
Received 26 June 2022, accepted 25 July 2022, date of publication 28 July 2022, date of current version 2 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3194559

Efficient Top-k Graph Similarity Search With
GED Constraints
JONGIK KIM
Department of Artificial Intelligence, Chungnam National University, Daejeon 34134, South Korea

e-mail: jongik@cnu.ac.kr

This work was supported by the Research Fund of Chungnam National University.

ABSTRACT It is essential to identify similarity between graphs for various tasks in data mining, machine
learning and pattern recognition. Graph edit distance (GED) is the most popular graph similarity measure
thanks to its flexibility and versatility. In this paper, we study the problem of top-k graph similarity search,
which finds k graphs most similar to a given query graph under the GED measure. We propose incremental
GED computation algorithms that compute desired GED lower and upper bounds. Based on the algorithms,
we develop novel search frameworks to address the top-k search problem. Our frameworks are also designed
to use a state-of-the art indexing technique to speed up top-k search. By conducting extensive experiments on
real datasets, we show that the proposed frameworks significantly improve the performance of top-k graph
similarity search.

INDEX TERMS Top-k similarity search, graph edit distance, incremental GED computation.

I. INTRODUCTION
Because of the representational flexibility, graphs are widely
used to model complex and interconnected data in many
application scenarios. For example, images such as envelops,
lunar surfaces, and topological building structures have been
represented by graphmodels [1]–[3]; fingerprints and cancer-
ous tissue of biological cells have beenmodeled by graphs for
identification and classification [4], [5]; Control flow graphs
have been used in business process management [6]; and
malware detection by comparing call graphs of programs
have been studied in [7], [8]. In these applications, error-
tolerant graph search, i.e., graph similarity search, is essential
due to inconsistency, noises, and representational differences
of graph data [9]–[15].

To quantify graph similarities, various similarity measures
have been proposed such as missing edges and features [16],
[17], maximum common subgraphs (MCS) [10], [18], graph
alignment [19], and graph edit distance (GED) [20]–[26].
Among them, GED is the most commonly used mea-
sure, because GED precisely captures structural differ-
ence between graphs and it is applicable to all types of

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

graphs [13], [27]. The GED between two graphs is the min-
imum number of graph edit operation to make the graphs
isomorphic, where a graph edit operation is an insertion,
deletion, or relabeling of a single vertex or edge.

Many techniques have been developed to solve the problem
of threshold-based similarity search, which is to find all data
graphs whose GED to the query is within a given threshold.
However, the number of results for the same threshold can
vary significantly for different queries because the distribu-
tion of different structures in a graph database is not uni-
form [28]. This makes it hard for a user to choose a suitable
threshold for each query. In this paper, therefore, we study
the problem of top-k graph similarity search, which finds k
graphs most similar to the query under the graph edit distance
measure.

The major difficulty in graph similarity search with GED
constraints is that GED computation is NP-hard. Existing
solutions adapt a filtering-and-verification framework, which
generates candidate graphs in the filtering phase and verifies
each candidate through GED computation in the verification
phase. To reduce the overhead of GED computation, it is
essential to generate a small set of candidate graphs. There-
fore, the focus of existing solutions has been on develop-
ing effective filtering techniques for candidate generation.

79180 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-5857-6091
https://orcid.org/0000-0002-5169-9232

J. Kim: Efficient Top-k Graph Similarity Search With GED Constraints

Commonly used techniques in the filtering phase are to utilize
features of graphs, which are substructures of graphs [9],
[11], [13], [14], [27], [30], [31]. These techniques have been
mainly developed for solving the problem of threshold-based
similarity search, and filtering conditions are established
based on a GED threshold. They typically build an inverted
index on features of data graphs to generate candidate graphs.

In top-k similarity search, however, a user specified GED
threshold is not available, and thus existing feature-based
filtering techniques cannot be directly used. We are aware of
a top-k graph similarity search technique ParsK [31], which
are based on a partition-based filtering technique. ParsK
builds a hierarchical partition-based indexmotivated by a top-
k string similarity search technique [41]. However, recent
work has revealed that the filtering power of feature-based
indexing techniques is inherently limited [29], [33], [37]. For
example, Inves [29] and AStar+-LSa [33] have empirically
showed that efficient verification techniques invalidate the
filtering effect of existing feature-based indexing techniques.

To address the problems, in this paper, we develop effi-
cient top-k graph similarity search frameworks (Section III).
A naive approach is to compute the GED between the query
and each data graph and return top k best results. However,
this naive approach obviously incurs prohibitive GED com-
putation overheads. As a baseline of top-k search, therefore,
we adapt existing threshold-based approach by issuing a
series of queries by increasing the threshold one by one until
k result graph are found. This baseline approach requires
multiple verifications of the same candidates in different
thresholds, which are computationally expensive. To improve
the performance of top-k similarity search, we develop a few
search frameworks. The first is to derive different thresh-
olds from intermediate results of top-k search and utilize
these thresholds for efficient verification of data graphs
(Section III-A). We further optimize top-k search by utilizing
precise GED lower and upper bounds. To obtain precise GED
bounds, we propose novel GED computation algorithms that
stop and resume GED computation. Based on the algorithms,
we explore two search frameworks that reduce GED com-
putation overheads of unpromising graphs (Section III-B
and III-C). To utilize the latest pre-computed GED-based
index proposed in our previous work [37], we also propose
a hybrid search framework that integrates threshold-based
approach with our top-k search techniques (Section III-D).
We conduct extensive experiments on widely used real
datasets and show that the proposed frameworks significantly
improve the performance of top-k graph similarity search
(Section IV).

The rest of the paper is organized as follows. Section II
formulates the problem of top-k similarity search with
GED constraints and reviews GED computation algorithm.
Section III proposes incremental GED computation algo-
rithms for obtaining desired GED lower and upper bounds
and develops novel top-k search frameworks. Experimental
results are reported in Section IV. Section V lists related work
and Section VI concludes the paper.

FIGURE 1. Example graphs g1 and g2.

II. PRELIMINARIES
A. PROBLEM FORMULATION
A simple graph is a labeled undirected graph having neither
self-loops nor multiple edges. In this paper, we use simple
graphs for the ease of exposition. A labeled simple graph g
is represented in a triple of a set of vertices V (g), a set of
edges E(g) ⊆ V (g)×V (g), and a labeling function l : V (g)∪
(V (g)× V (g))→ 6, where 6 is the label set of vertices and
edges. If there is no edge between two vertices u and v, l(u, v)
returns a unique value λ distinguished from all other labels.
We also define a blank vertex ε such that ∀v ∈ V (g) l(ε) =
l(ε, v) = l(v, ε) = λ. We remark that λ is not a label and used
only for identifying the absence of a vertex or edge.

To measure the similarity between a pair of graphs, we use
graph edit distance defined in Definition 1.
Definition 1 (Graph Edit Distance): The graph edit dis-

tance (GED) between two graphs g1 and g2, which is denoted
by ged(g1, g2), is the minimum number of edit operations
that transform g1 into g2, where an edit operation is one of
the following:

1) insertion of an isolated labeled vertex.
2) deletion of an isolated labeled vertex.
3) relabeling of a labeled vertex.
4) insertion of a labeled edge.
5) deletion of a labeled edge.
6) relabeling of a labeled edge.

Example 1: Figure 1 shows example graphs g1 and g2. The
graph g1 is transformed into the graph g2 by performing the
following edit operations: deleting the edge between u1 and
u2, inserting an edge labeled with b between u1 and u4, and
relabeling the vertex u5 with C . Therefore, the GED between
g1 and g2 is 3.
We formulate the problem of top-k graph similarity search

as follows.
Definition 2 (Top-k Graph Similarity Search Problem):

Given a graph databaseD, a query graph q, an integer k , and a
maximum GED threshold τmax , top-k graph similarity search
finds a result set, denoted by K(q, k, τmax), that contains
every data graph g ∈ D such that

|K(q, k, τmax)| =

{
k, if |R(q, τmax)| ≥ k
|R(q, τmax)|, otherwise

and ∀g ∈ K(q, k, τmax), @g′ ∈ G\R, ged(q, g′) <

ged(q, g).
Similar to existing work for threshold-based similarity

search [31], [37], in Definition 2, we introduce a maximum

VOLUME 10, 2022 79181

J. Kim: Efficient Top-k Graph Similarity Search With GED Constraints

FIGURE 2. Search tree for graphs in Figure 1.

threshold τmax for top-k graph similarity search to prevent
excessive GED computation for a large k .

B. GED COMPUTATION
In this subsection, we review existing GED computation
algorithms. Given two graphs g1 and g2, if |V (g1)| 6= |V (g2)|,
we add ||V (g1)| − |V (g2)|| copies of ε into either V (g1) or
V (g2) to make the sizes of g1 and g2 the same. So, we assume
that |V (g1)| = |V (g2)| throughout the paper. The GED
between two graphs g1 and g2 is basically computed by enu-
merating all possible vertex mappings between the graphs,
where a vertex mapping is a bijection of V (g1) onto V (g2).
By imposing a pre-defined ordering of V (g2), which is called
the vertex ordering of g2, we represent a vertex mapping as an
ordered set of mapped vertex pairs. Given a vertex mapping
m, the edit cost of m is the number of edit operations to make
each mapped vertex pair identical in terms of the vertex label
and adjacent edges.
Definition 3 (Edit Cost): The edit cost for a vertex map-

ping m = {u1 7→ v1, . . . , un 7→ vn} is defined as:

ec(m) =
n∑
i=1

D(l(ui), l(vi))+
∑
j<i

D(l(ui, uj), l(vi, vj))

 ,

where D(x, y) is 0 if x = y, 1 otherwise.
Example 2: For the two graphs in Figure 1, consider a ver-

tex mappingm = {u1 7→v1, u2 7→v2, u3 7→v3, u4 7→v4, u5 7→v5}.
The edit cost of m is computed as follows. we omit D(ε, ε) in
the following.
• u1 7→ v1 : D(A,A) = 0
• u2 7→ v2 : D(B,B)+ D(a, ε) = 1
• u3 7→ v3 : D(A,A)+ D(b, b) = 0
• u4 7→ v4 : D(C,C)+ D(a, a)+ D(b, b)+ D(ε, b) = 1
• u5 7→ v5 : D(D,C)+ D(a, a) = 1

Therefore, ec(m) = 0+ 1+ 0+ 1+ 1 = 3.
GED computation is to find a vertex mapping among all

possible vertex mappings whose edit cost is the minimum.
By merging the shared prefix of different vertex mappings,
all possible vertex mappings form a state-space tree, which
is called search tree. For example, Figure 2 shows the search
tree for the graphs in Figure 1. In the figure, we assume the
vertex ordering of g2 is (v1, . . . , v5). Each leaf node of the
tree represents a vertex mapping, and an intermediate node is
a shared prefix of vertex mappings, which is called a partial
mapping. In the figure, a tree node at level j, denoted by ui,

represents a partial mapping mp ∪ {ui 7→ vj}, where mp is the
partial mapping of the parent node and the root node repre-
sents an empty mapping. For example, the node indicated by
an arrow represents a partial mappingm = {u1 7→v1, u2 7→v2}.
In the remainder of the paper, we abuse a mapping to refer to
a partial mapping if clear from the context.

Before we present a GED computation algorithm, we intro-
duce a lower bound of a partial mapping, which is used for
computing GED.
Definition 4 (Lower Bound of a Partial Mapping): Given

a partial mapping m, let Sm be the set of the vertex mappings
in the leaf nodes rooted bym. A lower bound ofm, denoted by
lbM(m), is a number lb such that 0 ≤ lb ≤ minm′∈Sm ec(m′).
Given a partial mapping m, lbM(m) can be computed by

the sum of the edit cost of the mapped part and that of the
unmapped part. It is clear that the number of edit operations
required in mapped vertices and edges is ec(m). To obtain
a lower bound of m, therefore, we need to estimate a lower
bound of the edit cost required in unmapped vertices and
edges. The label set-based lower bound in Definition 5 is the
most widely used lower bound function to estimate the edit
cost of the unmapped part.
Definition 5 (Label Set-Based Lower Bound [30], [37]):

The label set-based lower bound between two graphs g1 and
g2 is defined as:

lbL(g1, g2) = 0(LV (g1),LV (g2))+ 0(LE (g1),LE (g2)),

where LV (g) and LE (g) respectively denote the label multi-
sets of vertices and edges of g, and 0(S1, S2) = max(|S1 −
S2|, |S2 − S1|).
Example 3: Consider we have a partial mapping m = ∅,

which corresponds to the root node of the search tree. Since
there is no mapped vertices and edges in m, the unmapped
part of the mapping is g1 and g2. A lower bound of m can be
computed as:

lbM(m) = ec(m)+ lbL(g1, g2) = 0+ 2 = 2,

since ec(m) = 0, 0(LV (g1),LV (g2)) = 0({A,A,B,C,D},
{A,A,B,C,C}) = 1, and 0(LE (g1),LE (g2)) =

0({a, a, a, b, b}, {a, a, b, b, b}) = 1.
The tightness of a lower bound of a mapping is crucial

in reducing the search space of GED computation. Various
techniques have been proposed to compute a tightened lower
bound of a mapping. For example, Inves [29] captures edit
errors in bridges, which are edges connecting mapped ver-
tices to unmapped vertices. Nass [37] applies different lower
bound functions to the unmapped part to obtain a tighter lower
bound.

Now, we will review a threshold-based GED computation
algorithm.1 Algorithm 1 outlines a GED computation algo-
rithm that uses the A* search strategy. It first determines the
order of vertices in g2 (Line 1). A common intuition behind

1Although a user-specified GED threshold is not available in top-k graph
similarity search, we will derive different thresholds while processing a top-k
query in Section III.

79182 VOLUME 10, 2022

J. Kim: Efficient Top-k Graph Similarity Search With GED Constraints

Algorithm 1 GED(g1, g2, τ)
input : g1 and g2 are graphs, and τ is a GED threshold
output: ged(g1, g2) if ged(g1, g2) ≤ τ , τ + 1 otherwise

1 O← vertex ordering of V (g2);
2 initialize a priority queue Q with an empty mapping;
3 while Q 6= ∅ do
4 m← Q.pop();
5 if |m| = |V (g1)| then return ec(m);
6 if lbM(m) ≤ τ then
7 v← next unmapped vertex in V (g2) as per O;
8 foreach u ∈ V (g1) s.t. v 6∈ m do
9 mc← m ∪ {u 7→ v};
10 if lbM(mc) ≤ τ then Q.push(mc);

11 return τ + 1;

the vertex ordering is that infrequent vertices arematched first
while preserving the connectivity [29], [33]. After determin-
ing the vertex ordering of g2, the algorithm pushes the initial
state, i.e., an empty mapping, which corresponds to the root
node of the search tree, into the queue (Lines 2). In the main
loop, it pops a mapping m from the queue (Line 4). If the
mapping m popped from the queue is a full mapping (i.e., m
contains all vertices of g1 and g2), it returns the edit cost of
the mapping as ged(g1, g2) (Line 5). Ifm is a partial mapping
and its lower bound is less than τ (Line 6), it expands the
search tree by mapping the next unmapped vertex v in g2
(Line 7) to each unmapped vertex u in g1 (Line 8). It pushes
each expanded tree nodemc into the queue if the lower bound
of mc is less than τ (Lines 9–10). If the queue is empty, the
algorithm returns τ + 1 (Line 11).

III. TOP-k GRAPH SIMILARITY SEARCH
In this section, we develop techniques for top-k graph sim-
ilarity search. To prevent excessive computation for some
queries, we assume a maximum threshold τmax for top-k
search, similar to [37] and [31]. Because of the maximum
threshold, the number of results for some queries can be less
than k . For the ease of presentation, however, we assume
that we have at least k results within τmax throughout this
section. The maximum threshold τmax enables us to generate
candidate graphs using an existing feature-based index such
as Pars [13] and MLIndex [9]. For a large threshold such
as τmax , however, the filtering effects of these feature based
indexing techniques are almost the same as that of a basic
filter that uses the label set-based lower bound [33], [37].
Therefore, we use the label set-based lower bound (Defini-
tion 5) to generate an initial candidate set with τmax .
As we described in Section I, we use a threshold-based

top-k similarity search as a baseline algorithm. The threshold-
based top-k similarity search is to evaluate a series of simi-
larity queries by increasing the threshold τ (initially, τ = 0)
one by one until k result graphs are found. However, this
baseline algorithm can be computationally expensive because

FIGURE 3. An overview of basic top-k search.

it requiresmultiple verifications of the same candidates in dif-
ferent thresholds. To improve the baseline algorithm, we pro-
pose three top-k search algorithms. Each algorithm is also
designed to use an index structure based on the pre-computed
GEDs, which has been proposed in our previous work [37].

A. BASIC TOP-K SEARCH ALGORITHM
To avoid redundant verifications of the same candidates, the
first technique we propose is to use a min heap C to keep
candidate graphs with their GED lower bounds and a max
heap to keep the current best k results. When R is filled up,
we can utilize the GED of the head ofR as a GED threshold
for searching remaining data graphs. This threshold plays an
important role in reducing the overhead of GED computation.
We call this technique a basic top-k search.
Figure 3 shows an overview of the basic top-k search.

Assume that we have a candidate set C organized into a
min heap using GED lower bounds of candidates. We also
organize the result set R into a max heap using GEDs of
current results. After R is filled up, the head of R has the
largest GED among other graphs in R. Hence, we can filter
out remaining graphs whose GED to the query is not less than
ged(q, r), where r is the head of R. That is, we can set a
threshold τ = ged(q, r)−1. Given the threshold τ , 1©we pop
a candidate graph c from C, and 2© if ged(q, c) ≤ τ , we pop
r from R and push c into R. This approach overcomes the
disadvantage of the baseline approach since it verifies each
candidate graph only once.

Algorithm 2 outlines the basic top-k algorithm. The algo-
rithm initializes a min-heap C to keep pairs of (candidate
graph, GED lower bound lb) (Line 1). Given a maximum
threshold τmax , the algorithm generates a candidate set using
the label set-based lower bounds lbL of each data graph
(Lines 2–3). After generating a set of candidates, it initializes
the threshold τ to τmax and a max-heap R to keep pairs of
(result graph, GED dist) (Lines 4–5). From the candidate set
C, it pops out a candidate graph having the minimum lower
bound (Line 7), and computes GED δ between the candidate
and the query (Line 8). If the current candidate g is identified
a result, i.e., one of the current best k results (Line 9), the algo-
rithm remove the head element from the result setR and push
gwith the GED δ intoR (Lines 10–11). If it has k results inR
(Line 12), it updates the threshold τ toR.head().distance−
1 (Lines 13) because R.head().distance is the largest GED
among currently identified results. By tightening the thresh-
old τ , it accelerates the GED computation in Line 8 as well
as reduces the number of candidates to verify in Line 6.
To efficiently pruning unpromising graphs, our algorithm

VOLUME 10, 2022 79183

J. Kim: Efficient Top-k Graph Similarity Search With GED Constraints

Algorithm 2 TopK-Basic(D, q, k)
input : D is a graph database,

q is a query graph, and k is an integer
output: K(q, k, τmax)

1 C ← min-heap initialized to be ∅;
2 foreach graph g ∈ D do
3 if lbL(q, g) ≤ τmax then C.push(g, lbL(q, g));

4 τ ← τmax ;
5 R← max-heap of size k with each value set to (nil,∞);
6 while C 6= ∅ and C.head().lb ≤ τ do
7 (g,−)← C.pop();
8 δ← GED(q, g, τ);
9 if δ ≤ τ then
10 R.pop();
11 R.push(g, δ);
12 ifR.head().dist 6= ∞ then
13 τ ← R.head().dist − 1;

14 if index is available then
15 C ← regenCandidates(C, δ, τ);

16 returnR;

uses an index based on the pre-computed GEDs of data
graphs, which is proposed in our previous work [37]. If the
index is available, we can regenerate a candidate set whenever
a result is found. Given a graph g, the index requires a GED
threshold τ and δ = ged(q, g) to regenerate a candidate set.
regenCandidates regenerates candidates using the index if
the index is available (Line 15, refer to [37] for the details of
the index and candidate regeneration). The algorithm finally
returns the result set R (Line 16).
Theorem 1: Algorithm 2 correctly returns top-k result

graphs.
Proof: It is obvious that the initial candidate set contains

all top-k results (by Lines 2–3). Let’s assume that current
R correctly contains top-k results from candidates verified
so far. Let the next candidate graph be g and the maximum
distance in R be dm.
1) If δ = ged(q, g) > τ , δ ≥ dm since δ > τ = dm −

1. Hence, excluding g from the result set (in Line 9)
does not affect the correctness of the result setR. Here,
we do not consider the case where τ = τmax because it
is trivial to exclude g in this case.

2) If δ = ged(q, g) ≤ τ , the head element in R is
removed (in Line 10) and g is inserted into R (in
Line 11). Since the GED of the removed head element
has the largest GED in R and δ ≤ τ < dm, replacing
the largest element with g guarantees the correctness
of R.

Therefore, the algorithm correctly returns top-k results. �
The following lemma states that the algorithm keeps

decreasing the overhead of GED computation while it finds
result graphs.

FIGURE 4. An overview of lower bound based top-k search.

Lemma 1: The GED threshold τ in Algorithm 2 decreases
monotonically.

Proof: As shown in Theorem 1, the algorithm always
replaces the largest GED from R with a smaller one. Hence,
it guarantees that the largest GED dm in R decreases mono-
tonically. Since τ is either τmax or dm − 1 and dm ≤ τmax , τ
is also decreases monotonically. �

B. GED LOWER BOUND-BASED TOP-k SEARCH
ALGORITHM
The problem with the TopK-Basic algorithm proposed in the
previous subsection is that it uses loose GED lower bounds
in C. Hence, it may push some graphs having high GED val-
ues intoR and pop them fromR later, which causes unneces-
sary GED computation. We may use a different feature-based
lower bound function for the candidate set. However, the
problem with existing feature-based lower bound functions is
that they generally produce a loose lower bound. To address
the problem, in this subsection, we develop an incremental
GED computation algorithm to precisely obtain a desired
GED lower bound and propose another top-k search algo-
rithm based on incremental GED computation.

Figure 4 shows an overview of the lower bound-based
top-k search. We keep a candidate set C which is organized
into a min heap using GED lower bounds of candidates.
Initially, the GED lower bound of each candidate is computed
using the label set-based lower bound function. We generate
result graphs by incrementally tightening the lower bounds
of candidates as follows. 1©We first pop the head element c
from C. Then, we look up the head c′ of C and set a target
lower bound to lb(q, c′) + 1, where lb(q, c′) is the current
lower bound of c′. 2© We incrementally tighten the lower
bound of c up to the target. 3© If we successfully tighten the
lower bound of c, we push c into C. We can fail to tighten the
lower bound of c if and only if we obtain ged(q, c) which is
less than the target (see Algorithm 3). In this case, c is added
into the result set because it is a top-k result (we will formally
state this observation in Lemma 2). The intuition behind this
approach is that we do not always fully compute the GED of
the head element of the candidate set.
Definition 6 (GED Computation Context): A GED com-

putation context γ is a triple (Q, lb, ub), where Q is a priority
queue containing mappings, lb is a GED lower bound, and ub
is a GED upper bound.

We use the GED computation context in Definition 6 to
stop and resumeGED computation. For each candidate graph,
the main idea is to compute GED until a desired lower bound
is found. The A* search strategy finds an optimal path in the
search tree by increasing the lower bound of each mapping.

79184 VOLUME 10, 2022

J. Kim: Efficient Top-k Graph Similarity Search With GED Constraints

If the minimum lower bound of the A* search is greater than
or equal to a given target lower bound, therefore, we can
immediately stop GED computation and keep the current
context of GED computation for later use.

Algorithm 3 TightenLB(g1, g2, γ , target , τ)
input : g1 and g2 are input graphs,

γ is current GED computation context,
target is a target lower bound,
and τ is a GED threshold

output: updated context γ

1 while γ.Q 6= ∅ do
2 m← γ.Q.head();
3 γ.lb← lbM(m);

4 if |m| = |V (g2)| then
5 γ.ub← γ.lb;
6 return γ ;

7 if γ.lb ≥ target then return γ ;

8 γ.Q.pop();
9 foreach child node mc of m do
10 if lbM(mc) ≤ τ then γ.Q.push(mc);

11 γ.lb← γ.ub← τ + 1;
12 return γ ;

Algorithm 3 shows incremental GED computation for find-
ing a lower bound greater than or equal to a given target
bound. The algorithm looks up the first mapping from the
priority queue (Line 2) and save the lower bound of the
mapping in the current context γ (Line 3). If the current
mapping is a full mapping, the algorithm makes the upper
bound of the current context equivalent to the lower bound
and return the context (Lines 4–6). By making both bounds
the same, we can see that the exact GED is found. If the
lower bound of the current mapping is not less than the target
bound, the algorithm stops GED computation and returns the
current context (Line 7). Otherwise, it removes the current
mapping from the queue and expands child of current map-
pings (Lines 8–10). If the queue is empty, the algorithm saves
τ + 1 as the GED into the context and return the context
(Lines 11–12).
Lemma 2: Given a top-k query q and a data graph g,

ged(q, g) ≤ min
g′∈C

lb(q, g′) H⇒ g ∈ R,

where C is a candidate set containing currently remaining
candidates and R is a result set.

Proof: Since ged(q, g) ≤ lb(q, g′) ≤ ged(q, g′) for any
remaining candidate graph g′, g has the lowest GED, which
implies that g is an answer of the top-k query. �
Given the algorithm TightenLB that incrementally tight-

ens the lower bound of a candidate graph, we develop a top-k
search algorithm based on Lemma 2. Algorithm 4 encapsu-
lates the top-k search algorithm. The algorithm first generates

Algorithm 4 TopK-LB(D, q, k)
input : D is a graph database,

q is a query graph, and k is an integer
output: K(q, k, τmax)

1 C ← min-heap initialized to be ∅;
2 foreach graph g ∈ D do
3 if lbL(q, g) ≤ τmax then
4 C.push(g, ({∅}, lbL(q, g), τmax + 1))

5 R← ∅;
6 while |R| < k and C 6= ∅ do
7 (g, γ)← C.pop();
8 if γ.lb = γ.ub thenR← R ∪ {g};
9 else

10 (−, γ ′)← C.head();
11 γ ← TightenLB(q, g, γ, γ ′.lb+ 1, τmax);
12 if γ.lb ≤ γ ′.lb then
13 R← R ∪ {g};
14 if index is available then
15 C ← regenCandidates(C, γ .lb, τmax);

16 else C.push(g, γ);

17 returnR;

an initial candidate set using the label set-based lower bound
function, where the candidate set contains pairs of (candidate
graph g, GED context γ of g). The GED computation context
of each candidate g consists of a priority queue having an
empty mapping, which denotes the root node of the search
tree, a label set-based lower bound lbL(q, g), and an upper
bound τmax + 1 (Lines 2–4). It retrieves a candidate having
the lowest lower bound from the candidate set (Line 7). If the
lower bound is the exact GED of the candidate, the algorithm
adds the candidate into the result set based on Lemma 2
(Line 8). Otherwise, it tightens the lower bound of the current
candidate using Algorithm 3, where a target bound is set to
the smallest lower bound + 1 of the remaining candidates
(Lines 10–11). If the tightened lower bound is not greater
than the target bound, we can assure that the exact GED of the
current candidate is found while tightening its lower bound.
Hence, the algorithm includes the current candidate into the
results by Lemma 2, and regenerates the candidate set using
our index (Lines 12–15). Otherwise, it pushes the candidate
with its GED computation context into the candidate set
(Line 16). The algorithm repeats the same procedure until
either k results are found or the candidate set empties (Line 6),
and finally it returns the result set (Line 17).
Theorem 2: Algorithm 4 correctly returns top-k result

graphs.
Proof: It is trivial that the initial candidate set contains

all results. Since the algorithm pushes a candidate into the
result set only when the candidate has a GED less than or
equal to the minimum lower bound of remaining candidates,

VOLUME 10, 2022 79185

J. Kim: Efficient Top-k Graph Similarity Search With GED Constraints

FIGURE 5. An overview of upper bound based top-k search.

by Lemma 2, the algorithm correctly collects top-k
results. �

C. GED UPPER BOUND-BASED TOP-k SEARCH
ALGORITHM
The problem with the lower bound approach is that it does
not utilize GED thresholds. Since it collects exactly k results
only, it relies only on τmax in pruning the search space of
GED. Although it can avoid full GED computation for many
candidate graphs, it suffers from the large search space due to
the absence of practical thresholds. To overcome the problem,
in this subsection, we develop another top-k search algo-
rithm that utilizes GED upper bounds. The basic and lower
bound approaches require full GED computation for all top-
k results. The main idea of this subsection is that some results
can avoid full GED computation if their GED upper bounds
are less than the maximum GED of the graphs the result set.

Figure 5 shows an overview of upper bound based top-k
search. Again, we keep amin heap C for candidates and amax
heapR for results and produce top-k result graphs as follows.
1©We pop the head element c of C. We set the threshold τ =
ged(q, r)−1, where r is the head element ofR. 2©we tighten
the upper bound of c down to τ . 3© If we successfully tighten
the upper bound of c, we pop r from R and push c into R.
We can fail to tighten the upper bound of c if and only if we
obtain ged(q, c) which is greater than τ (see Algorithm 5).
In this case, c cannot be a result and we simply remove c.
To correctly set the threshold τ , we compute the GED of the
head element of R whenever necessary (see Algorithm 6).
To obtain a desired GED upper bound, we basically tra-

verse the search tree in a depth-firstmanner and incrementally
tighten an upper bound. To this end, we adapt the hybrid
depth-first search approach, which we have proposed in our
previous study [35]. Before we present our GED upper bound
algorithm, we briefly summarize the hybrid search technique.
Wefirst find amapping having the smallest GED at the global
level, i.e., from all mappings in the queue. Then, we expand
child mappings of the mapping and keep going down to the
next level of the current mapping. At each level, we select a
mapping having the smallest GED at the level. We stop the
downward traversal if we encounter a leaf node of the search
tree or there is nomapping at the current level. Then, we select
another mapping at the global level to start with.

Algorithm 5 shows an incremental GED computation algo-
rithm to obtain an upper bound that is not greater than a target
bound. The algorithm uses a special priority queue,2 which

2Please refer to [35] for the details of the implementation of the queue.

Algorithm 5 TightenUB(g1, g2, γ , target)
input : g1 and g2 are input graphs,

γ is current GED computation context,
and target is a target upper bound.

output: updated context γ

1 lv← global;
2 while γ.Q 6= ∅ do
3 m← γ.Q.pop(lv);
4 if m = nil or lbM(m) > target then
5 lv← global

6 else if |m| = |V (g2)| then
7 if lbM(m) < γ.ub then
8 γ.ub← lbM(m)

9 if lv = global then
10 γ.lb← γ.ub;
11 return γ ;

12 else if γ.ub ≤ target then return γ ;
13 else lv← global;

14 else
15 foreach child node mc of m do
16 if lbM(mc) ≤ target then
17 γ.Q.push(mc)

18 lv← |m| + 1;

19 γ.lb← γ.ub← target + 1;
20 return γ ;

can return a mapping having the lowest GED lower bound at
a specific level of the search tree. To this end, it receives a
level in its pop method. When the level is it global, it returns
a mapping having the lowest GED among all mappings in
the queue. The algorithm first finds a mapping having the
smallest GED from the global level (Line 1). In every iteration
in the while loop (Lines 2–18), it basically expands the child
mappings of the current mapping (Lines 15–17) and goes
down to the next level of the current mapping (Line 18).
If there is no mapping at the current level or the minimum
GED lower bound of the current level is greater than the
target bound, the algorithm stops searching downwards and
selects a mapping at the global level in the next iteration
(Lines 4–5). When it meets a leaf node (Line 6), it updates the
current upper bound if necessary (Lines 7–8). Then, it returns
if either the exact GED is found (Lines 9–11) or the current
upper bound is not greater than the target bound (Line 12).
Otherwise, it sets the level to the global level for the next
iteration (Line 13). We remark that we use the target upper
bound as a threshold for computing the lower bound of a
mapping in the algorithm. Hence, the algorithm does not take
a threshold as a parameter.

Algorithm 6 finds top-k results by incrementally tightening
GED upper bounds. Like other algorithms, it generates an
initial set of candidates using the label set-based lower bound
function (Lines 1–3). The initial GED computation context of

79186 VOLUME 10, 2022

J. Kim: Efficient Top-k Graph Similarity Search With GED Constraints

Algorithm 6 TopK-UB(D, q, k)
input : D is a graph database,

q is a query graph, and k is an integer
output: K(q, k, τmax)

1 C ← min-heap initialized to be ∅;
2 foreach graph g ∈ D do
3 if lbL(q, g) ≤ τmax then

C.push(g, ({∅}, lbL(q, g), τmax + 1));

4 τ ← τmax ;
5 R← a max-heap of size k with each value set to (nil,

nil);
6 while C 6= ∅ and C.head().γ .lb ≤ τ do
7 (g, γ)← C.pop();

8 if |R| < k then R.push(g, γ) ;
9 else
10 γ ← TightenUB(q, g, γ, τ);
11 if γ.ub ≤ τ then
12 R.pop();
13 R.push(g, γ);

14 while |R| = k and R.head().lb 6= R.head().ub do
15 (g, γ)← R.pop();
16 TightenUB(q, g, γ, 0);
17 if γ.ub ≤ τmax then
18 R.push(g, γ);
19 if index is available then
20 C ← regenCandidates(C, γ .lb, τmax);

21 if |R| = k then τ ← R.head().ub− 1;

22 returnR;

each candidate is the same as Algorithm 4. After generating
the initial candidate set, it initializes the threshold τ to τmax
(Line 4) and make a result setRwhich is a max-heap of pairs
of (result graph g, GED computation context γ), where the
ordering of the pairs in the heap is determined by the GED
upper bound in γ (Line 5). For each candidate graph and
its GED computation context, the algorithm directly pushes
the candidate to R if R is not filled (Line 8). Otherwise, it
tightens the upper bound of the candidate (Line 10). If the
tightened upper bound is less than the GED of the head
of R (i.e., the maximum GED value in R), it removes the
head of R and push the current candidate to the result set
(Lines 11–13). If γ.ub > τ , TightenUB computes the exact
GED between q and g, and since the GED, which is γ.ub,
is greater than τ , we can safely remove g. So, the algorithm
do nothing in this case. In the remaining part of the algorithm
(Lines 14–21), it basically updates the threshold using the
maximum GED in the result set (Line 21). Since the GEDs of
some graphs inR are not fully computed, the algorithm finds
the maximum GED by incrementally computing the GED of
the head graph of R (in the while loop of Line 14). To this

end, it calls TightenUB by passing the target threshold 0,
which forcesTightenUB to compute an exact GED (Line 16).
After tightening the head, it could not be the graph having
the largest GED. In this case, it repeats the same procedure.
In the meanwhile, it regenerates candidate graphs using our
index if an index is available (Lines 19–20). Remark that
the algorithm tightens the head only when the result set is
filled. In case that the result set is just filled by the current
candidate in Line 8, the GED of the head graph may exceed
τmax because we simply push the candidate into the result set
without any computation. In this case, we simply remove the
head graph from R (see the if statement in Line 17).
Lemma 3: The algorithm does not always compute exact

GEDs of all graphs in the final result set.
Proof: Let an upper bound of a graph g inR be u, which

is not the exact GED of g. Whenever the algorithm computes
the exact GED of another graph in Line 17, consider the GED
is not less than u. In this case, the algorithm does not need to
compute the exact GED of g since ged(g, q) ≤ u ≤ m, where
m is the maximum GED of the result graphs in R. �
Lemma 3 states that the algorithm can save some GED

computation for finding top-k result graphs.
Lemma 4: The GED threshold τ in Algorithm 4 monoton-

ically decreases.
Proof: The threshold τ is updated either (1) R is filled

up for the first time or (2) the head graph inR is removed from
R. In the first case, τ does not increase since the algorithm
collects graphs whose GED is not greater than τmax and the
initial value of τ is τmax . In the second case, let the removed
graph g and the new head graph g′. In this case, τ is updated
from ged(q, g) − 1 to ged(q, g′) − 1 (by Line 22). Since
ged(q, g) ≥ ged(q, g′), τ does not increase in this case. �
Theorem 3: Algorithm 6 correctly returns the top-k

results.
Proof: For simplicity, we assume that we have more

than k graphs whose GED is not greater than τmax . Again,
it is of certain that C contains all results. Let the graph having
the maximum GED in R be gmax . Consider there is a graph
g ∈ C such that g 6∈ R but ged(q, g) < ged(q, gmax). For the
graph g, we have the following two cases.

1) The first case is that g is pushed into R and removed
fromR later. At the time g is removed fromR, g should
be in the head of R and its GED is already computed
(by Line 17). The algorithm assures that either the GED
or an upper bound of every graph in R is not greater
than ged(q, g). Hence, gmax 6∈ R. gmax cannot be
pushed into R after g is popped because τ is set to
a value less than ged(q, g) (by Line 22) when g is
the head of R, and it is monotonically decreases by
Lemma 4 (i.e., ged(q, gmax) > ged(q, g) > τ). This
contradicts the hypothesis gmax ∈ R.

2) The second case is that g is never pushed intoR. At the
time the algorithm tests the graph g, it is obvious that
ged(q, g) > τ . Since ub(q, gmax) ≥ ged(q, gmax) >
ged(q, g) > τ , gmax 6∈ R at the moment. Afterwards,

VOLUME 10, 2022 79187

J. Kim: Efficient Top-k Graph Similarity Search With GED Constraints

gmax cannot be inserted into R as τ decreases mono-
tonically by Lemma 4. This contradicts the hypothesis
again.

Therefore, both cases cannot be possible. �

D. HYBRID TOP-K SEARCH WITH AN INDEX
The upper bound approach remedies the problem with the
basic and lower bound approaches. But there is a problem
with the upper bound approach when it is used with an
index based on pre-computed GEDs [37]. The upper bound
approach tends to avoid GED computation for graphs having
low GED values. Since the upper bound approach computes
GEDs of graphs appeared in the head of the max-heap for the
result set, GEDs produced by the approach are usually high.
Due to the overhead of pre-computation of pairwise GEDs,
however, the index omits those pairs having high GED values
(see [37] for the details of the index). Therefore, the index is
hardly beneficial to the upper bound approach. To remedy the
problem, in this subsection, we propose a simple but efficient
hybrid approach for top-k graph similarity search.
The main observation is that existing threshold-based algo-

rithms are extremely fast for low GED thresholds (e.g. τ ≤
3). Therefore, we perform a threshold-based similarity search
for a low threshold τc, which is a tunable parameter. We then
remove unpromising graphs from D by utilizing the result
graphs of the threshold-based search. We finally perform top-
k graph search. We remark that this hybrid approach can be
used for all top-k algorithms proposed in this paper.

Algorithm 7 TopK-Hybrid(D, q, k)
input : D is a graph database,

q is a query graph, and k is an integer
output: K(q, k, τmax)

1 Rτ ← simsearch(D, q, τc);
2 C ← ∅;
3 foreach graph g ∈ D do
4 if lbL(q, g) ≤ τmax then C ← C ∪ {g};
5 foreach g ∈ Rτ do
6 remove g from C;
7 C ← regenCandidates(C,ged(g, q), τmax);

8 if |Rτ | > k thenRτ ← top k results in Rτ ;
9 R← TopKsearch(C, q, k − |Rτ |);

10 returnR ∪Rτ ;

Algorithm 7 shows the hybrid top-k search framework.
It first performs a threshold-based similarity search with a
pre-defined low threshold τc and saves the results in Rτ

(Line 1). Then, the algorithm generates a candidate set C
using the label set-based lower bound function (Lines 2–4).
it removes unpromising graphs from C using the index with
the result graphs in Rτ (Lines 5–7). Since it has all graphs
whose GEDs are within τc in Rτ , it needs to find remain-
ing k − |Rτ | best graphs in the modified candidate set

FIGURE 6. Frequencies of numbers of similar graphs within τmax .

(Lines 8–9). It finally returns the union ofRτ and remaining
k − |Rτ | best graphs (Line 10).

IV. EXPERIMENTS
From the experimental study in this section, we shows that
the proposed approaches improve the performance of top-k
similarity search.

A. EXPERIMENTAL SETTING
In our experiments, we used the following two real datasets,
which were frequently used in related
work [13], [14], [29]–[31], [33], [34].

• AIDS: The AIDS dataset consists of 42,689 graphs rep-
resenting antiviral screen compound data. The average
numbers of vertices and edges are 25.6 and 27.6, respec-
tively. The numbers of distinct labels of vertices and
edges are 62 and 3, respectively.

• PubChem: The PubChem dataset has 22,794 graphs
representing chemical compounds. The average num-
bers of vertices and edges are 48.11 and 50.56, respec-
tively. The numbers of distinct labels of vertices and
edges are 10 and 3, respectively.

Similar to [13], [37], we set τmax = 6 as users are
typically more inclined to search for similar graphs from
graph databases [9]. One problem with top-k GED search
is that many graphs have small number of similar graphs
within τmax . If we randomly select queries from the dataset,
therefore, most queries return less than k results within τmax
for a moderate size of k (e.g., k = 30). Figure 6 shows
the frequencies of similar graphs in AIDS and PubChem
datasets. Given a value n of the x-axis, the y-axis shows the
number of graphs that have exactly n similar graphs within
τmax . Notice that the y-axis of the figure is log-scaled. Based
on the observation, we reasonably assume that top-k queries
are issued for those graphs having many similar graphs. For
evaluating top-k search, by the assumption, we randomly
selected 100 query graphs in the gray areas in Figure 6, which
have at least 30 similar graphs. For each dataset, we evaluated
the selected 100 queries with k ∈ {10, 20, 30, 40, 50} and
obtained the total numbers of results for different k values as
shown in Table 1.
We reported aggregated results of 100 queries in the
experiments.

Our GED computation algorithms were implemented in
C++ based on the latest algorithm NassGED [37]. They

79188 VOLUME 10, 2022

J. Kim: Efficient Top-k Graph Similarity Search With GED Constraints

FIGURE 7. Response times of top-k queries.

TABLE 1. Total numbers of top-k results for 100 queries.

FIGURE 8. Response times of Top-k query with NassIndex.

were complied using GCCwith the -O3 flag. All experiments
were conducted in a single machine with an Intel core i7 and
32GB RAM running a 64-bit Ubuntu OS. Data graphs and
indices were kept in memory.

B. EVALUATION OF TOP-K SEARCH
In this subsection, we evaluate top-k graph similarity search
algorithms proposed in Section III. The purpose of evalua-
tion is to compare the baseline algorithm with TopK-Basic,
TopK-LB, and TopK-UB. We remark that we used the state-
of-the art GED computation algorithm NassGED [37] for
the baseline algorithm. We omitted the comparison with
ParsK [31] as ParsK relies on an outdated indexing tech-
nique Pars.
Top-k evaluation results of alternative algorithms are

reported in Figures 7 and 8. On the both datasets, the baseline
algorithm exhibited good performance for small k values
(e.g., k ∈ {10, 20}). This was because most results had small
GEDs w.r.t the query. For larger k (e.g., k ∈ {30, 40, 50}),
however, the baseline algorithm showed poor performance
because it had to repeat GED computation of many graphs
for each distinct threshold τ ∈ [0, τmax]. The proposed
algorithms were significantly faster than the baseline algo-
rithm for k ∈ {30, 40, 50}. On the PubChem dataset, for
example, TopK-UB was two times faster than the baseline
algorithm when k = 40. TopK-Basic exhibited poor per-
formance for small k values on the both datasets because
it needed to push unnecessary graphs having large GEDs
into the queue and pop them from the queue later. TopK-LB
and TopK-UB reduced such unnecessary GED computation
and outperformed TopK-Basic for small k values. On the
PubChem dataset, for example, TopK-LB and TopK-UB was

FIGURE 9. Response times of the hybrid top-k search.

about 2 times faster than TopK-Basic for k ≤ 20. For larger
k values, TopK-Basic ran as fast as TopK-LB and TopK-UB
as shown in the figures. For k ≥ 30, TopK-UB was the best
performer among the algorithms. This was becauseTopK-UB
did not need to perform full GED computation for some result
graphs.

C. EVALUATION OF TOP-K SEARCH WITH AN INDEX
In this subsection, we evaluate top-k search algorithms using
the NassIndex [37], which is based on the pre-computed
GEDs of data graphs.

Figure 8 shows experimental results of top-k searches
using NassIndex. TopK-Basic and TopK-LB were well
suited with the index. For k > 20, these algorithms out-
performed the baseline algorithm. On the AIDS dataset, for
example, TopK-LB was about 2 times faster than the base-
line algorithm when k > 30. For k ≤ 20, however, the
baseline algorithm exhibited very good performance. This
was because the existing threshold-based similarity search
techniques and GED computation algorithms ran extremely
fast when a GED threshold is low [29], [37]. For smaller
k values, top-k results tend to be found within a low GED
threshold. Nonetheless, TopK-Basic and TopK-LB were still
competitive with the baseline algorithm for the smaller k
values. As we discussed in Section III-D, TopK-UB hardly
utilized the index and exhibited very poor performance com-
pared with other algorithms. It was about three times slower
than the baseline algorithm for a large k value.

D. EVALUATION OF HYBRID TOP-K SEARCH
We applied the hybrid search framework to all the top-k algo-
rithms with the parameter τc = 3. Figure 9 shows the results.
As shown in the figure,TopK-UBwere surprisingly fast when
we used the hybrid search framework. This is because the
threshold-based search finds result graphs having low GEDs
and it takes advantage of the index using those results to
reduce the number of candidates. As a result, TopK-UB con-
sistently outperformed all other algorithms on both datasets.
For example, it was about 2 times faster thanTopK-Basic and
TopK-LB on the PubChem dataset for k > 30. The hybrid
approach also improved the performance of TopK-Basic.
However, the performance ofTopK-LBwas slightly degraded
with the hybrid search framework. The reason is as follows.
TopK-LB found the graph having the smallest GED first.
TopK-LB could greatly reduce the number of candidate using
the first result. Therefore, it hardly took advantage of the

VOLUME 10, 2022 79189

J. Kim: Efficient Top-k Graph Similarity Search With GED Constraints

TABLE 2. Improvement when using the index (in %).

threshold-based search of the hybrid framework and the over-
head of the threshold-based search degraded the performance,
which was negligible though.

The hybrid search framework are well designed to utilize
the index so that the index effectively reduced the num-
ber of graphs requiring GED computation and significantly
improved the performance. On the AIDS dataset, for exam-
ple, TopK-UB with the index was up to 5 times faster than
that without the index. On the PubChem dataset, it was up to
10 times faster. Table 2 summarizes the improvement of the
all algorithms on the both datasets when using the index.

V. RELATED WORK
A. FILTERING AND INDEXING
Existing feature-based filtering techniques are categorized
into two groups. The first group utilizes small fixed-length
substructures to establish a necessary condition to meet a
given threshold. k-AT [11], path-based q-gram [14], [30],
c-star [27] and branch [15] are proposed in this group.
They build an offline inverted index on fixed-length features
extracted from data graphs. The second group utilizes large
variable-length features to capture structural differences.
To make a feature as large as possible, they partition each
data graph into disjoint subgraphs and filter out dissimilar
data graphs using the pigeonhole principle based on the obser-
vation in string similarity search techniques (e.g., [38], [39]).
Pars [13] and MLIndex [9] build an offline inverted index on
partition features extracted from data graphs. Recently, pre-
computed pairwise GED-based index are proposed to address
the fundamental limitations of feature-based index [37].

B. GED COMPUTATION AND VERIFICATION
The most representative GED computation algorithm is
A∗-GED [36], which traverse the search tree using A* algo-
rithm. BLP-GED [40] formulates the GED computation
problem as a binary linear program. DF-GED [32], and
CSI_GED [34] traverse the search tree in a depth-first man-
ner. HGED [35] mixes both the depth-first and A* search
techniques to improve GED computation. To verify candidate
graphs in graph similarity search techniques, A∗-GED is the
most widely used. To reduce the search space, Inves [29]
uses the bridge differences to obtain tight GED lower bounds,
and AStar+-LSa [33] removes blank vertices from a vertex
mapping. NassGED integrates existing filtering techniques

into GED computation to tighten the lower bound of a partial
mapping.

C. TOP-K GRAPH SIMILARITY SEARCH
ParsK [31] is the first attempt to the top-k graph similarity
search with graph edit distance constraints. Based on the
observation of the top-k string similarity search technique
proposed in [41], it built a hierarchical partition index struc-
ture to support top-k graph similarity queries. We differ
by developing top-k search algorithms that exploit precise
GED lower and upper bounds based on incremental GED
computation. Our hybrid search framework are also designed
to utilizes the latest index based on pre-computed pairwise
GEDs of data graphs. An MCS-based top-k graph similarity
search technique has been proposed in [28]. In [42], they
formulated the problem of top-k representative queries on
graph databases focusing on representativeness modeling.

VI. CONCLUSION
In this paper, we have proposed novel approaches for top-
k graph similarity search. We utilizes GED lower and upper
bounds to efficiently obtain the best k results for a query.
To precisely compute a target GEDbound, we have developed
incremental GED computation algorithms. We have adapted
a recent index structure based on pre-computed pairwise
GEDs to top-k graph similarity search by designing a hybrid
similarity search framework that are applied to our top-k
search techniques.We have conducted extensive performance
studies using real datasets to test the proposed techniques.

REFERENCES
[1] L. Liu, Y. Lu, and C. Y. Suen, ‘‘Retrieval of envelope images using graph

matching,’’ in Proc. Int. Conf. Document Anal. Recognit., Sep. 2011,
pp. 99–103.

[2] R. Wessel, S. Ochmann, R. Vock, I. Blümel, and R. Klein, ‘‘Efficient
retrieval of 3D building models using embeddings of attributed sub-
graphs,’’ in Proc. 20th ACM Int. Conf. Inf. Knowl. Manage. (CIKM), 2011,
pp. 2097–2100.

[3] Y. Zhang, X. Yang, H. Qiao, Z. Liu, C. Liu, and B. Wang, ‘‘A graph match-
ing based key point correspondence method for lunar surface images,’’
in Proc. 12th World Congr. Intell. Control Autom. (WCICA), Jun. 2016,
pp. 1825–1830.

[4] M. Neuhaus and H. Bunke, ‘‘A graph matching based approach to fin-
gerprint classification using directional variance,’’ in Proc. Audio-Video-
Based Biometric Person Authentication (AVBPA), 2005, pp. 191–200.

[5] E. Ozdemir and C. Gunduz-Demir, ‘‘A hybrid classification model for
digital pathology using structural and statistical pattern recognition,’’ IEEE
Trans. Med. Imag., vol. 32, no. 2, pp. 474–483, Feb. 2013.

[6] F. Niedermann, ‘‘Deep business optimization: Concepts and architecture
for an analytical business process optimization platform,’’ Ph.D. disserta-
tion, Univ. Stuttgart, Stuttgart, Germany, 2015.

[7] M. Bourquin, A. King, and E. Robbins, ‘‘BinSlayer: Accurate comparison
of binary executables,’’ in Proc. 2nd ACM SIGPLAN Program Protection
Reverse Eng. Workshop (PPREW), 2013, pp. 1–10.

[8] O. Kostakis, J. Kinable, H. Mahmoudi, and K. Mustonen, ‘‘Improved call
graph comparison using simulated annealing,’’ in Proc. ACM Symp. Appl.
Comput. (SAC), 2011, pp. 1516–1523.

[9] Y. Liang and P. Zhao, ‘‘Similarity search in graph databases: A multi-
layered indexing approach,’’ in Proc. IEEE 33rd Int. Conf. Data Eng.
(ICDE), Apr. 2017, pp. 783–794.

[10] H. Shang, X. Lin, Y. Zhang, J. X. Yu, and W. Wang, ‘‘Connected substruc-
ture similarity search,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
Jun. 2010, pp. 903–914.

79190 VOLUME 10, 2022

J. Kim: Efficient Top-k Graph Similarity Search With GED Constraints

[11] G. Wang, B. Wang, X. Yang, and G. Yu, ‘‘Efficiently indexing large sparse
graphs for similarity search,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 3,
pp. 440–451, Mar. 2012.

[12] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin, ‘‘An efficient graph
indexing method,’’ in Proc. IEEE 28th Int. Conf. Data Eng., Apr. 2012,
pp. 210–221.

[13] X. Zhao, C. Xiao, X. Lin, Q. Liu, and W. Zhang, ‘‘A partition-based
approach to structure similarity search,’’ Proc. VLDB Endowment, vol. 7,
no. 3, pp. 169–180, Nov. 2013.

[14] X. Zhao, C. Xiao, X. Lin, W. Wang, and Y. Ishikawa, ‘‘Efficient process-
ing of graph similarity queries with edit distance constraints,’’ VLDB J.,
vol. 22, no. 6, pp. 727–752, Dec. 2013.

[15] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao, ‘‘Graph similarity
searchwith edit distance constraint in large graph databases,’’ inProc. 22nd
ACM Int. Conf. Conf. Inf. Knowl. Manage. (CIKM), 2013, pp. 1595–1600.

[16] S. Zhang, J. Yang, andW. Jin, ‘‘SAPPER: Subgraph indexing and approxi-
mate matching in large graphs,’’ Proc. VLDB Endowment, vol. 3, nos. 1–2,
pp. 1185–1194, Sep. 2010.

[17] G. Zhu, X. Lin, K. Zhu, W. Zhang, and J. X. Yu, ‘‘TreeSpan: Efficiently
computing similarity all-matching,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data (SIGMOD), 2012, pp. 529–540.

[18] H. Bunke and K. Shearer, ‘‘A graph distance metric based on the max-
imal common subgraph,’’ Pattern Recognit. Lett., vol. 19, nos. 3–4,
pp. 255–259, Mar. 1998.

[19] Y. Tian, R. C. McEachin, C. Santos, D. J. States, and J. M. Patel, ‘‘SAGA:
A subgraph matching tool for biological graphs,’’ Bioinformatics, vol. 23,
no. 2, pp. 232–239, Nov. 2006.

[20] A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, and H. Bunke, ‘‘Approx-
imation of graph edit distance based on Hausdorff matching,’’ Pattern
Recognit., vol. 48, no. 2, pp. 331–343, 2015.

[21] A. Fischer, K. Riesen, and H. Bunke, ‘‘Improved quadratic time approx-
imation of graph edit distance by combining Hausdorff matching and
greedy assignment,’’ Pattern Recognit. Lett., vol. 87, pp. 55–62, Feb. 2017.

[22] X. Gao, B. Xiao, D. Tao, and X. Li, ‘‘A survey of graph edit distance,’’
Pattern Anal. Appl., vol. 13, no. 1, pp. 113–129, Feb. 2010.

[23] K. Gouda and M. Arafa, ‘‘An improved global lower bound for graph edit
similarity search,’’ Pattern Recognit. Lett., vol. 58, pp. 8–14, Jun. 2015.

[24] K. Riesen and H. Bunke, ‘‘Improving bipartite graph edit distance approx-
imation using various search strategies,’’ Pattern Recognit., vol. 48, no. 4,
pp. 1349–1363, Apr. 2015.

[25] A. Sanfeliu and K.-S. Fu, ‘‘A distance measure between attributed rela-
tional graphs for pattern recognition,’’ IEEE Trans. Syst., Man, Cybern.,
vol. SMC-13, no. 3, pp. 353–362, May 1983.

[26] F. Serratosa, ‘‘Computation of graph edit distance: Reasoning about opti-
mality and speed-up,’’ Image Vis. Comput., vol. 40, pp. 38–48, Aug. 2015.

[27] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou, ‘‘Comparing stars:
On approximating graph edit distance,’’ Proc. VLDB Endowment, vol. 2,
no. 1, pp. 25–36, Aug. 2009.

[28] Y. Zhu, L. Qin, J. X. Yu, and H. Cheng, ‘‘Answering top-k graph similarity
queries in graph databases,’’ IEEE Trans. Knowl. Data Eng., vol. 32, no. 8,
pp. 1459–1474, Aug. 2020.

[29] J. Kim, D. Choi, and C. Li, ‘‘Inves: Incremental partitioning-based veri-
fication for graph similarity search,’’ in Proc. 22nd Int. Conf. Extending
Database Technol. (EDBT), 2019, pp. 229–240.

[30] X. Zhao, C. Xiao, X. Lin, and W. Wang, ‘‘Efficient graph similarity joins
with edit distance constraints,’’ in Proc. IEEE 28th Int. Conf. Data Eng.,
Apr. 2012, pp. 834–845.

[31] X. Zhao, C. Xiao, X. Lin, W. Zhang, and Y. Wang, ‘‘Efficient structure
similarity searches: A partition-based approach,’’ VLDB J., vol. 27, no. 1,
pp. 53–78, Feb. 2018.

[32] Z. Abu-Aisheh, R. Raveaux, J.-Y. Ramel, and P. Martineau, ‘‘An exact
graph edit distance algorithm for solving pattern recognition problems,’’
in Proc. Int. Conf. Pattern Recognit. Appl. Methods, 2015, pp. 271–278.

[33] L. Chang, X. Feng, X. Lin, L. Qin, W. Zhang, and D. Ouyang, ‘‘Speeding
up GED verification for graph similarity search,’’ in Proc. IEEE 36th Int.
Conf. Data Eng. (ICDE), Apr. 2020, pp. 793–804.

[34] K. Gouda and M. Hassaan, ‘‘CSI_GED: An efficient approach for graph
edit similarity computation,’’ in Proc. IEEE 32nd Int. Conf. Data Eng.
(ICDE), May 2016, pp. 265–276.

[35] J. Kim, ‘‘HGED: A hybrid search algorithm for efficient parallel graph edit
distance computation,’’ IEEE Access, vol. 8, pp. 175776–175787, 2020.

[36] K. Riesen, S. Fankhauser, and H. Bunke, ‘‘Speeding up graph edit distance
computation with a bipartite heuristic,’’ in Proc. Mining Learn. With
Graphs (MLG), 2007, pp. 1–4.

[37] J. Kim, ‘‘Boosting graph similarity search through pre-computation,’’ in
Proc. Int. Conf. Manage. Data, Jun. 2021, pp. 951–963.

[38] J. Kim, C. Li, and X. Xie, ‘‘Hobbes3: Dynamic generation of variable-
length signatures for efficient approximate subsequence mappings,’’ in
Proc. IEEE 32nd Int. Conf. Data Eng. (ICDE), May 2016, pp. 169–180.

[39] G. Li, D. Deng, J.Wang, and J. Feng, ‘‘Pass-join: A partition-basedmethod
for similarity joins,’’ Proc. VLDB Endowment, vol. 5, no. 3, pp. 253–264,
Nov. 2011.

[40] J. Lerouge, Z. Abu-Aisheh, R. Raveaux, P. Héroux, and S. Adam,
‘‘Exact graph edit distance computation using a binary linear program,’’
in Proc. Structural, Syntactic, Stat. Pattern Recognit. (S+SSPR), 2016,
pp. 485–495.

[41] J. Wang, G. Li, D. Deng, Y. Zhang, and J. Feng, ‘‘Two birds with one stone:
An efficient hierarchical framework for top-k and threshold-based string
similarity search,’’ in Proc. IEEE 31st Int. Conf. Data Eng., Apr. 2015,
pp. 519–530.

[42] S. Ranu,M. Hoang, and A. Singh, ‘‘Answering top-k representative queries
on graph databases,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
Jun. 2014, pp. 1163–1174.

JONGIK KIM received the B.S. and M.S.
degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), in 1998 and 2000, respectively, and
the Ph.D. degree in computer engineering from
Seoul National University, South Korea, in 2004.
He was a Senior Researcher at the Electronics and
Telecommunications Research Institute (ETRI),
from 2004 to 2007. He was a Professor at Jeonbuk
National University, from 2007 to 2021. He is cur-

rently a Professor with ChungnamNational University. His research interests
include semi-structured database, flash-memory data management, stream
data processing, and similarity query processing. He was in the program
committee of DASFAA 2020 and VLDB 2021 (industrial track).

VOLUME 10, 2022 79191

