmentation maps are obtained using
the HyperSLIC method, which is another novelty proposed
in this study. As the output of HyperSLIC method, small
and compatible segments are obtained and the representation

FIGURE 6. Multihead self-attention architecture (self-attention when
Q, K, V have the same values).

ability of these segments is higher than other segmentation
algorithms. Thus, the vector representation corresponding to
each segment is used as the segment embedding input.

However, having a large number of superpixels increases
the number of vector representations. This makes it difficult
to learn similar superpixels with different vector representa-
tions. As a solution to this, adjacent superpixels that are sim-
ilar to each other are combined in the HyperSLIC-DBSCAN
algorithm and learning is performed with fewer segments.
The vector representation of all pixels in a segment is
the same, and this information is given as input to the
BERT-based models for every pixel.

C. ENCODER
BERT-basedmodels are based on encoders with the same size
of inputs and outputs. When parameter sharing is used, the
same variable is used in each encoder. This feature represents
another novelty of ALBERT over the BERT model. The
structure of encoders is designed to learn the relationship
between embedding vectors. The most important part of its
structure is the ‘Multihead Self Attention (MHSA)’.

1) MULTIHEAD SELF ATTENTION (MHSA)
The MHSA structure, shown in Fig. 6, employed in the
encoders is one of the important building blocks of BERT-
based models. This structure performs mathematical opera-
tions to learn the relationships between embedding vectors
that are encoder inputs. Here, Q,K,V matrices represent the
input matrices to the encoder. If all three of these matrices are
the same, it is called self-attention. These matrices are trans-
formed linearly with weights to mathematically represent the
relationship between word tokens (pixels in this study). This
structure is used multiple times in the BERT-based models.
The self-attention structure can be expressed by Equation (8):

hi = Attention(QWQ
i ,KWK

i ,VW
V
i )

= Attention(XWQ
i ,XW

K
i ,XW

V
i ) (8)

where, hi is the result of the attention structure of i. The
WQ

i ,W
K
i ,W

V
i show the weight matrices used in linear
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transformations. Thesematrices aremultiplied by the encoder
input X. TheQ,K,Vmatrices are equal to Xmatrix given to
encoder as input. In other words, since the three matrices are
the same, a self-attention structure is obtained.

2) FEED FORWARD
With the help of this module, linear transformations are per-
formed for the next encoder task. The feed-forward mod-
ule consists of two linear transformation layers. The ReLU
(Rectified Linear Unit) activation function is used in each
layer.

3) LAYER NORMALIZATION
Layer normalization has beeb proposed by Ba et al. [46].
With this module, the contribution of features during training
is normalized. In batch normalization method, normalization
is applied to layers instead of batches.

D. CLASSIFICATION LAYER
BERT-based models generate new vectors based on the rela-
tionship of the ‘pixel of interest’ to its neighbors. The vector
corresponding to the ‘pixel of interest’ (the vector in the
middle row of the matrix) is given as an input to the three-
level fully-connected layer. It is structured so that the number
of neurons in the last layer is equal to the number of classes
in the dataset. This layer added to classify the input vector is
called the classification layer. The output of this layer is used
to calculate the error/loss values and update the parameters of
the model.

In the classification layer, there is a fully connected net-
work. Due to its network structure, it produces output asmuch
as the number of classes. The predicted and actual outputs are
used to calculate errors. The error is calculated using categor-
ical cross-entropy. The Adam algorithm [47] is used as the
optimizer, with ‘learning rate=2e−5’ and ‘epsilon=1e−8’.

V. EXPERIMENTAL RESULTS
In the experiments, the contribution of the number of
encoders used, k window size, number of training data, posi-
tion embeddings, segment embeddings for the BERT-based
models are investigated and these contributions are presented
compararatively. All of the computational work is done
on Intel(R) Core(TM) i7-6700K 4.00GHz CPU with 64GB
RAM. Python Keras [48], TensorFlow [49], sklearn [50]
libraries are used for the experiments.

A. HYPERSPECTRAL DATASETS
Pavia University and Indian Pines datasets, which are used
extensively in the field of hyperspectral image processing, are
used to evaluate the proposed methods.

Pavia University dataset was captured with the ROSIS-03
(Reflective Optics System Image Spectrometer) optical sen-
sor on the University of Pavia, Italy by Deutschen Zentrum
für Luftund Raumfahrt (DLR, German Aerospace Agency).
The hyperspectral scene has 115 spectral bands between
0.43µm − 0.86µm spectral coverage. Twelve bands were

FIGURE 7. Pavia University dataset (a) false-color image and
(b) ground-truth data.

TABLE 1. Class names and the number of the labeled training and test
pixels for Pavia University dataset.

TABLE 2. Class names and the number of the labeled training and test
pixels for Indian Pines dataset.

removed due to high noise and were presented as 103 bands.
The dataset consists of 610 rows and 340 column pixels,
and each pixel has 1.3 meters spatial resolution. The dataset
contains nine different classes: asphalt, meadow, gravel, tree,
metal sheet, bare soil, bitumen, brick, and shadow. There
are 42776 labeled pixels labeled in the released dataset.
Fig. 7 shows the false-color image of Pavia University dataset
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TABLE 3. Performance comparisons with conventional, deep learning, BERT-based (without segment embeddings) classifiers on Pavia University dataset.

TABLE 4. Performance comparisons with conventional, deep learning, BERT-based (without segment embeddings) classifiers on Indian Pines dataset.

and ground-truth. Table 1 contains information about the
classes, the number of labeled training and test pixels in the
dataset [51].

Indian Pines hyperspectral dataset was captured with
AVIRIS (Airborne Visible / Infrared Imaging Spectrometer)
optical sensor on Northwest Indiana, USA and widely used
in hyperspectral studies. The hyperspectral scene 224 spec-
tral bands between 0.4µm − 2.5µm spectral coverage. Due
to water absorption, 24 bands were deleted from the data
and the remaining 200 bands were used in the experiments.
The dataset consists of 145 rows and 145 column pixels;
each pixel has a spatial resolution of 20 meters. The dataset
contains 16 different classes: alfalfa, corn-no till, corn-min

till, corn, grass/pasture, grass/trees, grass/pasture-mowed,
hay-windrowed, oats, soybeans-no till, soybeans-min till,
soybean-clean, wheat, woods, bldg-grass-tree-drives, stone-
steel towers. There are 10249 pixels labeled in the released
dataset without splitting. Fig. 8 shows the false-color image
of Indian Pines dataset and ground-truth. Table 2 shows infor-
mation about the classes, the number of labeled training and
test pixels in the dataset [51].

B. RESULTS OF STUDIES
In this study, the performance evaluation of transformer-based
machine learning techniques, BERT and ALBERT methods,
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TABLE 5. Number of parameters according to number of encoders in
BERT and ALBERT models.

FIGURE 8. Indian Pines dataset (a) false-color image and (b) ground-truth
data.

is proposed for the classification of hyperspectral images
and the results are presented comparatively using quantitative
performance metrics in two experimental studies:

1) EXPERIMENTAL STUDY-I
In this experiment, classification performances of ALBERT
and BERT models are compared with conventional and
deep learning-based (DL-based) classifiers. For conven-
tional approaches, k-nearest neighbor (kNN) with k=9,
Support Vector Machine (SVM) with Radial Basis Func-
tion (RBF) kernel, Random Forest (RF) with 200 decision
trees are employed to obtain optimized results. For deep

learning-based approaches, 1D CNN (Convolutional Neural
Network) [52] and 2D CNN [24] are carried out using the
methods in related studies. The results of ALBERT andBERT
models without segment embeddings (SE) are presented com-
paratively in Table 3 for Pavia University dataset and in
Table 4 Indian Pines dataset. In the comparisons, the SubCube
window sizes are chosen as w = 3, 5, 7, 9 and the number of
encoders are chosen as 1, 3, 5, 9, 12.
In the first experimental study, DL-based algorithms show

higher performance than conventional algorithms. BERT-
based models without segment embedding information are
able to achieve better results than deep learning methods with
the increasing number of encoders. When the ALBERT and
BERT model results are compared, it is seen that BERT gives
better results in small patch sizes, and ALBERT closes the
gap as the patch size grows. According to the results in Table 3
and Table 4, it is observed that the ALBERT model, which is
smaller in size compared to BERT, produces results that will
be an alternative to BERT model.

The Table 5 shows the number of parameters accord-
ing to number of encoders in BERT and ALBERT models.
According to the Table 5, since the ALBERT model allows
the parameters to be shared, the number of parameters does
not increase as the number of encoders increases. It should
be noted that when the number of encoders is 12 in the
BERT model, the number of parameters increases ten times
compared to ALBERT. This is the disadvantage of the BERT
model compared to ALBERT, and it increases the training
time and size. As shown in Fig. 3, the size of the final
embedding matrix is affected by the window size. However,
since ALBERT and BERT models are large-size models,
increasing the window size adds only a few parameters to
the total parameter count. As a result, instead of giving the
number of parameters that change according to the window

TABLE 6. Experimental results for Pavia University dataset: (a) ALBERT and (b) BERT model.
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TABLE 7. Experimental results for Indian Pines dataset: (a) ALBERT and (b) BERT model results.

size, the average number of parameters for each encoder is
presented in Table 5. An important point to note here is that
ALBERT and BERT models have a similar structure when
the number of encoders is one. Therefore, when the number
of encoders in the result tables is one, the results obtained are
very close to each other.

2) EXPERIMENTAL STUDY-II
In this experiment, segment embedding information is given
as input to ALBERT and BERT models by superpixel
segments as a novel approach. In accordance with this pur-
pose, it is proposed to use segment embedding informa-
tion using segmentation maps obtained from HyperSLIC
and HyperSLIC-DBSCAN methods. The SLIC algorithm,
which produces superpixel segments, is modified to use
spatial information in hyperspectral images and called as
HyperSLIC. In addition, HyperSLIC segmentation results are
merged with the DBSCAN algorithm for similar superpixels
to increase the size of spatially similar areas and called as
HyperSLIC-DBSCAN. In Table 6 and Table 7 the results
are in three main columns: i) without segment embedding,
ii) segment embedding with HyperSLIC method and
iii) segment embedding with HyperSLIC-DBCAN presented
comparatively. In the comparisons, the SubCube window
sizes are chosen as w = 3, 5, 7, 9 and the number of encoders
are chosen as 1, 3, 5, 9, 12.

Table 6 shows the results obtained for the Pavia Uni-
versity dataset. The results for the Indian Pines dataset
are shown in Table 7. When the results are examined,
it is seen that BERT-based models with segment embed-
ding information show higher performance. Furthermore,
the best performance has been obtained using HyperSLIC-
DBSCAN, which merges similar superpixels. The classifi-
cation accuracy increases as the number of encoders and

TABLE 8. The training times of the BERT and ALBERT models in seconds.

window size grow in the ALBERTmodel.When the results in
Tables 6 and 7 are analyzed, it can be observed that by includ-
ing segment information in the models, ALBERT approaches
BERT in terms of classification performance and becomes a
model as convenient as BERT.

Table 8 shows the training times in seconds for the
ALBERT and BERT models. Models use the sum of input,
position and segment embeddings as inputs. The segment
embeddings do not affect the training time since adding or
removing segment embeddings from the input does not affect
the input size. The training period increases as the number
of encoders increases, as seen in Table 8. As the number of
encoders increases, the ALBERT significantly outperforms
the BERT model. The BERT model took twice as long to
train as the ALBERT model when there were 12 encoders.
Increasing the window size also increases the size of the
input matrix, which increases the training time. Similarly,
when the window size increases, so does the size of the
input matrix and, therefore, the training time. The ALBERT
model with a single encoder and a 9 × 9 window size takes

VOLUME 10, 2022 79161



I. O. Sigirci, G. Bilgin: Spectral-Spatial Classification of Hyperspectral Images Using BERT-Based Methods

TABLE 9. Results of McNemar’s tests on the Pavia University dataset. ALBERT is the first classifier, and BERT is the second.

TABLE 10. Results of McNemar’s tests on the Indian Pines dataset. ALBERT is the first classifier, and BERT is the second.

approximately 1.3 times longer than the 3 × 3 window size.
It takes around 1.55 times longer in the BERT model.

The McNemar’s test is used to statistically compare the
results of the ALBERT and BERT models. McNemar’s test
is a statistical and objective measure used to compare clas-
sification results. This test is commonly used to determine
whether or not the results of two classifiers are statisti-
cally different. Nonparametric McNemar’s test may also be
used to compare thematic maps [53] and can be calculated
using Equation (9):

Z =
Q12 − Q21
√
Q12 + Q21

(9)

McNemar’s test employs a different type of 2 × 2 contin-
gency matrix (Q). The value in the ith row and jth column
is represented in Qij. Q12 is the number of samples correctly
classified by the first classifier butmisclassified by the second
one.Q21 presents the value obtained by the opposite situation.
Their Z value represents the difference between two classi-
fiers. The Chi-square distribution table uses the first degree
of freedom and the 5% significant level for comparative
purposes. The square root of this number is 1.96. That is,
if the computed |Z | value is more than 1.96, the outputs of
two classifiers are statistically different. When there is no
significant difference between two classifiers (if |Z | ≤ 1.96),
the null hypothesis is defined as H0:No, while the alter-
native hypothesis is defined as H1:Yes, and it is accepted
when there is a significant difference between two classifiers
(if |Z | > 1.96).
Tables 9 and 10 show how statistically our proposed meth-

ods, according toMcNemar’s test results. Null hypotheses are
accepted in all circumstances, as shown in the tables. As a
result, the ALBERT model outperformed the BERT model
both numerically and statistically.

VI. CONCLUSION
In addition to the machine learning methods used in
hyperspectral image processing, BERT and ALBERT

models, which are increasingly used in natural language
processing, are used in this study to classify hyperspec-
tral scenes. To improve hyperspectral image classifica-
tion performance, a modified HyperSLIC superpixel algo-
rithm for segment embedding information, one of the three
inputs given to BERT-based models, is proposed. Then, the
HyperSLIC-DBSCAN method is also used by using the
DBSCAN algorithm in order to merge the regions with sim-
ilar spatial contexts found as a result of HyperSLIC segmen-
tation. As a result of experimental studies, it has been seen
that BERT-based models, in which spatial information can
also be used, can provide better classification accuracies than
conventional and deep learning-based 1D/2D convolutional
neural network classifiers.

Using segment information in the system helps to over-
come the problem of the limited labeled training data. Finding
similar pixels without class information provides the classi-
fier with information about all pixels. BERT-based models
produce highly accurate results when position and segment
information are included. Combining superpixels with the
HyperSLIC-DBSCAN method helps reduce noisy superpix-
els. The classifier learns better as the similarity between
pixels increases.

Since the BERT model has more parameters than the
ALBERT model, the training time is longer. As a result,
the training data needs to be represented with more param-
eters. Although this depends on the quality of the training
data, there may be a limit. Neighborhoods of different win-
dow sizes are evaluated in order to overcome the situation
where the models have limited information to learn. Provided
that the homogeneity is preserved, the classification success
increases as the neighborhood area extends.

BERT-based models show high performance in hyper-
spectral image classification as well as in natural language
processing. Studies in natural language processing show
that models with different architectures such as ELECTRA,
ERNIE, and GPT are also successful. BERT-based models
learn by evaluating before and after the word in the sentence.
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Because of this feature, when analyzing a pixel, it is easier
to evaluate all its neighbors. In other architectures, different
approaches need to be constructed to classify hyperspectral
images.
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