
Received 18 June 2022, accepted 18 July 2022, date of publication 28 July 2022, date of current version 3 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3194529

A Survey of Wound Image Analysis Using Deep
Learning: Classification, Detection,
and Segmentation
RUYI ZHANG1, DINGCHENG TIAN 1, DECHAO XU1, WEI QIAN1,2,
AND YUDONG YAO 1, (Fellow, IEEE)
1Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, China
2College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China

Corresponding author: Yudong Yao (yaoyudong@nbu.edu.cn)

ABSTRACT Wounds not only harm the physical and mental health of patients, but also introduce huge
medical costs. Meanwhile, there is a shortage of physicians in some areas, and clinical examinations are
sometimes unreliable in wound diagnosis. Reliable wound analysis is of great importance in its diagnosis,
treatment, and care. Currently, deep learning has developed rapidly in the field of computer vision and
medical imaging and has become the most commonly used technique in wound image analysis. This paper
studies the current research on deep learning in the field of wound image analysis, including classification,
detection, and segmentation. We first review the publicly available datasets from various research, and study
the preprocessing methods used in wound image analysis. Second, various models used in different deep
learning tasks (classification, detection, and segmentation) and their applications in different types of wounds
(e.g., burns, diabetic foot ulcers, pressure ulcers) are investigated. Finally, we discuss the challenges in the
field of wound image analysis using deep learning, and provide an outlook on the research and development
prospects.

INDEX TERMS Deep learning, wound image, classification, detection, segmentation.

I. INTRODUCTION
As a ‘‘silent epidemic’’ [1], wounds not only cause severe
physical pain to individual patients, such as background pain
caused by the wound itself and operative pain from clinical
interventions [2], but also introduce a certain degree of psy-
chological impact, such as worry and anxiety in patients who
suffer from traumatic pain, and in severe cases, it may lead
to depression [3]. In addition, since chronic wounds take a
long time to heal, patients must undergo continuous care to
prevent infection and the ongoing diagnosis and treatment of
wounds place a significant financial burden on individuals
as well as the society. In the UK, the National Health Ser-
vice (NHS) spends¿1.94 billion and¿89.6 million annually
on managing leg ulcers and burns, respectively [4]. At the
same time, there is a shortage of surgeons in some regions,
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such as a lack of rotating backups after prolonged physician
surgeries, or physicians are busy with other activities outside
the hospital, resulting in patients not receiving timely, high-
quality acute surgical care [5], [6]. Furthermore, it has been
shown that clinical examinations are sometimes unreliable
in the diagnosis of infections in chronic wounds, even with
the participation of experienced physicians [7], as well as
in acute wounds [8]. Therefore, there is a need for a low-
cost, rapid, and accurate wound assessment technique, such
as medical imaging based methods, to provide assistance in
wound diagnosis, prognosis, care, and other related tasks.

Along with the rapid development of smartphones, com-
puter hardware, and Internet techniques, research on wound
or wound image assessment has started to emerge, including
real-time monitoring [9], remote diagnosis [10], and mobile
care [11]. Wound images can provide valuable information
for an expert to accurately diagnose wounds. However, man-
ual evaluation through wound images is time-consuming
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and usually requires a significant amount of experience [12]
and training an experienced physician is costly in terms of
time. Researchers have made great efforts to address this
issue and various solutions have been proposed to assist
physicians in wound diagnosis through wound images. Tradi-
tional digital image processing using machine learning is one
of the most commonly used techniques for wound diagno-
sis [13], [14], but it has high time costs, since when describing
the characteristics of different target images, a large num-
ber of parameters need to be manually adjusted, such as
using line search techniques to tune free parameters in the
support vector machine (SVM) that control the penalty of
the classification error [15], and grid search techniques to
select the combination of network size and weight decay that
give the feed-forward neural networks (NN) the best per-
formance [16]. With a sufficient amount of labeled training
data, deep learning techniques can now effectively address
this problem. The potential of deep learning in image process-
ing has been widely recognized since the AlexNet architec-
ture based on convolutional neural networks (CNN) achieves
impressive results in the ImageNet competition. The CNN
model is the most commonly used model in deep learn-
ing [17]. It has the advantage that it can automatically
extract multiple levels of image visual features, and does not
need to manually adjust a large number of parameters [18],
which effectively improves the efficiency of image process-
ing tasks. With the availability of more and more publicly
available datasets, deep learning has made rapid progress in
the field of medical imaging [19], including the wound image
analysis [20], and diagnostic tools based on deep learning
frameworks have proven to be effective in aiding clinical
decision-making [21].

Zahia et al. [22] publish a review of machine learning tech-
niques in pressure injury in 2019. Anisuzzaman et al. [23]
publish a review of artificial intelligence techniques in wound
assessment in 2021, including a review of rule-based algo-
rithms, machine learning algorithms, and deep learning algo-
rithms. Although these studies cover a large amount of work,
we believe that the review in the field of deep learning is not
comprehensive. Different from previous work, we provide
a more comprehensive overview of deep learning methods,
including a review of publicly available datasets used in
deep learning tasks, an introduction for data preprocessing
methods, and various deep learningmodels. At the same time,
we review the latest research in the field of deep learning as
applied to various types of wounds.

We retrieve more than 90 research papers through Google
scholar searches using the query terms ‘‘deep learning’’,
‘‘classification’’, ‘‘detection’’, ‘‘segmentation’’, ‘‘wound’’
and combinations of various disease names. After determin-
ing specific wound types and deep learning tasks, we care-
fully screen a total of approximately 50 papers considering
the publication date and the number of citations. 64% of the
papers were published after 2020.

This paper focuses on a comprehensive review of the appli-
cations of deep learning in wound image analysis, including

TABLE 1. Wound image research using deep learning.

FIGURE 1. Different types of wound images.

classification, detection, and segmentation. We review the
available wound image datasets and study the data prepro-
cessing methods for the wound image analysis. We examine
several of the most common deep learning models for the
wound image analysis and introduce some model improve-
ments for the analysis of wound images. Table 1 describes
the coverage of this wound image research survey paper,
including deep learning tasks, wound analysis applications,
and wound types. We show in Fig. 1 some different types of
wound images from the Medetec dataset [24].

This paper is organized as follows. In Section II, public
wound image datasets are introduced, as well as methods
for data preprocessing. In Section III, the commonly used
deep learning model architectures and the model modifi-
cation for wound and evaluation metrics are introduced.
In Section IV-VI, specific wound analysis applications in var-
ious wound types are presented. Discussions and conclusions
are given in Section VII and VIII.

II. DATA AND DATA PREPROCESSING
A. DATA
Data is one of the most important parts of deep learn-
ing. When deep learning models are trained with many
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TABLE 2. Wound datasets.

parameters, but the amount of data used for training is insuf-
ficient, the network model is prone to overfitting [43]. In the
field of medical images, collecting datasets is challenging.
First, medical images are more difficult to share publicly due
to privacy protection. With the continuous development of
medical data analysis methods, even after anonymizing the
images, hackers may still be able to identify patients through
technical means. Therefore, data in most studies are not
publicly available [44]. Second, the primary job of medical
professionals is not data collection, and the acquisition of a
batch of images may be done by multiple personnel, which
can lead to inconsistent standards of the collected images.
In addition, due to the different imaging equipment, distance
and angle of the capture, the image content can show signifi-
cant differences, including color mode, light, intensity, edges,
etc., making the network model need more parameters to
analyze the images [45]. Finally, somemedical images cannot
be acquired in large quantities, since the capture method can
harm the patient’s body [46]. Producing datasets is also a
very difficult task. Annotating images usually needs to be
done manually and, even if the task is performed by people
with extensive professional experience, the standards are not
necessarily identical across experts. In addition, data imbal-
ance is a common problem in medical images, where the
proportion of negative samples in the dataset may be much
larger than positive samples, which can lead to bias in the
training of the model [47].

Public datasets have been very helpful in advancing the
research of deep learning in wound images. First, publicly
available datasets of the samewound type can be used directly
for data augmentation to improve model performance. Sec-
ond, Ohura et al. [48] train a deep learning model using a
dataset of pressure ulcers (PU), and test it on diabetic foot
ulcers (DFU) and venous leg ulcers (VLU) data. The results
demonstrate that datasets with different wound types can also
be used for model training. In addition, common datasets
allow for fair comparisons among different deep learning sys-
tems. Some of the publicly available datasets are summarized
in Table 2.

B. DATA PREPROCESSING
Although deep learning models can be trained directly based
on original images when the data is sufficiently clear and

of low noise [17], the training performance of the model
still varies depending on data preprocessing methods [53].
Data shortage is one of the common problems in deep learn-
ing in the field of wound applications. This is due to the
lack of public datasets for some wound types and the dif-
ficulty of obtaining the sufficient amount of data through
medical institutions. Data augmentation is widely used in
preprocessing as a method to expand the number of sam-
ples without substantially increasing the existing data. Con-
ventional image augmentation methods include geometric
transformation, i.e., rotation, flipping, random scaling, etc.,
and color transformation, i.e., contrast transformation, color
model conversion, Gaussian blur, etc.

Image generation is an effective way to expand the train-
ing set. Zhang et al. [35] propose an image generation sys-
tem based on deep convolutional generative adversarial net-
works (DCGANs) that can generate simulated chronic wound
images. The system consists of a generator architecture
and a discriminator architecture, and the model is trained
using mini-batch stochastic gradient descent. Experimen-
tal comparison with the original data demonstrates that the
images generated through this system can effectively improve
the model segmentation accuracy. Dai et al. [52] propose a
framework capable of automatically generating burn images
with annotations. The burn wounds are first generated using
a style-generative adversarial network (Style-GAN), which is
trained based on the non-saturating loss with regularization
function. Then the wounds are fused with human skins using
color adjusted seamless cloning (CASC), and finally, the burn
annotated dataset is obtained using coordinate transformation
in 3D space.

Light reflections generated during shooting are one of
the reasons for the degradation of wound image quality,
and Rajathi et al. [49] use a flash light removal method to
eliminate such interference. Firstly, the original image is
converted to a grayscale image based on linear combination
and non-wounded regions are identified. After converting
the grayscale image to a binary image, white pixel areas
are detected and filled through a given threshold. In con-
trast, Wagh et al. [50] improve the stability of the algorithm
by using the contrast limited adaptive histogram equaliza-
tion (CLAHE) method to enhance the interference of light
and noise in the image. Themethod requires the user to define
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TABLE 3. Data preprocessing.

a limit to be used as the maximum allowable local contrast
enhancement factor. Within the clip range, the noise of the
image is enhanced appropriately.

Another challenge in wound image processing is the
color variation caused by the external environment.
Pholberdee et al. [32] use a color enhancement method. This
method obtains color mapping parameters between cameras
through a deep learning model and generates images based
on these parameters to extend the dataset. Since RGB space
is not sufficient for comparison between colors in 3D space,
Godeiro et al. [51] use a color space reduction approach.
The RGB components are first quantized, and the histogram
colors are reduced from 2563 to 643, and then the components
are converted to a CIELab color space, thus allowing direct
color comparisons in 3D color space based on geometric
separability.

III. DEEP LEARNING METHODS
A. CNN, VGG, AND RELATED MODELS
CNN has been widely used due to its excellent per-
formance and efficiency in image processing. In 1989,
LeCun et al. [54] propose CNN for handwritten character
recognition. AlexNet [55] is the first modern deep convo-
lutional neural network (DCNN) model, which first applied
techniques such as ReLU, Dropout and GPU operation accel-
eration in CNN, and achieved excellent performance. With
AlexNet winning the ImageNet competition in 2012 with
a far superior first place, CNN is able to rapidly spread to
various application fields. VGG [56] adopts a larger number
of small convolutional kernels in the convolutional layer
instead of the otherwise larger ones, thus reducing the number
of parameters as well as increasing the number of nonlinear
mappings, and significantly improve the classification perfor-
mance of the network. DeepLab [57] replaces the ordinary
convolution of VGG with atrous convolution for segmenta-
tion tasks, and then performs post-processing optimization
on the obtained segmentation results through Conditional
Random Field (CRF). MobileNet [58] uses depthwise sep-
arable convolution to deepen the network. Compared with
the VGG-16 network, MobileNet can better reduce the

parameters and calculation amount while slightly reducing
the model accuracy. Compared to previous work, the resid-
ual network (ResNet) [59] is notable for its network depth.
ResNet addresses the degradation problem of deep networks
by introducing a residual unit through a shortcut connection.
Compared with VGG, ResNet has a great improvement in
computational speed and model accuracy. DenseNet [60]
establishes a dense connection between all the previous layers
and the latter layer, and realizes feature reuse through the
connection of features on the channel. These features allow
DenseNet to achieve better performance than ResNet with
fewer parameters and computational costs.

Bhansali and Kumar [37] design an 8-layer CNN net-
work for the classification of burns, which is named Burn-
Net. In the preprocessing stage, they use an anti-aliasing
technique to adjust the image size and perform data aug-
mentation through affine transformation. At the end of the
network, two connected dense layers enhance the propaga-
tion of features and reduce the number of parameters to be
calculated. Ong et al. [61] propose a CNN-based encoder-
decoder architecture to segment chronic wounds. They use
more down-sampling and up-sampling layers to form an
encoder block and a decoder block, respectively, and mapped
the features of the encoder. The up-sampled feature maps are
concatenated to form a ladder-like architecture that enables
the entire model to be trained end-to-end. Compared with
general models, this structure has higher accuracy and faster
computation speed in pixel-level wound segmentation.

B. R-CNN, YOLO, AND RELATED MODELS
The two-stage detection algorithm divides the detection prob-
lem into two stages. First, regions of interest (RoIs) are
extracted from the whole image, and then each RoI is updated
as well as classified. The R-CNN [62] is one of the first
deep learning frameworks to use the region proposal-based
approach. Since R-CNN takes longer time in extracting fea-
ture vectors, Fast R-CNN [63] circumvents the redundant
feature extraction operations in R-CNN. Fast R-CNN uses
the RoI pooling layer instead of the last max pooling layer
and performs only one global feature extraction for the whole
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image. Faster R-CNN [64] integrates the region proposal
network (RPN) with Fast R-CNN, so that region detection,
feature extraction, and window classification are all done
in one network, which greatly improves the target detection
speed.

The one-stage detection algorithm directly generates tar-
get locations and class probabilities, which improves the
computational speed at the expense of accuracy compared
to the two-stage detection algorithm. YOLO [65] draws on
the GoogLeNet network structure to implement end-to-end
object detection using a separate CNN model. Compared
with Faster R-CNN, YOLO produces fewer false positives in
the background region [66]. Single shot multi-box detector
(SSD) [67] uses VGG-16 as the base model and adds more
convolutional layers to the network. Compared with YOLO,
SSD uses multiscale feature maps for detection, which has
the advantage of allowing relatively large feature maps to
be used for detecting relatively small targets, and can make
up for the shortcomings of YOLO in small object detection.
Different from the previous detection framework, Detection
Transformer (DETR) [68] adopts the transformer as the core
architecture, and regards target detection as an ensemble
prediction problem, which shows better performance in the
detection task of large objects.

Oliveira et al. [69] improve the model on the basis of
Faster-RCNN. By adjusting the detector parameters, the
range of the training region is expanded. The number of
anchors is also increased, allowing the network to detect
smaller lesions. In the DFU detection task, faster detec-
tion speed and better detection accuracy are obtained.
Amin et al. [70] combine ShuffleNet with the YOLOv2
model for more efficient wound detection. In the localization
stage, the images are first fed into ShuffleNet with 172 layers,
and then passed to the YOLOv2 model for detection through
the ReLU node-199 layer. At the same time, they design
a model with a 16-layer CNN capable of classifying DFU
images into two conditions, ischemia and infection.

C. FCN AND RELATED MODELS
Fully convolutional networks (FCN) [76] is a milestone in
the field of deep learning in image segmentation. FCN does
not contain fully connected layers, and the model consists of
only convolutional layers. The advantage of this structure is
that it can adapt to images of any scale as input. At the same
time, a skip structure is used to combine the results of the last
layer with the results of the shallow layer. This effectively
addresses the problem of loss of details in the early stage.
Compared to FCN, U-Net [77] also follows the structure
of an encoder-decoder, but uses multi-level convolution on
the decoder and uses a concatenation operation in the skip
connection, whereas FCN uses a summation operation. U-Net
can be efficiently trained with a small number of samples
with data augmentation, which is very effective in biomedical
segmentation tasks. Mask R-CNN [78] adds a predictive seg-
mentation mask to the Faster R-CNN. In the network, Mask
R-CNN replaces the RoI pooling layer in Faster R-CNN with

RoI align layer, so that smaller feature maps can be output
to make the output pixels correspond precisely to the input
pixels. The Mask R-CNN can perform both target detection
and segmentation with faster computation speed and better
robustness than the FCN method.

Pathompatai et al. [31] design a region-focused training
strategy in U-Net model training to overcome the shortcom-
ings of deep learning models in processing large images. The
strategy first divides the image into several sub-images, and
defines the region where the wound is located as the central
neighborhood. In the central neighborhood, the number of
cropped sub-images will be more than other regions, so that
the model will be trained more times in the wound region,
thereby improving the overall training accuracy of the model,
and the reliability of the strategy is verified by comparing the
training results of the model with U-Net. Jiao et al. [79] pro-
pose a Mask R-CNN framework with Residual Network-101
as the backbone. In the framework, atrous convolution is used
to expand the field of view of the model, making the model
more suitable for datasets with different burn depths and
wound sizes, and the number of feature maps is increased in
the RPN network, whereas the loss function of class branch-
ing is changed.

D. EVALUATION METRICS
The performance of deep learning models can be evaluated
through standard metrics. Using different evaluation metrics
can make more comprehensive comparisons between models
and provide researchers with appropriate directions for opti-
mizing models [80]. The evaluation metrics can be defined by
confusion matrices, where the positive and negative instances
of correct prediction are denoted as True positive (TP) and
True negative (TN), and the negative and positive instances
of incorrect prediction are denoted as False positive (FP) and
False negative (FN), respectively.

Accuracy represents the percentage of correctly classified
samples among the total samples, and is the most basic metric
for evaluating model performance. The performance of the
model can be accuratelymeasured in the class balanced cases.
But in the case of class imbalance, using accuracy creates
performance evaluation limitations.

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
(1)

Precision represents the proportion of correctly classi-
fied positive samples in the prediction results among the
actual positive samples, and this metric is sensitive to
over-prediction.

Precision =
TP

TP+ FP
(2)

The recall represents the proportion of correctly classi-
fied positive samples in the prediction results in the overall
predicted positive samples, and this metric is sensitive to
under-prediction.

Recall =
TP

TP+ TN
(3)
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TABLE 4. Deep learning in classification of burns.

F1-Score is calculated by combining precision and recall,
which can reflect the degree of boundary matching between
the predicted result and the true value. The F1-Score is also
known as the Dice Similarity Coefficient (DSC).

F1-Score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(4)

DSC =
2TP

2TP+ FP+ FN
(5)

Sensitivity represents the proportion of correct predictions
in actual positive samples, which can reflect the predictive
performance of the model for positive samples.

Sensitivity =
TP

TP+ FN
(6)

Specificity represents the proportion of correct predictions
in actual negative samples, which can reflect the prediction
performance of the model for negative samples.

Specificity =
TN

TN+ FP
(7)

Intersection over Union (IoU) can reflect the correlation
between actual results and predicted results.

IoU =
TP

TP+ FP+ FN
(8)

Mean average precision (mAP) is a commonly used evalu-
ation metric in object detection tasks. First, the average preci-
sion of each class is calculated based on precision and recall,
and then the average precision of all classes is calculated.

In addition, in a multi-class prediction model, the above
evaluation metrics are usually generalized to the average of
the metrics of each class.

IV. WOUND CLASSIFICATION
A. CLASSIFICATION OF BURNS
Burns are a very serious type of wounds, and every year a
large number of people are disabled or even die due to burns.

Severity assessment of wounds is an initial preparation for
burn wound diagnosis, monitoring, and care sessions and is
the most common burn injury classification task. Chauhan
and Goyal [73] propose a deep learning framework that can
classify images into four body parts, and three burn levels.
It first trains the M-ResNet50 model using non-burn images
to predict body parts, and then feedswound images of specific
body parts to train the ResNet50 model to predict severity,
and the framework has excellent performance in both clas-
sification tasks. Further, Cirillo et al. [74] use a pretrained
CNN model to classify burn depth into four classes. They
examine the classification results of several networks, includ-
ing VGG-16, GoogleNet, ResNet-50, and ResNet-101, and
compare them with clinical diagnosis results, demonstrating
the reliability of deep learning in burn depth prediction work.

Burn identification is also a related topic and
Abubakar et al. [75] perform burnwound identification based
on the ResNet50 model. They replace the last layer of
the pre-trained ConvNet model, freeze the lower layer of
ResNet50, and use a fully connected layer in the top layer so
that the whole model changes from the pre-trained 1000 out-
put classes to 2 classes. The model achieves satisfactory
results in the recognition of burn images of different ethnic
subjects. Table 4 summarizes the various classification appli-
cations of deep learning models in burn wounds.

B. CLASSIFICATION OF DFUs/DIABETIC WOUNDS
Diabetes can lead to many complications, including DFUs,
which are a long-term concern for patients’ physical and
mental health. Automated DFU severity assessment through
deep learning can provide reliable decision-making recom-
mendations, as well as time and cost savings for healthcare.
Gamage et al. [82] propose a Wagner grading system for dia-
betic foot ulcers. A pre-trained CNNmodel is first fine-tuned
by replacing the output layer and initializing the input layer
weights. The model connects a global average pooling (GAP)
as a feature extractor, and the extracted feature vectors are
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TABLE 5. Deep learning in classification of DFUs/diabetic wounds.

TABLE 6. Deep learning in classification of other types of wounds.

fed into a single hidden layer artificial neural network (ANN)
classifier to predict the classification results. The system can
effectively improve classification accuracy and computation
time. For diabetic wounds, Zhao et al. [81] classify the dia-
betic wound depth based on the Bilinear CNNmodel whereas
evaluating the granulation tissue. For model training, they
adopt two steps, transfer learning and model fine-tuning.
In the first step, all parameters of the convolutional block
are frozen after transfer learning, and the softmax layer is
adjusted based on the number of classifications for training.
In the second step, the entire model is fine-tuned using back
propagation, and finally good performance is achieved in the
final classification task.

In addition to wound classification, wound identification
as well as ischemia and infection identification of wounds
are also applied in DFUs. Goyal et al. [85] propose the DFU-
Net structure, which combines depth and parallel convolu-
tional layer, is able to increase the amount of image features
extracted and reduce the depth of the network. Also, the num-
ber of neurons in the fully connected (FC) layer is reduced
based on the two-classification task to obtain faster process-
ing. Alzubaidi et al. [83] design the DFU_QUTNet structure
to identify wounds. This structure increases the width of the
network whereas maintaining the depth of the network, and
trains the SVM classifier with the image features extracted

using the model. Its classification results are compared with
the state-of-the-art CNN network. Goyal et al. [86] perform
ischemia and infection identification of wounds based on the
Ensemble CNN model, and achieve a higher level of accu-
racy compared to traditional machine learning algorithms.
Table 5 summarizes the applications of deep learning models
for the classification of DFUs/Diabetic wounds.

C. CLASSIFICATION OF OTHER TYPES OF WOUNDS
The traditionalmethod used by physicians to evaluatewounds
is to analyze the tissue condition through visual inspection.
Due to the wide variety of wound tissues and their complex
appearance, the results obtained are often highly variable.
Godeiro et al. [51] propose a system capable of segment-
ing and classifying chronic wound tissues. The preprocessed
image is first segmented based on the watershed algorithm
for the wound region, then the segmented image is con-
verted to the CIELab color space, and finally, the converted
tissue image is fed into the U-Net model to complete the
classification. The U-Net model is initialized using a pre-
trained VGG-16 model. Blanco et al. [87] use a divide-and-
conquer strategy to overcome the problem of small wound
image data, which requires the CNN model to process the
superpixels instead of the entire image. The original wound
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TABLE 7. Deep learning in detection of wounds.

is first segmented using a superpixel construction algorithm,
followed by feature extraction and tissue classification using
a coupled CNN model.

In the application of wound identification, Nilsson
et al. [40] use a pre-trained VGG19 model to classify venous
and non-venous leg ulcers. Rostami et al. [34] propose an
end-to-end ensemble deep learning model for wound image
type classification. The model uses two classification strate-
gies, patch-wise and image-wise. The input wound images
are first combined by the outputs of the two classifiers, and
then the combined results are fed to a multilayer percep-
tron (MLP) classifier for the final classification, which clas-
sifies the images into three wound types. Table 6 summarizes
the applications of deep learning for classification of other
types of wounds.

V. WOUND DETECTION
Regular monitoring of foot ulcers is an important part of dia-
betic foot care. Currently, this task still requires the physician
to compare the initial as well as the available photographs
in order to determine the stage of development of the foot
ulcer. Automated detection of DFUs based on deep learning
methods allows the monitoring task to be performed without
clinical intervention [91]. Brüngel and Friedrich [88] com-
pare the DFU detection performance of YOLOv5 and DETR.
Also, they compare the test results using the base model
and the self-training model at different confidence levels.
The performance impact due to the self-training model and
the potential for further optimization of the model are also
discussed.

Single-target DFU detection can only locate the wound.
If a more effective assessment of the stage of DFU develop-
ment is desired, further discrimination of the wound status
is required. Han et al. [89] propose a multi-target detection
task for the healing status of DFUs based on the Wagner
classification of diabetic feet, and classify the target regions

into six different grades. They use data augmentation through
the visual coherent image mixup method, and also use cosine
learning rate to train the model for the training characteristics
of the YOLOv3 model and obtain better average accuracy.

In addition to DFUs, Faria et al. [9] design a mobile appli-
cation for real-time skin wound monitoring. In the wound
detection part, they merge the SSDLite and MobileNetV2
architectures to make the model more lightweight. Mean-
while, the generalization ability of the model is improved
using transfer learning, which demonstrates the relia-
bility of real-time detection tasks on mobile devices.
Monroy et al. [42] use the YOLOv4 model to detect chronic
wounds for subsequent wound segmentation. Table 7 summa-
rizes the applications of deep learning in wound detection.

VI. WOUND SEGMENTATION
A. SEGMENTATION OF BURNS
Total burn surface area (TBSA) is an important metric for
assessing burns, and accurate segmentation of the wound
region can be of significant help for TBSA estimation.
Liu et al. [94] propose an end-to-end deep learning frame-
work including two networks. The encoder network extracts
semantic feature maps based on downsampling, and the
decoder network fuses semantic information based on upsam-
pling. Multiple backbone networks are trained using fusion
loss function to complete the segmentation of the burn area.
Meanwhile, they extend the output structure of the network to
realize the calculation of TBSA. Chauhan et al. [92] perform
segmentation of burns in DCNN. They use the concept of
atrous spatial pyramid pooling (ASPP) in the pre-trained
ResNet-101 model, and sample the feature maps generated
using the pre-trained model using atrous convolution. This
has the advantage of obtaining better performance in intensive
prediction tasks.

Currently, the calculation of burn depth still requires
specialized instruments for evaluation, which relies on
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TABLE 8. Deep learning in segmentation of burns.

TABLE 9. Deep learning in segmentation of DFUs.

experienced operators for implementation. Pabitha and
Vanathi [96] design a neural network integrating Mask
R-CNN with dense pose estimation for automated segmen-
tation of wound depth. The network introduces a RoI-pose
align module that allows the correction of human poses in
images to a uniform format based on spatial correspondence.
In the module, pose estimation and instance segmentation are
performed simultaneously. After the segmentation of the burn
region, the wounds are classified into three classes of depth
using a classifier. Cirillo et al. [97] use a modified U-Net net-
work with residuals for segmentation of four wound depths.
They extend the dataset by using image rotation and elastic
deformation techniques and achieve reliable segmentation
results. Table 8 summarizes the applications of deep learning
to segmentation in burns.

B. SEGMENTATION OF DFUs/DIABETIC WOUNDS
Accurate segmentation of DFUs can be useful in the task
of early wound prevention as well as healing degree assess-
ment. A simplified model is designed by Cui et al. [98]. The
noise generated through light reflection is first reduced in the
preprocessing stage, then the wound is segmented using a
CNN model, and finally the wound region is refined in the
post-processing stage. Monroy et al. [42] propose a two-step
learning framework for wound detection and segmentation.

The first step detects DFUs using the YOLOv4 model, and
the second step connects the U-Net model to segment the
wounds. The segmentation results of this framework are
closer to the manual performance level than the direct appli-
cation of U-Net for segmentation.Wang et al. [28] use amore
lightweight MobileNetv2 model to segment DFUs. In the
post-processing step, the segmentation results are binarized
based on thresholds, whereas the connected component label-
ing (CCL) is used to fill the holes in the negative and pos-
itive parts, thus effectively improving the accuracy of the
segmentation.

Automated wound tissue analysis can help avoid contact
with wounds and reduce the risk of infection. Niri et al. [101]
develop a smartphone-based ulcer tissue segmentation sys-
tem. RoI segmentation is first performed using U-Net, fol-
lowed by superpixel extraction of ROI using the simple linear
iterative clustering (SLIC) algorithm. Finally, the pixels are
classified on FCN-Net to obtain the final tissue segmentation
results. The experimental performance shows that the system
can effectively detect ulcers. Table 9 summarizes the applica-
tions of deep learning for segmentation in DFUs.

C. SEGMENTATION OF PRESSURE ULCERS
Pressure injuries, or pressure ulcers, resulting from the
long-term pressure on local tissues cause tissue ulceration
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TABLE 10. Deep learning in segmentation of pressure ulcers.

TABLE 11. Deep learning in classification of other types of wounds.

and necrosis. Due to the difficulty of wound healing, the
rehabilitation and care of pressure ulcers is a common prob-
lem plaguing the world. Chae et al. [25] add the attention
module to the Residual U-Net. In the network structure, the
Squeeze-Excitation (SE) block acquires the channel informa-
tion and calculates the importance of each channel, and the
attention block extracts the spatial features of the channel
through the convolutional layer. Due to the lack of data
volume, they also pre-train the model using other approx-
imate wound images. Zahia et al. [33] propose a frame-
work for segmentation and measurement of pressure injuries.
The wound image segmentation is first performed in Mask
R-CNN, followed by the generation of the top view of the
image and the corresponding matrix of face indices in the 3D
network. Finally, the segmentation results are matched with
the top view. Based on the structure of a sensor, the wound
segmentation results in the 3D mesh are obtained, as well
as the actual measurement parameters of the wound. For
deep learning for PUs diagnosis, Chang et al. [102] produce
two datasets. The first one outputs the results of wound and
re-epithelialization (re-ep) region segmentation directly using
deep learning models. The second dataset is first based on
the SLIC algorithm for superpixel extraction, followed by
tissue classification through deep learning models. Five deep
learning models are used for testing in both segmentation and
classification tasks, and DeeplabV3 obtain the best results for
all of them.

Accurate tissue segmentation can provide effective assis-
tance in the diagnosis of PU. García-Zapirain et al. [26]
propose a system for detecting and segmenting PU tissues.
It includes two stages of RoI extraction and tissue segmen-
tation, each of which uses a 3D CNN model. The wound
image is first segmented externally to remove the background
regions from the image. The results are then fed into the
next stage to output the segmentation results for different
tissues. Tests show that the system is able to reliably segment
images of ulcers. Table 10 summarizes the various types of
segmentation applications of deep learning in pressure ulcer
wounds.

D. SEGMENTATION OF OTHER TYPES OF WOUNDS
In a wound image, the pixel color will be a gradient as the
wound area extends into a healthy area. Based on this feature,
Li et al. [27] enhance the location information of the image
in a deep neural network. The location map is first obtained
through a location encoder, and then input into the DNN
together with the original image. Next, the model is trained
using the location-enhanced convolutional kernel, and the
model output is fused with the location map to obtain the final
wound segmentation result. Chino et al. [103] design the
automatic skin ulcer region assessment (ASURA) framework
for segmentation and measurement of skin wounds. In the
segmentation part, ASURA uses an encoder-decoder struc-
tural model that approximates the U-Net, and a heaviside
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FIGURE 2. General deep learning models used in different tasks.

step function is used at the output to adjust the mask. In the
measurement part, ASURA obtains the pixel density from a
reference in the image to estimate the area of the wound.

Mobile devices can further shorten the time of nursing
decision-making and wound analysis on smartphone images
becomes more meaningful. Wagh et al. [50] use different
CNN models to segment different types of wound tissue
images, including FCN, U-Net, and DeepLabV3. In post-
processing, they use CRF with Gaussian edge potentials to
improve the continuity of the segmentation results, and the
comparison results with the associated hierarchical random
field (AHRF)method show that deep learning performs better
in the segmentation task. In the tissue segmentation task,
in order to be able to further improve the effectiveness of the
decision-making system, Nejati et al. [105] train a supervised
deep learning network to classify chronic wound tissue into
7 categories. They use a pre-trained AlexNet as a feature
extractor. The network includes five convolutional layers
and three fully-connected layers, and subsequently feed the
extracted feature vectors into an SVM to predict the classifi-
cation results. Table 11 summarizes the applications of deep
learning for segmentation in other types of wounds.

VII. DISCUSSIONS
A. OVERVIEW
From the references in this review, we can find that deep
learning has been widely used in various fields of wound
image analysis, including the wide range of target wound
types and the diversity of processing methods, whereas some
of the research results can be reliably applied in clinical
practice. We also review the general model frameworks used

in the paper (Fig. 2), and find that ResNet, YOLO, and
U-Net are the most popular frameworks for classification,
detection, and segmentation tasks, respectively. At the same
time, during the review, we find that some studies used few
general indicators, and some models were only evaluated in
unpublished datasets, making it difficult to accurately eval-
uate their model performance for comparisons. Fortunately,
as research on deep learning in wound images continues,
and more and more datasets become public, the evaluation
of the models will become more thorough and comprehen-
sive. One of the many successful aspects of deep learning is
its excellent accuracy. Among them, effective preprocessing
methods have contributed significantly, including generat-
ing reliable simulated images to expand the training set,
reducing optical noise in images, enhancing color informa-
tion in images, etc. In the study of wound tissues [32], the
segmentation accuracy of the combined model trained on
images enhanced with color data has increased from 53.83%
to 77.65% against necrosis. Model fine-tuning is another
method that can effectively improve performance. That is to
initialize the existing model with the original model parame-
ters for a small amount of training. Training with pre-trained
model parameters can reduce training time and improve the
robustness of the model [106]. Then fine-tuning for the task
characteristics can lead to better image features. In the exper-
imental results of [81], the classification performance of the
fine-tuned model has improved from 76.8% to 84.6% on the
wound depth dataset. In addition, choosing a suitable network
structure [74], properly adjusting the learning rate [84], and
post-processing the model results [28] have been shown to be
effective in helping to improve the accuracy rate.
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B. CHALLENGES
However, there are still some shortcomings and challenges
in deep learning for wound image processing. First, many
wound types still lack large-scale publicly available datasets.
Although data augmentation and the combination of super-
vised and unsupervised learning can compensate for this to
some extent, the final training results are still some distance
away from the upper performance limit of the model itself.
Therefore, it is necessary to establish a standardized open
dataset. Second,manual annotation ofwound images is unsta-
ble, especially when dealing with complex wound surfaces,
which can lead to inaccuracies in calculating model metrics.
Independent annotation of images by multiple physicians
may be one way to avoid this drawback, but at a much higher
labor cost. In addition, in some of the researches, we get
a sense that smart devices are starting to gain attention in
wound image analysis. However, the large computational cost
required to train the model hinders the widespread use of
deep learning in practical application scenarios, and only a
few studies have ported the results to mobile devices. With
the development of compact networks such asMobileNet and
ShufflieNet [107], this challengemay be addressed in the near
future.

C. FUTURE RESEARCH DIRECTION
One of the future directions of deep learning in wound
research is to increase the number of prediction categories,
including wound severity class, tissue class, healing time,
etc., so as to extract richer wound information and effectively
improve the reliability of clinical decision making. Building
a more comprehensive public dataset is another direction of
work. The considerations of more types of wound data can
enable deep learning methods to be generalized for different
types of wounds. The image capture device, the body part
where the wound is located, the healing stage of the wound,
and the skin color differences among different ethnic groups
are also some of the issues to be considered in the data
collection, as more data are needed to support the testing
of the generalization ability of the model. Considering that
the ultimate goal of wound image research is to be reliably
applied to real-world needs such as diagnosis, prognosis,
and care, how to improve the performance and efficiency of
the model is the direction of deep learning in wound image
research.

VIII. CONCLUSION
We studied various current applications and recent advances
in deep learning applied to wound images, introduced mod-
els in different tasks, reviewed publicly available datasets
and summarize various data preprocessing approaches. Deep
learning is still one of the active research areas in the field
of wound image analysis. The reliable performance of deep
learning in image classification, detection, and segmentation
can effectively improve the diagnostic efficiency of health-
care professionals. For areas with underdeveloped medical

resources, it can compensate to a certain extent for the impact
caused by the shortage of doctors. With the extensive cooper-
ation of medical institutions, the rapid development of com-
puter hardware and image acquisition equipment, and the
continuous optimization of deep learning algorithms, deep
learning has a very promising prospect in the field of wound
image analysis.
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