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ABSTRACT Iterative learning control (ILC) algorithms are typically used to improve the performance of
repetitive processes. Numerous successful applications of ILC, such as computer numerical control (CNC)
machining processes, robot manipulation, and lithography processes, have been reported. However, ILC
often exhibits less than satisfactory performance since the control unit operates at a limited sampling rate
in consideration of cost. In this study, the multiloop, multirate structure of servo motor control systems is
taken advantage of and a fast-update multirate ILC (FILC) scheme is proposed for high-accuracy trajectory
tracking, where compensation is updated at a rate faster than that of the original position loop without the
need for redesigning the feedback controller. The key difficulty related to the design of the FILC lies in
the extremely complex and time-varying dynamics inherent in multirate systems. To address this problem,
a novel equivalent single-rate parametric model description of the multirate system is derived, which enables
the use of the efficient norm optimal ILC algorithm. Consequently, a computationally efficient FILC is
obtained to improve the performance. Subsequently, the proposed FILC is applied to the position control
of the CNC motion stage. Simulation and experimental results are used to verify the effectiveness of the
proposed method.

INDEX TERMS Iterative learning control, multirate system, norm optimal, linear periodic time varying,
precise motion control.

I. INTRODUCTION
Due to the rapid development and strength of digital tech-
nologies, almost all control laws are currently implemented
in digital forms, which together with continuous-time plants
constitute the sampled-data control systems. In sampled-
data control systems, the sampling rate should be much
higher than the control bandwidth to diminish the effects of
discretization [1]. Unfortunately, this requirement may not
always be satisfied in some advanced applications, partly
because of the ever demanding needs for higher performance
and bandwidth and partly because of cost considerations.
Consequently, the control system is susceptible to distur-
bances beyond the Nyquist frequency and unmeasurable
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ripples or oscillations between samples, especially for sys-
tems with nonminimum phase zeros, leading to performance
deterioration [2].

Extensive research has been dedicated to the performance
enhancement of sampled-data control systems in the form
of either feedback or feedforward compensation, while the
multirate configuration is one of the most popular techniques
for reaching a compromise between performance and cost
[2]–[5]. The zero-phase error tracking control (ZPETC)
method was applied in [4] to approximate the system
inversion and obtain fast-update multirate feedforward com-
pensation without changing the existing feedback control
architecture; however, its performance was limited because of
the inaccuracy of the inversion approximation. Alternatively,
preactuated multirate feedforward control was proposed
in [2], and the stable inversion method was used to process
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the discretization zeros and intrinsic zeros with the aim
of balancing on sample and intersample behavior. In [5],
two decomposed subsystems were obtained to enhance
continuous-time performance, and a multirate inversion
was then applied. In [3] and [6], a multirate disturbance
observer (DOB) was designed that suppresses disturbances
beyond the Nyquist frequency. It is worth noting that the
above methods have a common feature: the control inputs
from the feedforward controller or DOB are fast updated,
which is understandable because high-rate signals contain
rich information that is useful for performance improvement.

Among all the approaches for control performance
enhancement, ILC is particularly attractive owing to its
effectiveness and simple structure. There are many original
works and surveys on ILC [7]–[11]. ILC is a digital feed-
forward control approach used to improve the performance
of the current trial based on the results of the previous
trial during repetitive operations. Identical initial conditions
are utilized for each trial. Such operations are common
in manufacturing, assembling and data storage devices.
Examples include injection molds [12], robotic manipulator
pick-and-place movement [13]–[15], precision positioning of
the wafer stage [16], hard disk drive servo systems [17], and
CNC machine tools [18].

Compared with well-designed feedback control and feed-
forward control, ILC has unique advantages. For example,
all feedback controllers, including the state-of-the-art intel-
ligent algorithm-based feedback controllers [19], respond
to reference changes and disturbances with inherent delays
and transients. In contrast, noncausal ILC algorithms can be
designed to preemptively target future reference commands
and disturbances in the time domain. Feedforward control can
also improve the phase lag in reference tracking control but
cannot suppress disturbances. In contrast, ILC can suppress
repetitive disturbances without requiring precise information
about the system or disturbances. This is because the ILC
output is the result of input errors with rich information from
previous trials. In addition, feedback control and ILC are
commonly used in combination to suppress nonrepetitive and
repetitive disturbances, respectively. The most recent devel-
opments of ILC include trial-varying trajectory following
spatial ILC, learning basis functions, and data drivenmethods
for performance enhancement [20]–[25].

The objective of our work is to apply ILC to improve the
performance of sampled-data systems that perform repetitive
tasks in the multirate framework. In [26] and [27], a pseudo
downsampled technique was derived for a P-type multirate
ILC; however, this approach was limited by the fact that
reducing the sampling rate of the error input may result in the
loss of some frequency information. Alternatively, a multirate
ILC method aiming to suppress intersample oscillation was
proposed in [28], in which fast output measurements were
obtained for an ILC with a slow-rate design. Due to the lack
of a parameterized multirate system model, an additional
lifting step was taken, which involved the demanding
computation of a large-sized matrix convolution and thus

restricted this approach to only short-length tasks (less than
103 samples).This inefficiency can be considerably mitigated
by multirate fast-updated state tracking ILC reported in [29],
Similarly, a patent application formultirate fast-update output
tracking ILC developed in [30]. Still, the error convergence
is slow because they are both PD-type learning designs,
instead of the model-based learning, which has a faster
error convergence rate. The key difficulty in designing a
model-based multirate ILC is the parametric model for the
multirate system description. Hence, a novel time-varying
parametric model will be presented in this paper.

Compared with information-rich fast-update multirate ILC
(FILC), slow-update single-rate ILC (SILC) is generally
suboptimal. Motivated by the potential performance gains
of multirate feedforward control in the literature [2], [3],
[28], [29], an FILC scheme is proposed in this paper
under the assumption that a fast-rate system output is
available. Moreover, the proposed scheme overcomes the
major challenge common in FILC methods, i.e., establishing
a parametric multirate system description, and efficiently
uses the model-based norm optimal algorithm to make
it feasible for practical applications. Then, we demon-
strate through experiments that the proposed FILC scheme
can be seamlessly integrated into the conventional multi-
loop, multirate servo motor control system with minimum
hardware modification to improve the trajectory tracking
performance.

Therefore, the essential contribution of this paper is the
development of a framework that exploits FILC to enhance
the performance of sampled-data systems.More precisely, the
following subcontributions are identified:

(C1) The FILC framework is designed based on an efficient
norm optimal algorithm.

(C2) The time-varying parametric multirate system is
described.

(C3) The FILC framework is applied for the position
control of a ball-screw-driven CNC machine tool motion
stage and validated through simulations and experiments.

The organization of this paper is as follows: In Section II,
the mathematic preliminaries and problem formulation are
presented, and the efficient norm optimal ILC method
combined with feedback control for time-varying systems
is introduced. A parametric multirate system description is
presented in Section III. In Section IV, the advantages of
the proposed FILC are demonstrated via simulations and
experiments. The conclusions are presented in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION
In the first subsection, we present the notations and
conventions adopted in this paper. In the second subsection,
the standard ILC for general sampled-data systems, which
operates at a single slow rate and is abbreviated as SILC,
is introduced. In addition, the shortcomings of SILC are
discussed. The third subsection introduces FILC, including
its advantages over SILC and its challenges in design and
implementation, thereby constituting contribution C1. Next,
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we illustrate the strategy to overcome the challenges in
Section III.

A. NOTATION
We introduce the notations and conventions that will be
followed throughout this paper. The index of a discrete-time
signal and a continuous-time signal are surrounded by
brackets and parentheses, respectively. For example, y(t)
denotes the value of a continuous-time signal at time t ,
whereas y[k] denotes the value of a discrete-time signal at
the k th sample.

For discrete-time signals, z is used either as a time
advanced operator in the time domain or the complex variable
of the z-transform. The exact meaning of z will be clear
from the context. For example, zy[k] = y[k + 1] for any
discrete-time signal y[k], while Pd (z) denotes the transfer
function of a discrete-time linear time-invariant (LTI) system.

In multirate ILC systems, repetitive tasks are considered,
where each run of the task is called a trial. In addition,
discrete-time signals and systems are sampled or operated
with different sampling rates. Hence, we use the subscript
to denote the trial of the signal and the superscript l or h to
denote a signal or system sampled or operated with a low
or high rate, respectively. For example, ylj[k] represents the
value of signal y, which is sampled at a low rate at the k th

sample of the jth trial. If the sampling rate is irrelevant, the
superscript can be omitted. Furthermore, suppose that the
length of each trial is N . We can stack the N -point signal into
a vector and use an underline to denote the vector form, that

is, yl
j
=

[
ylj[0] , y

l
j[1], · · · , y

l
j[N − 1]

]T
.

The state space form of a discrete-time transfer function
Pd (z)is denoted by

Pd (A,B,C,D) =

{
x[k + 1] = Ax[k]+ Bu[k]
y[k] = Cx[k]+ Du[k].

(1)

andPd (z) = C(zI − A)−1B+ D.
Consider a discrete-time, linear time-varying (LTV), causal

system, described in the state space form:

Pd (A[k],B[k],C[k],D[k])

=

{
x[k + 1] = A[k]x[k]+ B[k]u[k]
y[k] = C[k]x[k]+ D[k]u[k].

(2)

The input-output relation of Pd (A[k],B[k],C[k],D[k]) can
be expressed in lifted form as

y
j
=


D[0] 0 · · · 0
h[1, 0] D[1] · · · 0
...

...
. . .

...

h[N − 1, 0] h[N − 1, 1] · · · D[N − 1]


︸ ︷︷ ︸

Pd

uj. (3)

where y
j
= (yj[0], yj[1], · · · yj[N − 1])T is the output and

uj = (uj[0], uj[1], · · · uj[N − 1])T is the input. In addition,
h[k, i] = C[k]8(k, i + 1)B[i], where 8(k, i + 1) = A[k −
1]A[k − 2] · · ·A[i + 1] is the state transition matrix of

FIGURE 1. Sample-data control setup.

the LTV system. When the plant is time invariant,Pd is a
Toeplitz matrix. The underline indicates the corresponding
lifted matrix form.

When a sampled-data control system is represented by a
block diagram, we use solid, dashed, and dash-dotted lines
for continuous-time signals, slow-rate discrete-time signals,
and fast-rate discrete-time signals, respectively.

Let ‖x‖2M := xTMx, where x ∈ Rn and M ∈ Rn×n. M is
positive definite (M � 0) iff xTMx > 0, ∀x 6= 0 and positive
semidefinite (M � 0) if xTMx ≥ 0, ∀x.

B. NORM OPTIMAL ILC FOR SAMPLED-DATA SYSTEMS
Consider the single-input, single-output sampled-data control
system shown in Fig. 1, with reference trajectory r(t), which
is known in advance, output y(t), control input v(t), sampler
S l , digital controller C l

d , and the zero-order-hold (ZOH) Hl .
The continuous-time LTI plant Pc is given by:

ẋ(t) = Acx(t)+ Bcu(t). (4a)

y(t) = Ccx(t). (4b)

The discretized plant Pld , by means of the ZOH Hl , and
the sampler S l with sampling rate f l = 1/δ Hz, is given by
Pld = S lPcHl with state space form:

x l[k + 1] = Aldx
l[k]+ Bldu[k]. (5a)

yl[k] = Cdx
l[k]. (5b)

with

Ald = eAcδ,Bld =
∫ δ

0
eAcτBcdτ,Cd = Cc. (6)

Suppose that a digital controller with sampling time δ is
designed to track a finite-length reference trajectory r l[k] for
k = 0, 1, . . .N−1. In addition, the controller should consider
the model uncertainties of the plant and the stability of the
feedback system. Based on the complexity of the control
law, the computational power of the controller hardware,
and the desired bandwidth of the system, the sampling time
is chosen. Hence, modifying the feedback controller C l

d
takes considerable time and effort and is not considered in
many practical applications. Instead, an add-on feedforward
compensation such as ILC is preferred for performance
enhancement.

The standard ILC operates at a single slow rate (the same
rate as C l

d ) and introduces a feedforward control input u
l
j into

the control system, as shown in Fig. 2. Let the tracking error
of the (j + 1)th trial be elj+1 = r l − ylj+1. One common
ILC design method is to minimize the performance criterion
in Definition 1 based on the control input and error of the
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FIGURE 2. Standard (i.e. slow-update single-rate) ILC (SILC) structure.

previous trial, that is, (ulj, e
l
j). This is called norm optimal ILC,

the stability and convergence analysis can be guaranteed [7],
[13], [14].
Definition 1 [Performance Criterion]: A standard perfor-

mance criterion for the norm optimal ILC is given by

J (uj+1, ej+1) = ‖ej+1‖
2
Wq
+ ‖uj+1 − uj‖

2
Wr
+ ‖uj+1‖

2
Ws
. (7)

The weighting matrices Wq � 0,Wr � 0,Ws � 0 are
used to penalize ej+1, uj+1 − uj and uj+1 respectively. The
smaller Wr is, the larger uj+1 − uj is, which means that
the ILC output is more sensitive to the error information
in the previous trial; hence, the ILC is more sensitive to
nonrepetitive disturbances. Additionally, a common method
to improve robust monotonic convergence is to increase Ws;
however, this comes at a slower error convergence rate [31].
Therefore, the combination of the weighting matrices is a
trade-off between robustness and performance.

The weighting matrices are generally chosen as Wq =

wqIN , Wr = wr IN and Ws = wsIN , where IN is the N × N
identity matrix, and wq > 0,wr ,ws ≥ 0.

The ILC input ulj in Fig. 2 can be computed by minimizing
the cost function as follows:

ulj+1 = argmin J (ulj+1, e
l
j+1). (8)

where the optimal solution of (8) is given in [14] and
presented in Theorem 2. The proof can be found in [14] and
is omitted here.
Theorem 2 [Solution of the Norm Optimal ILC]: Let S =

(IN + PldC
l
d )
−1 be the sensitivity function of the system in

Fig. 2, where Pld and C l
d are the lifted forms (3) of the plant

and controller, respectively. We define Su = SPld , which is
the convolution matrix from ulj to y

l
j
, as in (3). Then, given ulj

and elj , the norm optimal ILC update law is

ulj+1 = Luu
l
j + Le

l
j . (9)

where

Lu = (STuWqSu +Ws +Wr )−1(STuWqSu +Wr ). (10)

Le = (Sus
TWqSu +Ws +Wr )−1STuWq. (11)

Note that the control law (9) involves inversion and
multiplication of the N × N matrices, where N is the length
of the task. As N increases, computational effort becomes
increasingly demanding. This situation becomes much more
severe when a high sampling rate is adopted. Therefore,
Equation (9) is restricted to short-length tasks.

To overcome this problem, Zundert et al. [32] proposed a
computationally efficient solution to the norm optimal ILC,

which is presented in TheoremA1 in the Appendix. The proof
of Theorem A1 can be found in [32].

The efficient norm optimal ILC in Theorem A1 signif-
icantly reduces the computation load. Moreover, it allows
time-varying and noncausal computation, which forms the
basis of this paper.

The results above are associated with a single rate. The
plant in (4) needs to be discretized at a higher sampling rate
to obtain a multirate scheme in the following subsection.
Thus, the relationship between the discretized systems with
different sampling rates is illustrated in Lemma 3.
Lemma 3: Let Phd be the discretized model of Pc in

Fig. 1 with respect to a high sampling rate f h = F/δ = Ff l ,
where F ∈ N is the multirate ratio, that is, Phd = ShPcHh

with state space form

xh[n+ 1] = Ahdx
h[n]+ Bhdu

h[n]. (12a)

yh[n] = Cdx
h[n]. (12b)

where

Ahd = eAcδ/F ,Bhd =
∫ δ/F

0
eAcτBcdτ,Cd = Cc. (13)

Then,

Ald = (Ahd )
F

Bld = (Ahd )
F−1Bhd + (Ahd )

F−2Bhd + · · · + B
h
d . (14)

Proof: Comparing (13) with (6) and

Ald = (eAcδ/F )F . (15)

Bld =
∫ δ/F

0
eAcτBcdτ +

∫ 2δ/F

δ/F
eAcτBcdτ + · · ·

+

∫ δ

(F−1)δ/F
eAcτBcdτ. (16)

yields (14)
Note that from Lemma 3, we can directly obtain Pld

from Phd .

C. FAST-UPDATE MULTIRATE ILC STRUCTURE
The SILC scheme in Fig. 2 can effectively suppress
tracking errors provided that the desired bandwidth of the
closed-loop system ismuch lower than theNyquist frequency.
However, as a higher and higher bandwidth is needed
to meet increasingly stringent performance requirements,
the sampled-data system may suffer from high-frequency
distortion and aliasing of disturbances beyond the Nyquist
frequency. In such a case, it is desirable to use a higher
sampling rate. However, deploying a higher sampling rate
usually requires redesigning the digital feedback controller
and more demanding computational power, resulting in
higher costs. Fortunately, the multirate architecture can strike
a balance between the cost and performance. Additionally,
the servo motor control system has an inherent multiloop and
multirate structure, as presented in Section IV.A, consisting
of the innermost current loop with the highest rate, the
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FIGURE 3. Fast-update multirate ILC (FILC) structure.

middle velocity loop with the medium rate, and the outermost
position loop with the lowest rate. In the existing literature,
ILC was only used to improve the performance within the
position loop in a single-rate configuration without taking full
advantage of the multirate scheme of the servo motor control
system.

Based on these facts, we propose a fast-update multirate
ILC (FILC) framework, as shown in Fig. 3, which minimizes
the cost function in Definition 1 with a fast sampling rate:

uhj+1 = argmin J (uhj+1, e
h
j+1). (17)

The downsampler D in Fig. 3 is used to select an integer
multiple of ehj+1[k] as e

l
j+1[k], i.e.,

elj+1[k] = ehj+1[Fk]. (18)

Multirate holder Hu = HzohU is an up-sampler followed by
a zero-order hold (ZOH), which is defined as follows:

Hzoh =

F−1∑
i=0

z−i. (19)

U : x[k]→ xu[k], and

xu[k] =

{
x[k/F], k = 0, F, 2F · · ·
0, otherwise.

(20)

From Fig. 3, we can see that the feedback controller
C l
d remains unaltered, and therefore, there is no need to

redesign it. Instead, performance enhancement is attained by
providing fast-update feedforward compensation based on
the norm optimal ILC in (17). In addition, when we apply
the proposed FILC to tracking control of the X-Z motion
stage in Section IV, it is clear that the ILC compensation uhj
is injected into the velocity loop, which operates at a higher
sampling rate. Consequently, the changes in hardware are
minimal when implementing the proposed FILC method.

Unfortunately, Theorem A1 cannot be directly applied to
solve the norm optimal ILC problem in (17) because of
the multirate structure shown in Fig. 3. In the next section,
we derive a parametric multirate system description for the
system in Fig. 3, which turns out to be a linear periodically
time-varying (LPTV) system. Thus, (17) is tractable by
applying Theorem A1 and the parametric multirate system
description.

III. PARAMETRIC MULTIRATE SYSTEM DESCRIPTION
In this section, a novel parametric model for the multi-
rate system, which forms contribution C2, is presented.

In Section III-A, the standard ILC system described in
Fig. 2 is modeled for comparison. In Section III-B, the
time-varying feature of the multirate system is presented.
An equivalent single fast rate is used to describe the multirate
control system, as shown in Fig. 3. Then, based on these
modeling methods and previous results, SILC and FILC are
implemented in Section IV.

A. STATE SPACE DESCRIPTION FOR SILC
The SILC structure is a single-rate system, as shown in Fig. 2,
and is described by the state space model in Lemma 4.
Lemma 4 [Parametric Description of SILC]: Let the

LTI discrete-time plant Pld and the digital controller C l
d in

Fig. 2 be described in state space form as

Pld
(
Alp,B

l
p,C

l
p, 0

)
and C l

d

(
Alc,B

l
c,C

l
c,D

l
c

)
. (21)

Then, the state space description of the relationship ulj[k]→
ylj[k] is as follows:

JS (A,B,C, 0). (22)

where A =

[
Alc −BlcC

l
p

BlpC
l
c A

l
p − B

l
pD

l
cC

l
p

]
, B =

[
0
Blp

]
,

C =
[
0 C l

p
]
.

Proof: To find the relation from ulj[k] to y
l
j[k], the reference

input r l is omitted here. As shown in Fig. 2, the successive
substitution of the state update and output equations of the
subsystems yields the system representation ulj[k] → ylj[k]
above.

B. STATE SPACE DESCRIPTION FOR FILC
The multirate system is illustrated in Fig. 3. A parametric
description of the input-output mapping from uhj [k] to
yhj [k] is required to solve the norm optimal ILC problem.
However, the derivation is challenging because the mapping
is time-varying owing to its multirate nature. To obtain
the desired parametric description, we convert the multirate
system into an equivalent fast-rate system in the sense that the
input-output relation is reserved.
The holding selector is defined as a downsampler followed

by a multirate holder, that is, HuD. Note that both the input
and output of the holding selector are fast-rate signals. Let
ēhj [k] = HuDehj [k]. Then, the holding selector has the
following time-varying state space representation:

xhs [k + 1] = s[k]xhs [k]+ (1− s[k]) e
h
j [k]. (23a)

ēhj [k] = s[k]xhs [k]+ (1− s[k]) e
h
j [k]. (23b)

where s[k] =
{
0 if k = αF, α ∈ Z
1 otherwise

.

For the sake of convenience, we take F = 2 as an example
and illustrate the operation of the holding selector in Table. 1,
in which the correspondence of sample indices between the
slow-rate signals and the fast-rate counterparts is listed. The
entries in the same column in Table 1 correspond to the same
time instance. Recall that elj[n]=e

h
j [Fn]. FromTable 1, we can
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TABLE 1. Relation between the input and output of the system shown in
Fig. 3.

see that ēhj [k] contains exactly the same information as elj[n].
In other words, they correspond to identical continuous-time
signals when converted through ZOH.

Next, we consider the slow-rate digital controller repre-
sented in the following state space form:

x lc[n+ 1] = Alcx
l
c[n]+ B

l
ce
l
j[n]. (24a)

vl[n] = C l
cx
l
c[n]+ D

l
ce
l
j[n]. (24b)

If we replace elj[n] in (24a) and (24b) with ēhj [k] and
replace vl[n] in (24b) with its equivalent fast-rate counterpart
v̄hu=Huvl , that is, vl and v̄hu are identical once they are con-
verted to continuous-time signals by ZOH, the input-output
relation of the controller does not change except that the
sampling rate is increased by a factor of F. Given ēhj [k] and
v̄hu[k] as the input and output of the controller, respectively,
the corresponding fast-rate state space representation of the
controller for F = 2 is as follows:

xhc [0] = 0 xhc [1] = xhc [0]

xhc [2] = Alcx
h
c [1]+ B

l
cē
h
j [1] xhc [3] = xhc [2]

xhc [4] = Alcx
h
c [3]+ B

l
cē
h
j [3] xhc [5] = xhc [4] · · ·

. (25)

Using the result above, the output v̄hu[k] of the controller
yields

v̄hu[2k] = C l
cx
h
c [2k]+ D

l
cē
h
j [2k]

v̄hu[2k + 1] = v̄hu[2k] = C l
cx
h
c [2k + 1]+ Dlcē

h
j [2k + 1].

(26)

where k = 0, 1, 2 · · · .
From the above derivation, the equivalent fast-rate state

space representation of the controller is given as

Ĉc(Â
h
c[k], B̂

h
c[k],C

l
c,D

l
c). (27)

where

Âhc[k] =

{
Alc if k = αF − 1, α ∈ N
I otherwise

(28)

B̂hc[k] =

{
Blc if k = αF − 1, α ∈ N
0 otherwise

(29)

Let Pd
(
Ahp,B

h
p,C

h
p , 0

)
be the state space representation of

a discrete-time plant sampled by the fast rate. Subsequently,

FIGURE 4. Equivalent time-domain multirate system structure.

we convert all slow-rate signals in Fig. 3 into their equivalent
fast-rate counterparts and derive the equivalent fast-rate state
space form of each block. Hence, the multirate system in
Fig. 3 can be transformed into the fast-rate system shown
in Fig. 4 with equivalent input and output signals. The
reference is omitted in Fig. 4 for simplicity since we need
the model from uhj [k] to yhj [k]. Consequently, we obtain
the following parametric description of the proposed
FILC system.
Theorem 5 [Parametric Description of FILC]: As shown

in Fig. 4, the state space description of the relationship
uhj+1[k]→ yhj+1[k] is given as follows:

JF (A[k],B,C, 0) . (30)

where

A[k] =

 s[k] 0 − (1− s[k])Ch
p

B̂hc[k]s[k] Âhc[k] −
(
B̂hc[k](1− s[k]

)
Ch
p

BhpD
l
cs[k] BhpC

l
c Ahp − B

h
pD

l
c (1− s[k])C

h
p

 .
(31)

B =
[
0
Bhp

]
, C =

[
0, Ch

p

]
. (32)

The time-varying parameters are shown in (23), (28),
and (29).
Proof: In the previous derivation, we showed that Fig. 3 and

Fig. 4 are equivalent in the sense that all signals entail
the same information. Successive substitution of the state
update and subsystems output in Fig. 4 yields the system
representation in (30)-(32).
Definition 6 [LPTV System]: [33] Recall that we have

defined z as a one-step time-shift operator in Section II. A.
Then, a discrete-time linear time-varying system G is linear
periodically time-varying (LPTV) with period τ ∈ N if it
commutes with the delay operator z−τ , that is, z−τG = Gz−τ .
Remark 7: From Definition 6 and Theorem 5, the system

JF (A[k],B,C, 0) in (30) is an LPTV system with a constant
period F [5], [28]. Recall that an LTI system can be regarded
as a special case of an LPTV system.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the developed FILC method is applied to a
CNC motion stage, and the results are compared with those
of the SILC scheme, revealing the superior performance of
FILC, which constitutes Contribution C3.
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FIGURE 5. CNC machine tool motion stage.

FIGURE 6. Servomotor cascaded three-loop structure, f denotes friction,
d denotes process disturbance, and n denotes velocity measurement
noise.

A. EXPERIMENTAL STAGE
The experimental X-Z motion stage shown in Fig. 5 com-
prises servo motors, ball screws, and the stage and is widely
used in CNC machine tools. The pitches of the two axes
are 10 mm (x-axis) and 12 mm (z-axis). Both motors
are equipped with rotary encoders with a resolution of
52µrad/pulse.

The servomotor of each axis is independently controlled
by a cascaded three-loop structure, as shown in Fig. 6,
which includes an outermost position loop, a middle velocity
loop, and an innermost current loop. Each loop has its own
controller operating at different sampling rates and aims to
make the corresponding closed-loop transfer function as close
to identity as possible. Therefore, the servomotor control
system in Fig. 6 is inherently a multirate system, with the
highest sampling rate in the innermost loop.

In this paper, we consider the closed current loop as the
plant, that is, Px and Pz, which is within the dashed box
in Fig. 6 and has the torque command and velocity as its
input and output, respectively. Surrounding the plant are the
velocity loop with a higher sampling rate f h = 4 kHz and the
position loop with a lower sampling rate f l = 1 kHz. Thus,
F = 4 in this paper.

The discrete-time transfer functions of the x-axis and z-
axis are identified from fast-rate experimental data. The
magnitude responses of the transfer functions on both axes
are shown in Fig. 7.

Phx(z) =
0.006382z−1 − 0.007674z−2+ 0.003835z−3

1− 3.558z−1+ 4.925z−2 − 3.147z−3+ 0.781z−4
.

(33)

Phz (z) =
0.01674z−1− 0.03231z−2 + 0.01616z−3

1− 3.785z−1+ 5.402z−2− 3.441z−3+ 0.8252z−4
.

(34)

FIGURE 7. Frequency response of Ph
x and Ph

z .

FIGURE 8. Implementation of FILC in the cascade control loops.

Because both axes have similar frequency responses
below 100 Hz and are controlled independently, only the
controller design procedure for the x-axis is detailed in
this paper. Let C l

p(z) be the position controller, Ch
v (z) be

the velocity controller and Ci(z) be a combination of the
current controller and filter. The position controller is usually
a PD structure with a lowpass filter in the derivative
term, and the velocity controller is an PI structure. They
are digitally implemented in the cRIO 9035 embedded
system from National Instruments (NI). Cp(z) and Cv(z)
are tuned by using the PID tuning toolbox in MATLAB,
and Ghi (z) is a backward-type integrator. They are shown
below.

C l
p(z) = Kpp + Kpd

1
Tf + T lz/(z− 1)

. (35)

Ch
v (z) = Kvp + Kvi

T hz
z− 1

, Ghi (z) =
T hz
z− 1

. (36)

where Kvp = 0.216,Kvi = 8.18,Kpp = 169,Kpd =
2.01,Tf = 1.01e−5,T h = 1/f h,T l = 1/f l .
Hence, the plant with respect to the position loop controller

Cp(z), i.e., the closed-loop systemwithin the red dash-dot box
in Fig. 6, can be characterized as Phd :

Phd (z) =
Ch
v (z)P

h
x(z)

1+ Ch
v (z)Phx(z)

Ghi (z). (37)

The nominalmodel in (33) and (34) includes one resonance
mode at approximately 300 Hz in the x-axis and 120 Hz
in the z-axis, and the position control loop yields a −3 dB
bandwidth at 50 Hz and a gain margin of 20 dB.
Remark 8: Based on the results shown in Fig. 3, the

implementation of FILC is shown in Fig. 8. The SILC in
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FIGURE 9. Simulation results. (a) Desired trajectory. (b) Convergence results of eh
j . (c) The error comparison result of SILC and FILC after 10 trials

(j = 10).

Fig. 2 is also implemented for comparison, where Pld (z) can
be obtained from Phd (z) according to Lemma 3.

B. SIMULATION RESULTS
The effectiveness of the proposed FILC structure is verified
by performing simulations on the ball-screw-driven stage.
In the simulation, suppose that the simulation model is exact;
hence, the weights (see (7)) are selected as wq = 106, wr =
10−10, ws = 0.005 for both SILC and FILC, with the aim of
achieving fast convergence with high performance (discussed
in Section II.B).

The measurement noise n and process disturbance d
in Fig. 8 are added to the simulation, but the friction is
assumed to have been perfectly compensated and is discarded
(f = 0). d and n are modeled as Gaussian white noise
with zero mean and variance σ 2

n = (0.5mm/s)2 and
σ 2
d = (0.5A)2, respectively, according to the experimental

measurements. Note that this kind of noise introduces a trial-
varying disturbance, which cannot be compensated in the
repetitive process through ILC, hence limiting the achievable
performance. In addition, the error signal is measured with
the high rate i.e., f h = 4 kHz, for performance evaluation in
the simulations and experiments.

The simulation results are shown in Fig.9. Fig.9(a) shows
the desired trajectory, which combines a series of smoothed
step references, and each step reference is planned using
the S-curve velocity profile. This high acceleration step
trajectory is suitable for testing the dynamic response of a
motion system. The convergence result in Fig.9(b) shows that
the transient of FILC is better than that of SILC. The root
mean square (RMS) of error eh for the first eight trials of
FILC decreased twice as fast as that of SILC since FILC
responds directly to eh, while SILC responds to el . As eh

entails richer information than el , FILC can more effectively
learn the tracking error and achieve faster convergence.
Fig.9(c) shows the comparison of the resultant errors at the
10th trial (j = 10) for SILC and FILC, which shows that
FILC is superior to SILC. FILC learns the full error signal
and significantly improves the performance compared with
SILC.

This simulated case shows that SILC has inferior perfor-
mance, and FILC achieves quick convergence of the error
norm compared with SILC. The reason is that downsampling
eh causes a loss of high-frequency error components and
slows down the learning process of the ILC. Next, the simu-
lation results are validated with experiments in Section IV-C.

C. EXPERIMENTAL RESULTS
The FILC and SILC designed in the previous simulation are
applied to the motion stage, as shown in Fig. 5. Contrary to
the simulation case in Section V-B, the performance weights
in (7) are chosen as wq = 106,wr = 10−6,ws =
0.5, considering the model mismatch in practice. Friction
compensation is implemented using a look-up table based on
prior experimental data, and the input of the look-up table is
the reference velocity.

The reference shown in Fig.9(a) was also applied in the
experiments. The experimental results are shown in Fig. 10.
Similarly, Fig. 10(a) shows the convergence result of ehj for
both SILC and FILC (in terms of RMS). Compared with the
works in [29], the introduction of the parameterized model in
the multirate frameworks accelerates the error convergence.
Fig. 10(b) and Fig. 10(c) show the initial trial (j = 0) and
the 10th trial (j = 10) error results. In the 10th trial, the
RMS errors of ehj for SILC are 0.3808µm and 0.2038µm for
FILC. These results show that the proposed FILC approach
outperforms the SILC method, which is in line with the
simulation results.

Furthermore, the fast Fourier transforms (FFT) of the
above error signals at the 10th trial (j = 10) at different
sampling rates f h and f l are computed, and the results are
depicted in Fig. 11. Fig. 11(a) shows that the dominant error
component of the initial trial (without ILC) is below 50 Hz
because the controller rejects the high-frequency components
above 50 Hz at a cost of limited performance. Fig.11(b) and
Fig.11(c) are the results of SILC and FILC, respectively, for
the 10th trial. Fig. 11(b, top) shows that SILC significantly
reduces the error components below 100 Hz; however, some
peaks are evident below 150 Hz. Comparing Fig. 11(b, top)
with Fig. 11(b, bottom), we see that the peaks at 130 Hz
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FIGURE 10. Experimental results (time domain). (a) Convergence results of eh
j . (b) Initial trial error result (without ILC compensation). (c) The error

comparison result of SILC and FILC after 10 trials (j = 10).

FIGURE 11. Experimental results (frequency domain). Top:el
j ; bottom:eh

j . (a) Initial trial (without ILC compensation). (b) After 10 trials
(j = 10) with SILC. (c) After 10 trials (j = 10) with FILC.

and 30 Hz in Fig. 11(b, top) are due to the aliasing of the
components at 1130 Hz and 1030 Hz in Fig. 11(b, bottom),
respectively. In other words, the SILC system suffers from
disturbance beyond the Nyquist frequency of the position
control loop.

This problem can be overcome by FILC, as shown
in Fig. 11(c, bottom), where the dominant low-frequency
band under 150 Hz (in the close-up subfigure of
Fig. 11 (c, bottom)) has a smaller magnitude than that in
the close-up subfigure below 150 Hz of Fig. 11(b, bottom)
because FILC responds directly to the fast-rate error signal ehj .
Note that the high-frequency terms at 1030 Hz, 1130 Hz,
1500Hz, etc. remain in FILC, since these termsmay originate
from even higher frequency components that cannot be
attenuated by using uhj .

D. DISCUSSION
In summary, compared with SILC, FILC demonstrates the
following advantages: i) Quick convergence is achieved,
as shown in Fig. 9(b) and Fig. 10(a). ii) The accuracy is
improved, as the RMS tracking error of FILC is approxi-
mately half of that of SILC for j >= 8 in experimental

conditions (see Fig. 10(a)). iii) The aliased tracking errors
are supressed, as shown in Fig. 11, because FILC can learn
these error components beyond the Nyquist frequency of the
feedback controller. The results also show that the proposed
FILC method is applicable to large tasks.

V. CONCLUSION
In the automation industry, motion control loops usually
operate at a low rate due to cost considerations. The
single-rate design limits the achievable performance when
ILC is applied owing to the loss of intersample information
and beyond Nyquist frequency disturbances.

In this paper, a fast-update multirate ILC (FILC) frame-
work is proposed to enhance the trajectory tracking perfor-
mance of sampled-data control systems with multiple control
loops and multirate structures. An efficient norm optimal
technique based on a time-varying system model description
was exploited to design the ILC update law in the FILC
framework. However, such a model description is a primary
challenge for multirate systems. A novel parametric linear
periodic time-varying (LPTV) system model description is
presented in this paper that converts the multirate system
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into an equivalent single-rate system. Thus, the essential
contribution of this paper is the FILC framework for
performance enhancement that is not only effective but also
implementable for large task applications by incorporating
the norm optimal ILC method. Through simulations and
experiments on a CNC motion stage, the proposed FILC
method demonstrates its superiority in error reduction with
a limited cost. Further research topic includes multiaxis
simultaneous motion to realize complex machining paths in
high-speed and high-precision applications.

APPENDIX A
Theorem A1 [Efficient Norm Optimal ILC]: Consider the
performance criterion of Definition 1 and the LTV model in
Section I (from uj[k] to yj[k]) with the state space form as:

J (A[k],B[k],C[k], 0). (A.1)

Then, the optimal uj+1[k] in (8) can be computed by the
following steps:
Step 1: Solve the discrete Riccati equation backwards.

P[k] = AT [k]P[k + 1]A[k]− AT [k]P[k + 1]..

B[k](BT [k]× B[k] + ϕ)BT [k]..

P[k + 1]A[k]+ CT [k]wqC[k]. (A.2)

where P [N ] = 0 and

L[k] = (ϕ + BT [k]P[k + 1]B[k])−1BT [k]P[k + 1]A[k].

(A.3)

Lu[k] = (ϕ + BT [k]P[k + 1]B[k])−1wr . (A.4)

Lg[k] = (ϕ + BT [k]P[k + 1]B[k])−1BT [k]. (A.5)

ϕ = wr + ws. (A.6)

Step 2:
Solve the vector difference backwards.

gj+1[k] = (AT [k]− Kg[k]BT [k])gj+1[k + 1]

+C[k]wqej[k]+ Kg[k]wsuj[k]. (A.7)

where gj+1[N ] = 0 and

Kg[k] = AT [k]P[k + 1](I + B[k]ϕ−1

BT [k]P[k + 1])−1B[k]ϕ−1. (A.8)

Step 3:
Solve the optimal state as follows:

1x∗[k + 1] = (I + B[k]ϕ−1BT [k]P[k + 1])−1(

A1x∗[k]− B[k]ϕ−1wruj[k]+ B[k]BT [k]g[k + 1]). (A.9)

Step 4: Obtain the optimal ILC updates. Then,

u∗j+1[k] = uj[k]+1u
∗

j+1[k] = −L[k]1x
∗[k]

+(I − Lf [k])uj[k]+ Lg[k]g[k + 1]. (A.10)
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