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ABSTRACT Virtual machine consolidation (VMC) is an effective way to solve the problems of high power
consumption and low utilization in cloud data centers. However, large-scale virtual machine migrations
(VMMs) can result in additional workloads, service-level agreement violations (SLAVs), and considerable
energy consumption (EC). Existing studies have made great progress in this respect, but the following
problems remain: first, the potential overload of the physical host is not considered in the load detection
of the physical host; second, the resource-demand scaling of physical hosts is not considered during virtual
machine (VM) placement, which results in the lack of accuracy in selecting suitable hosts. In view of
the above problems, this study firstly constructs a virtual resource consolidation model based on green
energy conservation (GEC-VRCM), which defines the specific process and related attributes of VMC, which
is beneficial to improve the consolidation efficiency of virtual resources. Second, based on this model,
we propose a dynamic virtual machine consolidation algorithm based on balancing energy consumption and
quality of service (EQ-DVMCA) to achieve efficient consolidation of virtual resources. Finally, experiments
show that, compared with the selected 12 benchmark algorithms and two advanced VMC algorithms, EQ-
DVMCA not only reduces the number of VMMs and EC, but also maintains a high level of Quality of
Service (QoS) and achieves a balance between EC and QoS.

INDEX TERMS Virtual machine consolidation, energy consumption, virtual machine migration, quality of
service.

I. INTRODUCTION
With the rapid development of cloud computing technology,
infrastructure as a service (IaaS) has become an important
service mode. Users can rent resources, including server, net-
work, storage, and so on from IaaS providers on demand. The
data center with the functions of elastic resource supply, the
dynamic allocation of virtual services, and the virtualization
and management of infrastructure resources has become an
important carrier for building IaaS services [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Taehong Kim .

However, in the past few years, the extreme energy con-
sumption (EC) of cloud data centers has become a consider-
able problem [2]. Generally, due to various reasons such as
network equipment, server utilization, and the low efficiency
of the data center cooling system, data center energy is wasted
[3]. According to Gartner’s 2013 report, the power consump-
tion of cloud data centers is usually huge, equivalent to the
power consumption of 25,000 households [4]. Moreover, the
power demand of global data centers is expected to increase
by more than 66% from 2011 to 2035 [5]. In addition, the
average utilization of the data center is between 12% and
18% [6]. The utilization rate of the Google data center has
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been between 10% and 50%, while idle servers use 70% of
the maximum power of the server [7], which is a waste of
power. To sum up, the utilization rate of the data center is
very low. Low resource utilization leads to a large amount of
energy waste and complexity, which expands the capacity of
the data center and further worsens the waste of resources.

Therefore, the high power consumption and low utilization
of cloud data center are the challenges faced by cloud comput-
ing. An effective and common method to solve this problem
is virtual machine (VM) consolidation (VMC). VMC refers
to placing VMs on fewer servers through virtual machine
migration (VMM) according to their resource requirements
and then changing some servers to sleep state, to reduce the
energy cost of the data center. However, VMM will increase
the cost of computing resources, and large-scale VMM may
lead to additional workload, service-level agreement (SLA)
violations (SLAV), and considerable EC. At the same time,
the service will be suspended during VMM, and long-term
migration may further affect the quality of service (QoS).
Therefore, in the virtualized cloud data center, the effective
consolidation of virtual resources should be to reduce the
number of VMMs and the number of servers as much as
possible on the premise of meeting the quality of cloud
computing services. This method can improve the service
resource utilization of the data center and reduce the energy
cost, to realize the demand of energy conservation and the
environmental protection of the data center.

Aiming at the above problems, this paper constructs a
virtual resource consolidation model based on green energy
conservation (GEC-VRCM), which defines the specific pro-
cess and related attributes of virtual resource consolidation.
Secondly, based on this model, we propose a dynamic virtual
machine consolidation algorithm based on balancing energy
consumption and quality of service (EQ-DVMCA) to achieve
the efficient consolidation of virtual resources. The contribu-
tions of this paper are summarized as follows:

• This paper constructs a GEC-VRCM. Themodel defines
the specific process and related attributes of virtual
resource consolidation, which is beneficial to improve
the consolidation efficiency of virtual resources.

• Based on GEC-VRCM, we propose an EQ-DVMCA to
realize the efficient consolidation of virtual resources.
The algorithm includes four parts: Physical Host
Load Prediction, Physical Host Load State Detection,
VM Selection, and VM Placement.

� Physical Host Load Prediction: by sensing the load
information in the data center, we propose a hybrid
prediction algorithm based on the cubic exponen-
tial smoothing model and the Elman neural net-
workmodel (HCESEA), to predict the physical host
workload at the next moment. The HCESEAmakes
error predictions and corrections on the basis of the
cubic exponential smoothing model (CES), so it
can more accurately predict the load state of the
physical host.

� Physical Host Load State Detection: we propose a
hybrid load detection algorithm (HLDA) to identify
the current load state of the physical host and divide
the load state of the physical host into the following
four states: the under load state, the suitable load
state, the potential overload state, and the overload
state. The HLDA carefully divides the physical
host status, which can reduce potential SLAV and
improve the QoS.

� VM Selection: we propose a VM selection algo-
rithm based on CPU and memory perception (CM-
VMSA) to select VMs that need migration on some
unsuitable load states of hosts. CM-VMSA can
reduce the migration time of VMs as much as possi-
ble on the basis of reducing the number of VMMs,
and improve the QoS.

� VM Placement: we propose a VM placement algo-
rithm based on resource-demand scaling (RDS-
VMPA), which selects suitable physical hosts for
VMs migration according to the resource require-
ments of the VMM queue and the resource infor-
mation of suitable hosts in the data center. This
algorithm takes into account the resource-demand
scaling of physical hosts and effectively prevents
overloads caused by workload fluctuation. In this
way, the VMs can be allocated to physical hosts rea-
sonably, and the resource utilization of data centers
is improved.

• We use CloudSim as a simulation framework for exper-
imental evaluation to verify the effectiveness of the pro-
posed method.

The remaining part of this paper is organized as fol-
lows. Section II discusses related works. The model is pre-
sented in Section III. Our proposed algorithms are intro-
duced in Section IV. Experiments and results are discussed
in Section V. Finally, Section VI presents the conclusion and
future work.

II. RELATED WORK
The resource prediction of physical host is an important
part of virtual machine consolidation algorithm. The higher
accuracy of resource prediction, the virtual machine can be
allocated to a more reasonable physical host. This approach
can reduce SLAV and provide more reliable QoS.

To dynamically predict virtualized resources in order to
handle variable workloads, Shyam et al. [8] proposed a
Bayesian model to determine short and long-term virtual
resources requirement of the CPU/memory intensive applica-
tions on the basis of workload patterns at several data centers
in the cloud during several time intervals. The experimental
results showed that the proposed model was able to predict
virtual resources in a cloud environment with better accuracy
compared to other models.

Targeting the challenging issues of cloud resource opti-
mization, Tseng et al. [9] proposed a new prediction approach
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based on genetic algorithm (GA) for enhancing prediction
accuracy in cloud data center. Authors have also proposed
a VM placement algorithm for improving the average of
resource utilization and reducing the EC of data center based
on the prediction results from GA. Simulation results showed
that the proposed GA was superior in prediction accuracy
to the Grey model in terms of CPU utilization, memory
utilization, and EC no matter in stable or unstable utilization
tendency.

Berral et al. [10] present a methodology to discover
resource usage behaviors of containers training Deep Learn-
ing (DL) models and observe repeating patterns and simil-
itude of resource usage among containers training different
DLmodels. The repeating patterns observed can be leveraged
by the scheduler or the resource autoscaler to reduce resource
fragmentation and overall resource utilization in a dedicated
DL cluster. The experimental results showed that this method
could auto-scale containers to reduce CPU and memory allo-
cation by 30% compared to statistics based reactive policies.

Wang et al. [11] observed that Kubernetes Vertical Pod
Autoscaler (VPA) used an autoscaling strategy that per-
forms poorly on workloads that periodically change. Authors
applied methods such as Holt-Winters exponential smooth-
ing (HW) and Long Short-Term Memory (LSTM) artificial
neural networks for time-series analysis, to predict future
CPU demand. Results showed that the proposed LSTM-
based autoscaler reduces CPU waste by a factor of 2×
without incurring more CPU throttling than the default over-
provisioned Kubernetes approach.

VMC is one of the effective ways to solve the problem
of high power consumption and low utilization in cloud data
centers. And the effective consolidation of virtual resources
should be to reduce the number of VMMs and the number
of servers as much as possible on the premise of meet-
ing the quality of cloud computing service, which could
improve the service resource utilization of the data center and
reduce the energy cost.

The work related to VMC is shown in Table 1.
In [12], the author proposed an ant colony optimiza-

tion meta heuristic algorithm based on vector algebra for
VMC (AVVMC) to balance the use of computing resources
in the data center. The experimental results showed that
AVVMCperformance had been improved in reducing EC and
resource waste.

To reduce unnecessary expenses and energy waste, the
authors [13] proposed a virtual machine consolidation algo-
rithm with usage prediction (VMCUP) for improving the
energy efficiency of cloud data centers. The results showed
that consolidation with usage prediction reduces the total
migrations and the power consumption of the servers while
complying with the SLA.

In [14], authors proposed a new framework for VMC:
ImprovedUnderloadDecision algorithm andMinimumAver-
age Utilization Difference algorithm (IUMA) to achieve bet-
ter energy efficiency. The experimental results showed that
the algorithm could reduce the EC and SLAV rate of the data

center, and the algorithm had a good effect on improving the
energy efficiency of the data center.

Fard et al. [15] presented a Dynamic threshold Maxi-
mum fit (DthMf) VMC technique to achieve QoS temper-
ature balance in the cloud data center. The principle was
to consolidate VMs in high-performance servers instead of
low-performance servers in order to produce less heat and less
power consumption while having more workload.

In [16], authors developed a Bayesian network-based esti-
mation model (BNEM) for live VMM, allowing a compre-
hensive treatment of nine actual factors in real data centers.
By combining three algorithms corresponding to different
phases in VMs consolidation, a hybrid Bayesian network-
based VMs consolidation (BN-VMC) method was proposed.
The simulation results showed that the method can signif-
icantly degrade EC, avoid inefficient VMMs, and SLAVs.
Also, their method optimizes resource usage.

Wang and Tianfield [17] designed a new framework of
energy-aware dynamic VMC for green cloud computing.
Accordingly, the authors proposed a space aware best fit
decreasing (SABFD) VM placement policy and a newmigra-
tion VM selection method-based high-CPU utilization (HS).
The scheme’s main idea was to migrate VMs to the host with
minimum available MIPS after VMs being allocated. The
simulation results demonstrated that the proposed work out-
performs alternative schemes by saving energy and meeting
SLA.

Li et al. [18] proposed an energy-aware dynamic VM
consolidation (EC-VMC) method that migrates VMs while
satisfying constraints on the probabilities of multiple types
of resources being overloaded. The proposed algorithm
achieved an optimum balance between improving energy
efficiency, optimizing resource utilization and guaranteeing
QoS.

Xiao et al. [19] proposed a merge-and-split-based coali-
tional game-theoretic approach (CGMS) for VMC in
heterogeneous clouds. The proposed scheme was to parti-
tion physical machines according to their workload levels
and then applying coalitional-game-based VMC algorithm to
keep them running in a high energy efficiency state. Experi-
mental results show that the proposed approach clearly out-
performs traditional ones in terms of energy saving and load
balancing.

In [20], the authors proposed the extension of the Mod-
ified Best Fit Decreasing Algorithm (MBFD-EX) and the
extension of the First Fit Algorithm (FF-EX) as novel and
effective evolutionary methods to enhance VM-to-PM place-
ment. They proposed methodologies for VM allocation to
amplify the energy proficiency of cloud computing systems
while consolidating more held VMs. These methodologies
could merge more VMs with less PMs to accomplish pre-
ferred energy proficiency over existing techniques. These
approaches showcase the accomplishment of the benefit
enhancement and energy-saving.

In order to solve local hotspots, Ilager et al. [21] proposed
an Energy and Thermal-Aware Scheduling (ETAS) algorithm
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TABLE 1. VMC related work.

that dynamically consolidates VMs to minimize the overall
ECwhile proactively preventing hotspots. The results showed
that ETAS outperforms other state-of-the-art algorithms by
reducing overall energy without any hotspot creation.

Patel and Patel [22] proposed a host utilization-aware
(HUA) algorithm for underloaded host detection and VM
placement. The algorithm made use of the whole data center
utilization to build lower threshold that will serve the overload
detection policy. The experimental results had demonstrated
the efficiency of HUA in detecting overloaded hosts and
consequently vacating more hosts, which result on reduced
number of active hosts and less EC.

To reduce the cost of cloud data centers, the authors
[23] proposed an Energy and QoS-aware VM Consolidation
approach (EQC) that can effectively consolidate the VMs
among the heterogeneous hosts of a data center. The results
validated the efficacy of EQC in achieving proper trade-off
between two conflicting parameters—energy and QoS.

In order to reach new frontiers in energy efficient cloud
infrastructure Shaw et al. [24] proposed an RL Consoli-
dation Agent known as Advanced Reinforcement Learning

Consolidation Agent (ARLCA) which is capable of driv-
ing both efficiency and delivery of service guarantees by
dynamically adjusting its behavior in response to changes in
workload variability. Through repeated interactions with the
environment ARLCA could discover the optimal balance in
the dispersal of VMs across the data center so as to prevent
hosts becoming overloaded too quickly but also ensuring that
resources are operating efficiently.

In order to effectively solve the problems of resource uti-
lization and EC, the authors [25] proposed an energy-aware
algorithm for workflow scheduling in cloud computing with
VMC, called EASVMC. The results showed that the pro-
posed algorithm had obvious advantages in EC, resource
utilization and VMM.

Performance of each part of VMC is shown in Table 2.
To sum up, existing studies have made great progress in

VMC in cloud-data centers, especially in the optimization
of EC, VMM times, QoS, and other important indicators.
However, most of the current studies on physical host-
load detection divide the physical hosts into an overload
state, an underload state, and a load state, according to
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TABLE 2. Performance of each part of VMC.

the threshold, without considering the potential overload
of physical hosts. Secondly, existing studies fail to take
into account the resource-demand scaling of physical hosts
during the placement of VMs, thus lacking accuracy in
the selection of suitable physical hosts. Therefore, aiming
at the above problems, we put forward the EQ-DVMCA
to realize the efficient migration and consolidation
of VMs.

III. MODEL
A. GEVRIM-C
In order to realize the efficient consolidation of virtual
resources in a cloud environment, we construct GEVRIM-C.
This model is shown in Figure 1. The model consists of
a global manager and several local managers. The global
manager is deployed inside data centers, and local managers
are deployed on physical servers. The local manager collects
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the real-time load of CPU and the memory of physical hosts
and VMs through the monitoring unit, and sends collected
data set to the data information module in the global manager.
According to the data set in the data information module,
the scheduling module in the global manager uses the load
prediction center to predict the load status of each physical
host at the next moment, and provide the changing trend of
the resource demand of each physical host. Secondly, the load
detection center combines the real-time load and predicted
load of the physical host to divide the load status of the
physical host into the following four states: underload state,
load state, potential overload state, and overload state. Then,
the VM selection center selects VMs for migration from
some non-suitable load states of hosts. Finally, a suitable
host is selected for the VMs for migration through the VM
Placement Center, and the migration scheme is sent to each
local manager for migration. After all the VMs are migrated,
set all the underloaded hosts to sleep mode to reduce data
center energy costs.

The most important feature of the virtual resource con-
solidation model is that it forms a hybrid consolidation
mechanism that combines active control based on workload
prediction and passive control based on real-time load state.
The advantage of this model is that the fluctuation of the
workload can be known in advance by using forecasting tech-
nology, which can prevent the fluctuation of the workload.
In addition, the model can obtain the actual status of the
scheduling policy through feedback technology and imple-
ment the VMM operation for some non-suitable load states
of hosts, to play a real-time correction and control role.

B. DEFINITION
Table 3 shows the definition of the symbols that are used in
this section and the rest of the paper.
Definition 1: A physical host in a data center is QH =
{h1, h2, · · · , hi, · · · , hm}. hi is the ith physical host.
Definition 2: The VM queue in the physical host hi is

denoted as VQhi = {v1, v2, · · · , vj, · · · , vn}, where vj indi-
cates the jth VM.
Definition 3: literature [26] showed that about 10% CPU

overhead would be generated in the process of VMM, which
will lead to the performance degradation of VM. Therefore,
each VMMmay result in some SLAVs. We need to minimize
the number of real-timemigration of VMs and ensure theQoS
provided. The migration time and performance degradation
formula of VM are as follows:

Tvj =
vMj
Bj

(1)

Pdj = 0.1 ·
∫ t0+Tvj

t0
vCj (t) dt (2)

where, Tvj is the VM vj time taken to complete the migration,
vMj is the VM vj amount of memory used, Bj is the available
network bandwidth, Pdj is the amount of performance degra-

TABLE 3. Definition of symbols.

dation caused by VM vj migration, t0 is the migration start
time, vCj is the VM vj CPU utilization.
Definition 4: The EC of the data center is expressed as:

EC =
∑m

i=1

∫
E
(
LChi (t)

)
dt (3)

where EC is the EC of the data center, LChi (t) is the physical
host hi is the load at time t , and E is the power consumption
corresponding to the physical host load.

IV. THE PROPOSED ALGORITHMS
Based on GEVRIM-C, we propose an EQ-DVMCA to realize
the efficient consolidation of virtual resources. The algorithm
includes four parts: Physical Host Load Prediction, Physical
Host Load State Detection, VM Selection and VM Place-
ment.

A. PHYSICAL HOST LOAD PREDICTION
According to the dynamic and uncertain characteristics of
physical host-load data, we propose a HCESEA. The predic-
tion algorithm uses the cubic exponential smoothing model
[27] (CES) to make predictions and then uses the Elman
neural network model [28] (ENN) to predict the error of the
CES model and finally obtains a prediction value after cor-
recting the error. HCESEA alleviates the influence of model
parameters on the overall performance, and the ENN model
predicts the error of CESmodel, its prediction accuracy is bet-
ter than that of the original data set, which further improves
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FIGURE 1. GEVRIM-C structure diagram.

the prediction performance of the model. The following is an
introduction to the models involved in HCESEA.

1) CES MODEL
The calculation formula of cubic exponential smoothing
value is shown as follows:

S(1)t = αxt + (1− α)S(1)t−1

S(2)t = αS
(1)
t + (1− α)S(2)t−1

S(3)t = αS
(2)
t + (1− α)S(3)t−1

(4)

In Formula (4): α represents the smoothing factor
(0 <α< 1); S(1)t represents the primary exponential smooth-
ing value of period t; S(2)t represents the quadratic exponential
smoothing value of period t; S(3)t represents the cubic expo-
nential smoothing value of period t .

The CES prediction model is as follows:

Yt+T = At + BtT + CtT 2 (5)

At = 3S(1)t − 3S(2)t + S
(3)
t

Bt =
α[(6− 5α)S(1)t − 2(5− 4α)S(2)t + (4− 3α)S(3)t ]

2(1−α)2

Ct =
α2[S(1)t − 2S(2)t + S

(3)
t ]

2(1−α)2
(6)

where, T is the number of forecast periods; At , Bt , Ct is the
prediction parameter.

2) ENN MODEL
The basic structure of ENN consists of four parts: input layer,
hidden layer, output layer, and context layer. The ENNmodel
is shown in Figure 2. Unlike the general neural network, the
ENN model adds a context layer, and the input of the context
layer comes from the output of the hidden layer. This internal
feedback mechanism enhances the processing ability of the
network for dynamic time data.

FIGURE 2. Schematic diagram of ENN model.

The mathematical model of ENN is as follows:

x(k) = f (w1xc(k)+ w2u(k − 1)) (7)

xc(k) = αxc(k − 1)+ x(k − 1) (8)

y(k) = g(w3x(k)) (9)

where, w1 is the connection weight matrix between the con-
text layer and the hidden layer, w2 is the connection weight
matrix between the input layer and the hidden layer, w3 is the
connection weight matrix between the hidden layer and the
output layer, xc(k) and x(k) represent the output of context
layer and hidden layer respectively, and y(k) represents the
output of output layer. f is the activation function.

3) HCESEA
Let the dataset L ′h = {lt1, lt2, · · · , ltn} be the real load of
physical host h in the time period from t1 to tn. Y ′h represents
the load prediction sequence of physical host h with length m
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obtained by the CES model according to data set L ′h. Then,
the load prediction sequence error of the physical host h can
be expressed as Eh = Y ′h − L ′h = e1, e2, · · · , em. The ENN
model obtains the error correction sequence E ′h according to
Eh, and the load prediction of the corrected physical host h is
expressed as Y ∗h = Y ′h− E

′
h. The structure of the HCESEA is

shown in Figure 3.
Set mCES and mENN be expressed as CES and ENN mod-

ules respectively. xCES and xENN are input vectors of the two
models respectively. Then, at tn+1, the output of the model
can be expressed as:

Y ∗ = mCES (xCES)− mENN (xENN ) (10)

HCESEA is shown in Algorithm 1.

Algorithm 1 HCESEA

Input: QH ,L′

Output: Y∗

Step 1: Initialize CES model and its related parameters.
Step 2: Using theL′, the predicted load sequenceY ′ of the

physical host is obtained through the CES model.
Step 3: For each h inQH , get the real load L′h of the phys-

ical host h. Obtain the predicted load Y ′h of the
physical host h through Y ′. Then the prediction
sequence error of the physical host h is Eh =
Y ′h − L

′

h. Add Eh to E.
Step 4: Initialize ENN model and its related parameters.

Train ENN model through E.
Step 5: The error correction sequence E′ is obtained

through the ENN model.
Step 6: For each h in QH , obtain the correction error

E′h of physical host h through E′. Then the load
prediction of the modified physical host h is Y∗

h =

Y ′h − E
′

h. Add Y
∗
h to Y∗.

Step 7: Return Y∗.

B. PHYSICAL HOST LOAD STATE DETECTION
Because the load of each physical host in the data center
changes dynamically, the load of different physical hosts
at the same time will be different. Therefore, we propose
the HLDA. The HLDA first obtains the predicted load and
real-time load of each physical host in the data center and then
divides the load state of the physical host into the following
four states base on the set threshold: the under-load state,
the suitable-load state, the potential overload state, and the
overload state.

The specific process of the HLDA is shown as follows.
When the load of a physical host is higher than the upper
threshold, the physical host is added to the overloaded host
queue. When the load of a physical host is lower than the
lower threshold, the physical host is added to the underloaded
host queue. When the load of the physical host is within
the threshold, it needs to be judged in combination with the
predicted load of the physical host. If the expected load of the

physical host is higher than the upper threshold, the physical
host is added to the potentially overloaded host queue. On the
contrary, the physical host is added to the suitable host queue.

HLDA is shown in Algorithm 2.

Algorithm 2 HLDA

Input: QH , Y∗

Output: QH
u , Q

H
l , Q

H
o , Q

H
po

foreach h in QH do:
LCh = h.getCurrentLoad();
if (LCh > ηu)
QH
o .addQueue)h);

else if (LCh < ηl )
QH
l .addQueue)h);

else
Y∗
h = h.getCorrectForecastLoad)Y∗);

if (Y∗
h > ηu)

QH
po.addQueue)h);

else
QH
l .addQueue)h);

return QH
u , Q

H
l , Q

H
o , Q

H
po;

C. VM SELECTION
The real-timemigration of VMwill have a negative impact on
the performance of applications running on the VM, resulting
in some SLA conflicts. Moreover, the performance degrada-
tion during VMM is related to the migration time of the VM.
Therefore, we propose CM-VMSA. CM-VMSA can reduce
the migration time of VMs as much as possible on the basis
of reducing the number of VMMs, to improve the quality of
service. It can be seen from Section 4.2 that there are three
types of physical hosts that need to migrate VMs, which
are located in QHu , Q

H
o , and QHpo, respectively. Therefore,

we perform the following operations on these three types of
queues:
QHu : add all VMs on such physical hosts to QVm. After all

the VMs have migrated to other physical hosts, switch the
physical host to sleep mode to reduce EC.
QHo : first, arrange all VMs on such physical hosts in

descending order according to CPU utilization; secondly,
in the relative order of decreasing CPU utilization, arrange
them in ascending order according to the amount of memory
occupied by the VM; finally, try to migrate each VM in
turn, and calculate the load of the physical host in real time.
If LC < ηu, stop the above operation and add the VM for
migration to QVm.
QHpo: first, arrange all VMs on such physical hosts in

descending order according to CPU utilization; secondly,
in the relative order of decreasing CPU utilization, arrange
them in ascending order according to the amount of memory
occupied by the VM; finally, try to migrate each VM in
turn and calculate the load of the physical host in real time.
If (LE −

∑k
i=i C

h
i ) < ηu, stop the above operation and add

the VM for migration to QVm.
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FIGURE 3. HCESEA structure diagram.

CM-VMSA is shown in Algorithm 3.

Algorithm 3 CM-VMSA

Input: QH
u , Q

H
o ,Q

H
po

Output: QV
m

foreach h in QH
u do:

foreach v in h do:
QV
m.addQueue)v)I

foreach h in QH
o do:

VQh.sortDescendUtilization();
VQh.sortAscendMemory();

while (LC ≥ ηu){
v = VQh.getFirstHost();
QV
m.addQueue)v)I

LC = LC − v.getCh
v ()I

}
foreach h in QH

po do:
VQh.sortDescendUtilization();
VQh.sortAscendMemory();
d = LE;
while (d ≥ ηu){
v = VQh.getFirstHost();
QV
m.addQueue)v)I

d = d − v.getCh
v ()I

}
return QV

m;

D. VM PLACEMENT
VM placement refers to selecting the suitable physical host
for the migration VM according to the resource requirements
of the VMM queue and the resource information of the host
in the data center. Therefore, we propose an RDS-VMPA.
RDS-VMPAfirst calculates theworkload of all physical hosts
that meet the resource allocation requirements of VMs in the
future. Secondly, RDS-VMPA divides the physical hosts into
resource demand reduction queue QR

r and resource demand
growth queue QR

g according to the prediction, and sorts these
queues in a specific way. Finally, RDS-VMPA determines
the destination host through further screening. The specific
algorithm steps are shown as follows:

1. Calculate the resource demand scaling on each physical
host, and its value is the predicted load of the physical
host minus the real-time workload of the physical host.
Resource demand scaling reflects the changing trend of
VM resource demand on the physical host.

2. Calculate the unallocated resources of the physical
host. The unallocated resources are the total resources
of the physical host minus the real-timeworkload of the
physical host. And calculate the estimated remaining
resources of the physical host. The estimated remaining
resources are the difference between the unallocated
resources and the resource demand scaling. Filter out
the list of physical hosts with estimated remaining
resources greater than zero to form a list of candidate
physical hosts.

3. If the value of the resource demand scaling of the
physical host is negative, the physical host will be
added to the QR

r . And calculate the difference between
the remaining resources of the physical host and the
resource demand scaling of the physical host, and
arrange the QR

r in descending order based on the dif-
ference. If the value of the resource demand scaling
amount of the physical host is positive, the physical
host will be added to the QR

g . The migration security
factorMSF of the physical host is calculated. The secu-
rity factor is the ratio of the resource demand scaling
to the remaining resources of the physical host, and
the QR

g is arranged in ascending order according to the
MSF .

4. After two queues are generated, if one queue is empty,
the head host of the other queue is directly selected
as the placement host. If none is empty, the priority
factors δ of the head hosts of the two queues are
compared.

5. If QR
r and QR

g are empty and QV
m is not empty, it is

necessary to judge whether the underloaded host queue
QH
u is empty. If theQH

u is not empty, theQH
u is arranged

in descending order according to the amount of unallo-
cated resources. Assign the VM to be migrated to the
queue head host of the QH

u , and add the host to QR
g .

On the contrary, it indicates that the current running
host can no longer meet the resource requirements. It is
necessary to start a new physical host and allocate the
VM to be migrated to the physical host.

6. After the VMM is completed, change the host in the
QH
u to sleep state.

RDS-VMPA is shown in Algorithm 4.
RDS-VMPA takes into account the resource demand scal-

ing of physical hosts and effectively reduces potential SLAVs.
In addition, the algorithm can allocate VMs to physical hosts
reasonably, improving the resource utilization of data centers.
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Algorithm 4 RDS-VMPA

Input: QH
l , Y

∗, QV
m

Output: Allocation of QV
m

foreach h in QH
l do:

RTh = h.getTotalResource();
LCh = h.getCurrentLoad();
Y∗
h = h.getCorrectForecastLoad)Y∗);

Rvarih = Y∗
h − L

C
h ;

RCRh = RTh − L
C
h ;

RERh = RCRh − R
vari
h ;

if (Rvarih > 0)
QR
g .addQueue)h);

else
QR
r .addQueue)h);

QR
r .sortDescendOrderByRERh ()I

foreach h in QR
g do:

MSF =
Rvarih
RCRh
;

QR
g .sortAscendOrderByMSF();

foreach v in QV
m do

if (QR
r is NULL)

allocateHost = QR
g .getFirstHost();

else if (QR
g is NULL)

allocateHost = QR
r .getFirstHost();

else
h1 = QR

r .getFirstHost();
h2 = QR

g .getFirstHost();
if (RCRh1 > RCRh2 )
allocateHost = h1;

else if (RCRh2 > RERh1 )
allocateHost = h2;

else
δ = RERh1 − R

CR
h ;

if (δ > v.getResource()
2 )

allocateHost = h1;
else
allocateHost = h2;

if (allocateHost != NULL)
allocate v to allocateHost;

else if (QH
u != NULL)

QH
u .sortDescendOrderByRCRh ();

h3 = QH
u .getFirstHost();

allocatev to h3;
QR
g .add)h3);

else
h4 = QH .startHost();
allocate v to h4;
QR
g .add)h4);

if (QH
u != NULL)

foreach h in QH
u do:

h.changeSleep();
return Allocation of QV

m;

E. TIME COMPLEXITY ANALYSIS
This section mainly analyzes the time complexity of EQ-
DVMCA. To analyze the time complexity of EQ-DVMCA,
wefirst set the number of PMs toM and the number ofVMs to
N . EQ-DVMCA consists of four independent stages Physical
Host Load Prediction, Physical Host Load State Detection,
VM Selection and VM Placement.

First of all, Physical Host Load Prediction mainly predicts
the load of physical hosts. It needs to traverse the collection
of physical hosts running in the cloud data center once. The
time complexity of this phase is O(M ).
Secondly, Physical Host Load State Detection divides the

load status of the physical host according to the predicted load
and real-time load of the physical host. The time complexity
of this stage is O(M ).
Thirdly, VM Selection mainly selects the VM to be

migrated from the physical host. In this phase, there are three
types of physical hosts that need to migrate VMs: QHu , Q

H
o ,

andQHpo. LetQ
H
u = m1,QHo = m2,QHpo = m3, and the number

of VMs in QHu , Q
H
o , and Q

H
po is n1, n2, and n3, respectively.

VMs on a physical host use quicksort. Therefore, the time
complexity of this stage is O(m1 · n1logn1 + m2 · n2logn2 +
m3 · n3logn3), that is, O(M · NlogN ).
Finally, VM Placement needs to allocate the VMs to be

migrated to appropriate PMs. The time complexity of this
phase isO(M+MlogM+N ·MlogM ), that is,O(N ·MlogM ).
To sum up, the time complexity of EQ-DVMCA is O(M +

M + M · NlogN + N · MlogM ), that is, O(M · NlogN ) or
O(N ·MlogM ).

V. EXPERIMENTS AND RESULTS
A. SIMULATION ENVIRONMENT SETTINGS
We use the CloudSim [29] simulation platform to evalu-
ate our proposed EQ-DVMCA and compare it with some
benchmark algorithms and current advancedmethods.We use
CloudSim4.0, which is an event-driven emulator for simulat-
ing cloud computing infrastructure and application services.
CloudSim supports virtual resource management and model-
ing, EC, VMM and other functions [30].

Due to the large memory gap between different physical
host models, the experimental environment of this study sim-
ulates the experimental environment of literature [22, 26].
The experiment simulated a data center consisting of 800 het-
erogeneous physical hosts, including three types of physical
hosts: HP ProLiant ML110 G4, HP ProLiant ML110 G5, and
HP ProLiant DL360 G7. The host configuration is shown in
Table 4.

Four types of VMs were selected in the experiment: High-
CPUMedium Instance, Extra Large Instance, Small Instance
and Micro Instance. Table 5 lists the VM attributes.

In order to make the simulation results authentic, we have
used data provided as a part of the CoMon project, a monitor-
ing infrastructure for PlanetLab [31]. This data provides CPU
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TABLE 4. Host configuration.

TABLE 5. VM attributes.

TABLE 6. Workload informations for PlanetLab.

requirements collected from more than 1,000 VMs running
on servers in more than 500 locations around the world. CPU
utilization within this data set was measured at 5-minute
intervals. We randomly selected 10 days from the March and
April 2011 data sets as the workload data set. Table 6 shows
the information for the workload data. After creating PM
and VM instances on the CloudSim platform, we use this
data set to generate VM workloads, which are then randomly
deployed to PM based on VM resource requirements.

In order to ensure that the algorithm proposed in this
paper is still effective in different working environments,
we also use the real workload from the distributed data center
Bitbrains as the experimental data [32], [33]. The data was
obtained by monitoring and managing 1750 VMs in the
Bitbrains data center every fiveminutes. The data includes the
running status of VMs in Bitbrains within 4 months. Consid-
ering the comparison with PlanetLab data set, the data of 10
days in this data set are selected in this paper. Table 7 shows
the workload data information.

B. PERFORMANCE INDEX
This paper adopts the following six performance evaluation
indicators: VMM, SLAV Time Per Active Host (SLATAH),
Performance Degradation due to Migration (PDM), SLAV,
EC, EC and SLAV (ESV) [26].

TABLE 7. Workload informations for Bitbrains.

SLATAH refers to the percentage of time when the CPU
utilization of the physical host reaches 100% during opera-
tion. The definition is as follows:

SLATAH =
1
m

∑m

i=1

T Shi
T ahi

(11)

where, T Shi represents physical host hi the time of SLAV
caused by CPU utilization reaching 100% during operation,
T ahi represents the running time of physical host hi.
PDM indicates the degradation of QoS caused by VMM.

The definition is as follows:

PDM =
1
n

∑n

j=1

Pdj
vcj

(12)

where, n represents the number of VMs, vcj represents VM vj
CPU size requested during runtime.

SLAV is a comprehensive evaluation of SLATAH and
PDM, which is an evaluation index of data center QoS. The
definition is as follows:

SLAV = SLATAH · PDM (13)

The lower the SLATAH and PDM values of the data center,
the smaller the comprehensive index SLAV and the higher the
QoS of the data center.

Energy conservation can not only reduce the operation and
maintenance cost of data centers, but also is an important
way to build green data centers. We used the SPECpower
benchmark to provide actual power consumption data for the
server. Table 8 lists the power consumption characteristics of
the host.

At the same time, low EC also means high utilization of
resources. Considering the requirements of data center for
low EC and high QoS, the comprehensive evaluation index
ESV of QoS and EC is defined. The expression is as follows:

ESV = EC · SLAV (14)

The lower the ESV value, the lower the EC of the data
center and the higher the QoS.

C. BENCHMARK ALGORITHM AND PARAMETER SETTING
The authors of [26] carried out in-depth research on the
VMC process on CloudSim platform and proposed the cor-
responding algorithms. These include the host-load detection
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TABLE 8. Power consumption characteristics of host (Watt).

TABLE 9. EQ-DVMCA related parameters.

algorithms: static threshold (THR); interquartile range (IQR);
local regression robust (LRR); median absolute deviation
(MAD); VM selection algorithm: minimum migration time
(MMT); random choice (RC); maximum correlation (MC);
and VM placement algorithm: power-aware best fit decreas-
ing (PABFD). By combining these algorithms, we can obtain
12 different VMC algorithms. Each consolidation method
includes the host-load detection algorithm, the VM selection
algorithm, andVMplacement algorithm. The four load detec-
tion algorithms have their own safety factor: when the safety
factor is set too large, it indicates that the load detection will
pay attention to the stability of the physical host to ensure
the QoS; on the contrary, the load detection algorithm will
give up some stability to pursue the full utilization of the
physical host resources to achieve the purpose of energy
saving. According to the literature [26], it is found that when
the safety parameters of THR, IQR, LRR, and MAD are
set to 0.8, 1.5, 1.2, and 2.5, respectively, the corresponding
consolidation algorithm can achieve relative balance in terms
of energy saving and QoS assurance. Therefore, we selected
the above 12 VMC algorithms as the benchmark algorithm in
this paper.

At the same time, in order to verify the effectiveness of
EQ-DVMCA in VMC, we also selected two current advanced
algorithms: CGMS [19] and HUA-LRR-MC-1.2 [22], for
experimental comparison.

The relevant parameters of EQ-DVMCA proposed in this
paper are shown in Table 9. All these experimental parameters
are set according to empirical values.

D. EXPERIMENTAL RESULTS
The load prediction of the physical hosts is very important
to understand the future load status of the physical hosts.
We first verified the effectiveness of HCESEA. We adopted

TABLE 10. Error index.

TABLE 11. Experimental results.

mean absolute error (MAE) and mean squared error (MSE)
as the evaluation criteria for the model prediction results,
as shown in Table 10. The smaller the prediction value of
MAE, the better the prediction accuracy of MAE, where yi
is the true value, and ȳi is the predicted value.
The data set of 2011/03/03 in PlanetLab and 2013/08/02 in

Bitbrains were used in the experiment. The load information
of 1000 VMs is randomly selected from the above two data
sets as the data data1 (2011/03/03) and data2 (2013/08/02) in
this experiment. The ratio of training data set to test data set
is 7:3.

We selected Bayesian [8], GA [9], ENN, and CES as
the comparison algorithms of this experiment. To ensure the
fairness of the experiment, the parameter settings of ENN and
CESwere consistent with those of HCESEA. The experimen-
tal results are shown in Table 11.
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FIGURE 4. VMM comparison of EQ-DVMCA and benchmark algorithm in
PlanetLab dataset.

According to Table 10, comparedwith Bayesian, GA, CES,
and ENN, the HCESEA proposed in this paper has the best
effect. Bayesian is easily affected by extreme values, which
leads to the decline of prediction accuracy. GA is prone to
premature convergence, which leads to unstable accuracy of
prediction. The ENN model in HCESEA is the prediction of
the error of CESmodel; thus, correcting the error of themodel
can obtain a better prediction accuracy. As a result, the load
state of the physical host can be predicted more accurately
using HCESEA.

Next, in order to verify the performance advantages of
EQ-DVMCA, we compared it with 12 benchmark algorithms
on the data set of PlanetLab. Table 12 shows the simulation
results of the algorithm.

It can be seen from Figure 4 that compared with other
benchmark algorithms, the VMM value of EQ-DVMCA pro-
posed in this paper is the smallest. This is because the HCE-
SEA used in this paper has high prediction accuracy and can
predict the future load value of the host according to the
historical load data. In addition, the CM-VMSA proposed in
this paper is subsequently adopted to further keep the PM in a
stable state in a short time, thus avoiding frequent migration
of VMs to a large extent.

It can be seen from Figure 5 that the SLATAH value
of EQ-DVMCA proposed in this paper is the lowest. This
is because EQ-DVMCA can more accurately predict the
changes of physical host workload through HCESEA, thus
reducing the probability of physical host overload. Secondly,
RDS-VMPA can effectively cope with workload fluctuations
andmaintain the normal working status of the PMs in the data
center for a long time.

It can be seen from Figure 6 that the PDM value of
EQ-DVMCA proposed in this paper is the lowest. This is
because EQ-DVMCA can effectively avoid invalid VMM
through CM-VMSA and reduce the loss of computing
resources caused by VMM to the data center. Secondly, RDS-

FIGURE 5. SLATAH comparison of EQ-DVMCA and benchmark algorithm
in PlanetLab dataset.

FIGURE 6. PDM comparison of EQ-DVMCA and benchmark algorithm in
PlanetLab dataset.

VMPA can effectively cope with workload fluctuations, thus
fundamentally reducing the losses caused by VMM.

It can be seen from Figure 7 that the SLAV value of
EQ-DVMCA proposed in this paper is significantly smaller
than that of other benchmark algorithms. This is because the
EQ-DVMCA obtains the resource-demand scaling of phys-
ical hosts through CM-VMSA, thus taking into account the
changing trend of the resource demand of the VM on the
physical host. This method can effectively prevent overload
caused by load fluctuation, and reduce the probability of
resource competition generated by PMs as much as possible.

It can be seen from Figure 8 that the EC value of
EQ-DVMCA proposed in this paper is the smallest. This
is because the CM-VMSA used in this paper can use the
objective function of CPU and memory utilization to select
VMs, so as to solve the pressure of overloaded hosts as soon
as possible. Secondly, RDS-VMPA is used to place VMs,
which can not only improve the utilization of PM resources,
but also shut down more idle hosts, thus saving more EC.
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TABLE 12. Simulation results of EQ-DVMCA and benchmark algorithm in PlanetLab dataset.

FIGURE 7. SLAV comparison of EQ-DVMCA and the benchmark algorithm
in PlanetLab dataset.

FIGURE 8. EC comparison of EQ-DVMCA and benchmark algorithm in
PlanetLab dataset.

It can be seen from Figure 9 that the ESV value of
EQ-DVMCA proposed in this paper is the lowest. This is
because EQ-DVMCA not only guarantees the QoS, but also
reduces the EC of the data center by reducing the number of

FIGURE 9. ESV comparison of EQ-DVMCA and benchmark algorithm in
PlanetLab dataset.

VMMs. This makes EQ-DVMCA strike a balance between
EC and QoS.

To sum up, EQ-DVMCA performs best in all the six per-
formance tests. Compared with the benchmark algorithm,
EQ-DVMCA not only significantly reduces the number of
VMM and EC but also provides reliable QoS. According to
the calculation in Table 12, compared with the benchmark
algorithm, EQ-DVMCA is reduced by 8.40–21.60% in the
VMM index, 30.96–36.92% in the SLATAH index, 33.33–
62.96% in the PDM index, 53.97–76.63% in the SLAV index,
13.80–28.87% in the EC index, and 61.50–81.77% in the
ESV index. These prove the superiority of EQ-DVMCA.

Finally, in order to further prove the advantages of
EQ-DVMCA and the effectiveness of EQ-DVMCA in dif-
ferent working environments, we compared it experimentally
with CGMS, HUA-LRR-MC-1.2 on the Bitbrains dataset.
Table 13 shows the simulation results of the algorithm.

The comprehensive performance pairs of the algorithms
are shown in Table 14.

As can be seen from Figure 10, the VMM value of
EQ-DVMCA is the smallest. This is because EQ-DVMCA
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TABLE 13. Simulation results of EQ-DVMCA and advanced algorithm in Bitbrains dataset.

TABLE 14. Comparison of comprehensive performance between
EQ-DVMCA and advanced algorithms in Bitbrains dataset.

classifies the load status of physical hosts more carefully
through the HLDA, to obtain a more accurate load status
of the physical hosts. This method reduces the possibility of
overloading the physical host again and reduces the probabil-
ity of VMM. Secondly, when selecting VMs that need to be
migrated, EQ-DVMCA can preferentially select more effec-
tive VMs for migration through CM-VMSA while avoiding
the occurrence of invalid VMM, which greatly reduces the
number of VMM. According to the calculation, compared
with CGMS and HUA-LRR-MC-1.2, the VMM index of
EQ-DVMCA decreased by 9.52% and 30.77%, respectively.
This proves the feasibility of EQ-DVMCA on VMM.

As can be seen from Figure 11, the SLATAH value of
EQ-DVMCA is the lowest, which indicates that the algorithm
has the least overload violations in the data center at run-
time. This is because EQ-DVMCA can predict the change of
physical host workload through HCESEA more accurately,
so that VMs can be migrated before physical host overload to
avoid host overload. Secondly, when selecting suitable hosts
for VMs for migration, EQ-DVMCA obtains the resource-
demand scaling of physical hosts through RDS-VMPA, to
consider the changing trend of VM resource demand on phys-
ical hosts and effectively prevent overload caused by work-
load fluctuation. RDS-VMPA ensures that physical hosts

FIGURE 10. VMM comparison of EQ-DVMCA and advanced algorithm in
Bitbrains dataset.

in data centers work properly for a long time after VMs
are placed, preventing secondary overload. According to the
calculation, compared with CGMS and HUA-LRR-MC-1.2,
the SLATAH index of EQ-DVMCA decreased by 16.98%
and 8.73%, respectively. This proves that EQ-DVMCA can
effectively cope with workload fluctuations and maintain the
normal working status of physical hosts in the data center for
long periods of time.

As can be seen from Figure 12, EQ-DVMCA has the best
performance in reducing PDM. This is because EQ-DVMCA
is first optimized from the number of VMM, which fun-
damentally reduces the loss caused by VMM. Secondly,
when selecting VM through CM-VMSA, EQ-DVMCA quan-
tifies the effectiveness of VMM, which effectively avoids
invalid VMM and further reduces the loss of computing
resources caused by VMM to the data center. According to
the calculation, compared with CGMS and HUA-LRR-MC-
1.2, the PDM index of EQ-DVMCA decreased by 19.45%
and 54.92% respectively. This shows the superiority of
EQ-DVMCA in PDM index.
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FIGURE 11. SLATAH comparison of EQ-DVMCA and advanced algorithm in
Bitbrains dataset.

FIGURE 12. PDM comparison of EQ-DVMCA and advanced algorithm in
Bitbrains dataset.

As can be seen from Figure 13, The SLAV value of
EQ-DVMCA is the lowest. Combined with the experimental
results in Figure 11 and 12, it can be seen that EQ-DVMCA
can deal with workload fluctuations more effectively and
avoid migration of invalid VMs, so it can provide users
with better QoS. According to the calculation, compared
with CGMS and HUA-LRR-MC-1.2, the SLAV index of
EQ-DVMCA decreased by 32.77% and 59% respectively.
This proves that the EQ-DVMCA can guarantee QoS in the
normal operation of data center.

According to Figure 13 and Figure 14, unlike the pre-
vious results, HUA-LRR-RC-1.2 has the lowest EC value,
followed by EQ-DVMCA. However, the EC values of HUA-
LRR-RC-1.2 are not significantly different from those of
EQ-DVMCA. Based on Figure 13, it can be found that HUA-
LRR-RC-1.2 actually sacrifices the QoS of the data center
to improve the energy efficiency level of data center. Com-
pared with HUA-LRR-RC-1.2, although EQ-DVMCA has
less extra EC, it can effectively improve the QoS of the data
center, so it is reasonable. The reasons why EQ-DVMCA
can consume less energy and maintain a high level of QoS
are as follows: first, considering the impact of VMM on
EC, EQ-DVMCA improves the effectiveness of each VMM

FIGURE 13. SLAV comparison of EQ-DVMCA and advanced algorithms in
Bitbrains dataset.

FIGURE 14. EC comparison of EQ-DVMCA and advanced algorithm in
Bitbrains dataset.

during operation and completes the consolidation of VMs in
the data center with a small amount of VMM, thus reducing
the extra EC generated by VMM. Second, when placing
VMs, EQ-DVMCA allocates VMs to reasonable physical
hosts through RDS-VMPA, which improves the resource
utilization of physical hosts and effectively reduces the EC
of physical hosts. According to the experimental results, the
EC index of EQ-DVMCA was reduced by 11.85% compared
with CGMS. This proves that it is feasible to reduce the
number of VMM to save energy in the data center.

As can be seen from Figure 15, the ESV value of
EQ-DVMCA is much lower than that of other algorithms.
This shows that compared with other algorithms, the per-
formance of EQ-DVMCA is optimal. According to the
experimental results, compared with CGMS and HUA-
LRR-MC-1.2, the ESV index of EQ-DVMCA decreased by
40.32% and 58% respectively. This result further proves that
EQ-DVMCA achieves a balance between EC and QoS.

To sum up, EQ-DVMCA can not only significantly reduce
the number of VMM, but also save energy and effectively
ensure QoS. This enables cloud service providers reducing
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FIGURE 15. ESV comparison of EQ-DVMCA and advanced algorithm in
Bitbrains dataset.

the cost of data centers and improving the user experience,
further boosting cloud computing.

VI. CONCLUSION AND FUTURE WORK
VMC is one of the most effective methods to solve the high
power consumption and low utilization of cloud data centers.
However, large-scale VMM can result in additional work-
loads, SLAV, and considerable power consumption. There-
fore, efficient VMC is one of the hotspots of current research.
Existing studies have made great progress in this respect,
however, the following problems still exist: first, the potential
overload is not considered in the load detection of physical
host; second, the resource-demand scaling of physical hosts is
not considered during VM placement, which results in a lack
of accuracy in selecting suitable hosts. In order to solve the
above problems, this paper first constructed the GEC-VRCM
model, which defines the specific process and the related
attributes of VMC. GEC-VRCM is beneficial to improve
the consolidation efficiency of virtual resources. Secondly,
on the basis of this model, we propose EQ-DVMCA to realize
the efficient consolidation of virtual resources. We proved the
effectiveness of EQ-DVMCA through three experiments:

1. In the load prediction assessment, we compared HCE-
SEA, CES, and ENN. The experimental results show
that the prediction error of HCESEA is much smaller
than that of CES and ENN under different working con-
ditions. This proves that the load state of the physical
host can be more accurately predicted using HCESEA.

2. We selected 12 VMC algorithms as the bench-
mark algorithm. Then, we compared these algorithms
under six performance indexes. Experimental results
show that compared with the benchmark algorithm,
EQ-DVMCA has obvious advantages in terms of
VMC.

3. We compared EQ-DVMCA with CGMS and HUA-
LRR-MC-1.2, two advanced algorithms. The experi-
mental results show that EQ-DVMCA can not only
reduce the migration times of VMs but also maintain

a high level of QoS with low EC and achieve a balance
between EC and QoS.

To sum up, EQ-DVMCA can be well applied to VMC.
In future work, we will consider the impact of other

resources on EC and SLAV.
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