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ABSTRACT Path planning in dynamic environments is still a challenging issue with autonomous mobile
robots. Current methods lack adaptability to various passing scenarios, a variety of passing trajectories
including an acceleration path, or immediacy in planning time, which require human-aware navigation.
In this study, we propose Dynamic Waypoint Navigation (DWN), which is a model-based adaptive real-time
trajectory planning method. DWN first predicts human-robot path interference and the time and position
of the interference on the basis of the measured velocity of humans. It then dynamically designates several
waypoints considering the time delay of both calculation time and robot travel time. Then, DWN generates
several trajectories by combining different speeds (default, acceleration, and deceleration) and paths (default,
right, and left) and selects the best trajectory in terms of an interference-avoidance energy cost based on the
degree of velocity-vector change. DWN can also output a trajectory within 0.5 s to immediately adapt to
changes in human behavior and adopt a simple mathematical model and algorithm to enable easy expansion.
Simulation and experimental results reveal that the DWN can adequately select a time-efficient trajectory in
real-time and adaptively change a trajectory depending on human movement.

INDEX TERMS Autonomousmobile robot, dynamic waypoint navigation, path planning, real-time adaptive
trajectory planning.

I. INTRODUCTION
Autonomous mobile robots that co-exist with humans are
indispensable for various services such as human guid-
ance, goods delivery, and manufacturing support [1], [2].
To achieve this, safe and efficient path planning is key, but
path planning in ‘dynamic environments’ is still a challenging
issue. As is well known and reviewed in many papers [3], [4],
there are several approaches of path-planning methods suited
to the characteristics of applied domains [5]. At the dawning
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age, grid (graph)-based methods overlay a grid on configura-
tion space and assume each configuration is identified with a
grid point. A∗ is used to find a path from the start to goal but is
only applicable in static environments [6]. Artificial potential
fields are used to treat a robot’s configuration as a point in
a potential field that combines attraction to the goal and
repulsion from obstacles [7]. This method can fail to find a
path or find a non-optimal path and does not explicitly control
a velocity in dynamic situations. Sampling-based methods
represent the configuration space with a roadmap of sam-
pled configurations. Rapidly-exploring random trees (RRTs)
incrementally construct a tree from samples drawn randomly
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FIGURE 1. Relationship between integrated robot system and proposed trajectory-planning method. Sensors are a laser range finder (LRF) and RGB-D
sensor (Kinect v2). Localization is made using a simple iterative closest point (ICP) algorithm. Velocity vector of human is estimated using a Kalman filter.

from the search space [8]. Several derivatives can handle
moving obstacles, e.g., [9], but this method requires a long
calculation time. The dynamic window approach (DWA) is an
online collision avoidance method, which is derived from the
dynamics of a robot and is designed to handle the constraints
imposed by the limited velocities and accelerations of the
robot [10]. Many derivatives can handle moving obstacles,
e.g., [11], but those studies do not focus on directly planning a
robot trajectory and experimental situations are simple. Path-
planning methods for human avoidance have been devel-
oped, but some of them only change a moving direction,
such as avoiding to the left or right without changing the
velocity [12] or stopping or decelerating without changing
the path [13]. Moreover, passing scenarios in those studies
are limited to specific ones, such as only right angle [14] or
facing angle. In the modern periods, more sophisticated algo-
rithms in the field of dynamic path planning have been pro-
posed, which include optimal reciprocal collision avoidance
(ORCA)-based methods [15], self-adaptive harmony search
algorithm [16], model-predictive control-basedmethods [17],
social-force-based methods for crowd navigation [18], and
deep reinforcement learning-based methods [19]. In particu-
lar, learning-based methods that a robot acquires an adequate
navigation policy to adapt to dynamic and complex crowd
environments are attractive approaches, but their computa-
tional cost and domain adaptation to the real world should
be further investigated.

As referred above, there are an enormous number of navi-
gation methods, and they are becoming more complex. At the
same time, we can find room for improvement in terms of
simplicity and adaptability. Thus, this study aims to provide
a model-based adaptive path planning method as one option
for dynamic trajectory planners for human-symbiotic mobile
robots.

Robot navigation in human co-existence spaces requires
the following functions. First, path-planning methods must
handle dynamic obstacles, i.e., humans, and be able to pre-
dict a time and position when they may interfere with each
other. In dynamic situations, the path-planning method must
handle any passing angles and rapidly change the trajectory
if needed. It also needs to find a path as a minimum-cost
trajectory generated by combining an arbitrary path and

speed, depending on the situation. For example, passing to
the right while accelerating has a lower cost than detour-
ing to the left while decelerating. This behavior may not
only ensure its movement efficiency but also allow the
humans to easily understand the robot’s intent. The human-
coexistence environment changes dynamically, so the robot
needs a framework that can quickly execute a series of con-
trols including environment recognition, trajectory planning,
action execution, and re-planning and re-execution. Thus,
we need a real-time adaptive trajectory planning method
for human-symbiotic mobile robots. To achieve this, the
path-planning method should have real-time adaptability,
predict human movement, generate acceleration and decel-
eration paths, and work at any passing angles.

In this study, we focused on waypoint navigation meth-
ods, which are easy to implement and have expandability.
They have been applied as global path planning methods to
autonomous vehicles [20] and autonomous unmanned aerial
vehicles [21]. Based on this, we newly developed a trajectory-
planning method that includes a real-time waypoint setting
algorithm that considers the relative velocities of robots and
humans based on prediction, generation of multiple trajectory
candidates with arbitrary velocity vectors, and cost-effective
trajectory selection, suitable for real-time local trajectory
planning. We call this new method ‘Dynamic Waypoint Nav-
igation (DWN).’ We evaluated DWN through simulation and
an real-robot experiment and confirmed that DWN is effec-
tive in planning trajectories in dynamic situations.

II. IMPORTANCE OF (MODEL-BASED) DWN
We consider a situation in which a human and robot are
interfering with each other; when the robot changes its path,
the human also avoids it in the same direction as the robot.
As a reaction, conventional path-planning methods make the
robot move to the left path, e.g., [12], but it would be more
efficient to ‘accelerate’ and pass on the right path. The robot
can execute more appropriate and efficient movements if
the path-planning method can output an appropriate velocity
vector depending on the situation. As stated above, current
autonomousmobile robots do not ‘intentionally’ accelerate in
a situation where the robot passes humans due to the conser-
vative idea that the robot is inherently dangerous to humans
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and should unilaterally avoid them [22]. On the other hand,
DWN can plan multiple trajectories with different speeds and
paths.

The higher the complexity of the trajectory planning, the
higher the computational cost [23]. When the robot moves in
the real world and interacts with humans, the real-time prop-
erty of trajectory planning is vital. Thus, DWN guarantees a
time delay within an acceptable range. The real world con-
stantly changes, so we cannot wait for the completion of the
path planning of the robot. DWN can handle the time delay
by a rapid control loop of (re-)execution and (re-)planning.

In sum, current methods lack adaptability to various pass-
ing scenarios, a variety of passing trajectories including an
acceleration path, or immediacy in planning time, which
require human-aware navigation. Thus, this study aims to
develop a trajectory-planning method for generating arbitrary
velocity vectors including assertive acceleration, to select a
suitable trajectory depending on the situation and to execute
real-time control so that the natural passing with a human
can be achieved without impairing the real-time property.
Another aim of this study is to seek a mode-based navigation
method with high generality and adaptability (expandability),
which would newly become one of the navigation-method
options. To end this, we will make the mathematical model
of the DWN, implement the model into the real robot, and
evaluate the DWN by using the real environments.

III. DYNAMIC WAYPOINT NAVIGATION (DWN)
As Fig. 1 shows, with DWN, the possibility of interference
between a robot and human is estimated from sensor data, and
when this interference is estimated, a trajectory that avoids
the human is planned. The DWN first generates default-
speed avoidance trajectories on the left and right of the
human (Fig. 2 (a)) then generates trajectories with acceler-
ation and deceleration (Fig. 2 (b)). Finally, it selects the best
(lowest-cost) trajectory for the robot from among the gener-
ated trajectories. Each function is explained with reference
to Figs. 2 and 3.

A. INTERFERENCE JUDGEMENT
1) DEFINITION OF PERSONAL SPACE
Psychology indicates that humans have a psychological space
called personal space (PS) where they feel psychological
pressure and discomfort when that space is intruded upon.
Humans usually move in a way that does not violate PS [24].
PS is variously defined by the distance, speed, direction
of the body, density of people, and so on. In this study,
we assumed an environment in which humans can be avoided
without worrying about the surrounding humans. Based on
this assumption, we defined the PS as a circle with a radius
of LRP and LHP. Thus, the robot searches for trajectories that
do not enter the PS critical distance LPS , which is given by

LPS = LRP + LHP. (1)

In this study, we defined as LRP = 0.5 m and LHP =
0.5 m [25].

FIGURE 2. (a) Conceptual image of calculation flow to find trajectories.
(b) Relative velocity vector determines if path needs acceleration or
deceleration.

2) INTERFERENCE JUDGEMENT (FIG. 3 (A))
The positions of the robot and a human at the current time t0
are EpRt0 =

[
xRt0 , y

R
t0

]T and EpHt0 =
[
xHt0 , y

H
t0

]T . The robot position
is estimated from a normal localization method and Kalman
filter. The human position is estimated as the relative distance
from the robot by using a laser range finder (LRF) [26]. The
positions of the robot and human at an arbitrary time t are
EpRt =

[
xRt , y

R
t
]T and EpHt =

[
xHt , y

H
t
]T . Also, the difference

between those times 1t is defined as t − t0. The current
speeds of the robot and human are EvRt0 =

[
vRxt0 , v

R
xt0

]T and

EvHt0 =
[
vHxt0 , v

H
xt0

]T . These positions at a time t can be also
expressed as follows.

EpRt =
[
xRt
yRt

]
=

[
xRt0
yRt0

]
+

[
vRxt0
vRyt0

]
1t. (2)

EpHt =
[
xHt
yHt

]
=

[
xHt0
yHt0

]
+

[
vHxt0
vHyt0

]
1t. (3)

Next, the distance between the robot and human at t is
calculated. We use a human-movement prediction model
in which the human keeps a current velocity vector for
simplification, but we can apply any prediction models,
e.g., [27], [28]. First, the relative velocity vector EvHRt0 (robot
with respect to human) and relative position vector EpHRt0 at t0
are simply expressed as

EvHRt0 =

[
vHRxt0
vHRyt0

]
=

[
vRxt0 − v

H
xt0

vRyt0 − v
H
yt0

]
. (4)

EpHRt0 =

[
xHRt0
yHRt0

]
=

[
xRt0 − x

H
t0

yRt0 − y
H
t0

]
. (5)

Thus, the relative position vector EpHRt at t is expressed as

EpHRt =

[
xHRt0
yHRt0

]
+

[
vHRxt0
vHRyt0

]
1t. (6)
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FIGURE 3. Calculation flow to find waypoints for default speed trajectory. (b) and (c): repeating search and correction to find waypoints where robot
and human do not interfere with each other. This is an example of default-speed avoidance trajectory on right of human.

The square of the distance between the robot and human
at t , |EpHRt |

2
is expressed as

|EpHRt |
2
=

(
xHRt0 + v

HR
xt01t

)2
+

(
yHRt0 + v

HR
xt01t

)2
. (7)

Organizing (7) for 1t gives (8).

a1t2 + b1t + c = 0, (8)

where, a= vHR2xt0 +v
HR2
xt0 b= 2

(
xHRt0 vHRxt0 + y

HR
t0 vHRxt0

)
c= xHR2t0 +

yHR2t0 − |Ep
HR
t |

2
. This means that no interference occurs when∣∣∣EpHRt ∣∣∣ > LPS . On the other hand, interference occurs when∣∣∣EpHRt ∣∣∣ ≤ LPS . When interference occurs,1t can be obtained

from (8) and is defined as the interference time tIF . The EpRtIF
and EpHtIF obtained by substituting obtained tIF into (2) and (3)
are the respective interference positions.

B. GENERATION OF SET OF WAYPOINTS (WP)
1) TRAJECTORY WITH DEFAULT SPEED (FIGS. 3 (B)–(D))
On the basis of EpHtIF determined by the interference judge-
ment, three waypoints (wp1,wp2,wp3) for interference avoid-
ance are defined, and each point is expressed as

EpRtwp1 =
[
xRtwp1 , y

R
twp1

]T
EpRtwp2 =

[
xRtwp2 , y

R
twp2

]T
EpRtwp3 =

[
xRtwp3 , y

R
twp3

]T
. (9)

We denote the difference between the robot’s current posi-
tion EpRt0 and goal EpRG =

[
xRG, y

R
G

]T as EpRCtoG, which is given
by

EpRCtoG =

[
xRG − x

R
t0

yRG − y
R
G

]
. (10)

At this time, the coordinates of wp1–wp3 are obtained
by (11)–(13), respectively. wp2 is set at a point separated by
LPS just beside the human, and wp1 and wp3 are placed on
the line passing wp2 that is parallel to the moving direction of
the robot. This setting can guarantee human avoidance.

EpRtwp1 = Ep
R
twp2 − LPS

EpRCtoG∣∣∣EpRCtoG∣∣∣ (11)

EpRtwp2 = Ep
H
tIF +

[
yRG − y

R
t0

xRt0 − x
R
G

]
·

LPS∣∣∣EpRCtoG∣∣∣ (12)

EpRtwp3 = Ep
R
twp2 + LRP

EpRCtoG∣∣∣EpRCtoG∣∣∣ (13)

The time twp2 when the robot reaches wp2 is given by∣∣∣EpRtwp1 − EpRt0 ∣∣∣+ LPS = EvRt0 (twp2 − t0) (14)

At twp2, the human has already moved from EpHtIF ; thus,
the robot and human will interfere with each other again,
as shown in Fig. 3 (c). Thus, we set tIF = twp2, and the robot
searches for wp2 so that the robot does not interfere with
humans (tIF = twp2) while shifting wp2 repeatedly.

2) TRAJECTORY WITH ACCELERATION AND DECELERATION
(FIG. 4)
The acceleration and deceleration trajectories are calculated
by shifting wpi and the speed required to reach wpi with the
distance d . As Fig. 4 shows, the robot shifts EpHtwp2 at the

passing time in the direction of velocity EvHt0 . When the shift
is α × d , where α ∈ Z , 6=0, we denote the shifted point as
EpHtwp2(αd)

. Thus, EpHtwp2(αd)
and EpRtwp2(αd)

are obtained by (15)

and (16), respectively. At this time, wp1 and wp3 can be
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FIGURE 4. Calculation flow to find waypoints for acceleration/
deceleration trajectories. They are examples of shift
distance = +1d and −1d .

obtained from (17) and (18), respectively.

EpHtwp2(αd)
= EpHtwp2 ±

EvHt0∣∣∣EvHt0 ∣∣∣d (15)

EpRtwp2(αd)
= EpHtwp2(αd)

+

[
yRG − y

R
t0

xRt0 − x
R
G

]
·

LPS∣∣∣EpRCtoG∣∣∣ (16)

EpRtwp1(αd)
= EpRtwp2(αd)

− LPS
EpRCtoG∣∣∣EpRCtoG∣∣∣ (17)

EpRtwp3(αd)
= EpRtwp2(αd)

+ LPS
EpRCtoG∣∣∣EpRCtoG∣∣∣ (18)

Next, the passing times twp2(αd) and twp1(αd) for the robot
to reach wp1(αd) are calculated, and the velocity EvRtwp1(αd)

required for the robot to finally pass through is determined.

twp2(αd) =
EpHtwp2(αd)

− EpHt0∣∣∣EvHt0 ∣∣∣ (19)

FIGURE 5. Trajectory re-planning according to change of human behavior.

twp1(αd) = twp2(αd) −
EpRtwp2(αd)

− EpRtwp1(αd)∣∣∣EvRt0 ∣∣∣ (20)

EvRtwp1(αd)
=

EpRtwp1(αd)
− EpRt0

twp1(αd) − t0
(21)

From the viewpoint of safety and security, when the robot
passes at the closest approach to the human, that is, between
wp1 andwp3, it passes at a default speed. The robot thus accel-
erates or decelerates from the current location to wp1. Basi-
cally, after wp2, the robot aims for the goal, and if the robot
needs to return to the original path, we can set an additional
waypoint wp4 on the original trajectory. The robot iteratively
executes the above calculation under the constraints of its
limited motion (e.g., dynamics and size) and environments
(e.g., walls and obstacles) [29]. We derive a total of eight
types of trajectories, e.g., (a) right path-default speed, (b) left
path-default speed, (c) default (straight) path with acceler-
ation, (d) default (straight) path with deceleration, (e) right
path acceleration, (f) right path with deceleration, (g) left path
with acceleration, and (h) left path with deceleration.

As shown in Fig. 5, when the human suddenly changed his
or her trajectory, the robot rapidly re-checks the interference.
If they are interfering with each other, the robot re-plans the
trajectory and quickly avoids the human.

C. DECISION OF TRAJECTORY BY COST CALCULATION
In this study, the behavior of the robot keeping a straight
path at a constant speed was regarded as the lowest-cost
(best) behavior. The acceleration or deceleration in the mov-
ing direction increases the cost. In addition, the larger the
avoidance, the higher the cost. Thus, the movement of the
robot in the lateral direction is also used as the cost-increasing
parameter [30]. We denote EvGt and EvGt0 as a velocity vector
in the movement direction of the robot at t and t0 (default
speed), respectively, EvDt and EvDt−1 as a velocity vector in the
direction of avoidance of the robot at t and t − 1 (the time
interval is 50 ms), respectively. The notation EG is the energy
in the movement direction, EL is the energy in the direction of
avoidance, and A and B are the weighting factors. We define
the summation of the integration of the velocity difference
from the start to goal in each direction as the trajectory
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FIGURE 6. Reduction of calculation by heuristics.

cost ET , and it is given by

ET = EG+EL = A
∫ End

Start

∣∣∣Ev2Gt − Ev2Gt0 ∣∣∣ dt
+B

∫ End

Start

∣∣∣Ev2Dt − Ev2Dt−1∣∣∣ dt (22)

In the study, we set A = B = 1 (not weightened).

D. REAL-TIME ROBOT CONTROL
We need to consider sensing preciseness, calculation latency,
and uncertainty of human behavior. DWN repeatedly gen-
erates several trajectories, so if the search range and search
resolution are not set appropriately, the amount of calculation
becomes enormous. We thus set the upper limit time for a
robot-behavior generation to 0.5 s, according to a previous
study [26], and reduced calculation time by applying the
following heuristics.
• We assume that d shown in (15) is a minimum value
that a human can recognize the difference in the robot
trajectory, and set it to 10 cm (Fig. 2 (b)).

• Trajectories where the robot decelerates (accelerates)
and passes in the front (rear) of the human (Fig. 6 (a))
and trajectories where the robot sticks to the human
by excessive acceleration or deceleration (Fig. 6 (b))
obviously increase the cost, so the robot omits these
trajectories.

As a result of applying these heuristics, the total calculation
time required for the trajectory plan could be kept within 0.5 s.
In addition, interference judgment as monitoring of environ-
mental change was carried out at 1-s of intervals. DWN can
cope with a reduction in computational complexity and quick
re-planning. In addition to the above process, we consider
the time delay of calculation beforehand (0.5 s). Specifically,
we shift the time to 0.5 s in advance and generate trajectories.
We also implement a controller that can take into account
the dynamics of the robot. The robot smoothly connects each
waypoint by using a spline curved interpolation method so as
not to overshoot the planned trajectory.

IV. EXPERIMENTS
Again, the purpose of this study is to investigate the feasibility
of DWN through simulation and real-robot experiments, not
to compare other existing methods, since DWN’s features
are already explained in the previous sections. This study

FIGURE 7. Simulation results from scenario 1.

FIGURE 8. Simulation results from scenario 2.

was approved by Ethics Review Committee on Research with
Human Subjects of Waseda University. Written informed
consent was obtained from each participant.

A. SIMULATION VALIDATION
1) SIMULATION CONDITIONS
We developed a simulator using MATLAB. We set
an 8 × 8 m field with one robot and a human. The initial
velocity of both the robot and human was 0.4 m/s or 0.7 m/s,
and several patterns of the human initial position and moving
directions were simulated. The passing scenarios included
opposite, diagonal, and right-angle directions, and directional
changes in the middle.

2) SIMULATION RESULTS
We present three examples of the simulation results. Figs. 7–9
illustrate (a) the planning trajectories including eight types of
trajectories, (b) selected trajectory, and (c) cost value ET of
the trajectory candidates. The paths that were not generated
due to kinematic and dynamic constraints have no values in
the table. We found from Fig. 7 that DWN selected ‘‘right
acceleration (0.28)’’ as the minimum cost. We also found
that DWN selected ‘‘left (default speed) (0.37)’’ (Fig. 8) and
that it selected ‘‘deceleration (default path) (0.68)’’ (Fig. 9).
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FIGURE 9. Simulation results from scenario 3.

FIGURE 10. Specifications of mobile robot.

TABLE 1. Experimental conditions.

We confirmed that DWN could generate several trajectories
and select the minimum cost trajectory with acceleration and
deceleration depending on the situation.

B. REAL-ROBOT EXPERIMENT
1) EXPERIMENTAL CONDITIONS
We developed an autonomous mobile robot, as shown in
Fig. 10. The robot has omnidirectional wheels and two
6-degrees-of-freedom (DOF) manipulators with torque and
angle sensors. The robot also has an LRF and Kinect v2
(RGB-D sensor). We set a 10× 10 m field with one robot and
a human. The experimental conditions are listed in Table 1.
We set the walking speed of humans as a constant 0.4 m/s.
The initial velocity of the robot was 0.4 m/s, and four patterns
of the human’s initial position and moving directions were

FIGURE 11. Passing in straight opposite direction.

simulated, including straight opposite, diagonal, and right-
angle directions, and changes in the middle. Human’s initial
positions were set to the ones so that the travel distance to a
collision point for both the robot and human was around 3 m.

2) EXPERIMENTAL RESULTS
We present four examples of the experimental results.
Figs. 11–14 indicate (a) scenes of passing situation,
(b) planned trajectory of robot and actual trajectories of robot
and human, (c) ET of the trajectory candidate, for passing in
the straight opposite direction (Fig. 11), passing in the diag-
onal opposite direction (Fig. 12), passing in the right-angle
direction (Fig. 13), and change of human trajectory from the
straight opposite direction to a diagonal direction (Fig. 14).
The dots to indicate the actual trajectory were plotted
every 1 second.

We found from Fig. 11 that DWN selected ‘‘right accel-
eration’’ which had a minimum cost of 0.69. The avoidance
speed was accelerated from 0.4 to 0.43 m/s. We also found
that DWN selected ‘‘right (default speed) (0.28)’’ (Fig. 12)
and that it selected ‘‘right (default speed) (1.01)’’ (Fig. 13).
In Fig. 13 (b), during a period just after starting walking,
the velocity of humans continues to increase, so the robot
re-planned the trajectory to avoid the human more laterally.
We confirmed that DWN could generate several trajectories
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FIGURE 12. Passing in diagonal opposite direction.

FIGURE 13. Passing in right-angle direction.

and select the minimum cost trajectory with acceleration and
deceleration depending on the situation.

FIGURE 14. Change of human trajectory from straight opposite direction
to diagonal direction.

We found fromFig. 14 that theDWN selected ‘‘left (default
speed) (0.11)’’ and then ‘‘right (default speed) (0.86).’’
Figs. 14 (a-1) and (a-2) show that the robot recognized that the
humanwas going straight from the opposite direction and first
selected the trajectory for left avoidance and started to move
to that trajectory. However, the robot immediately recognized
that interference would occur since the human significantly
changed her movement direction to the left (Fig. 14 (a-3)).
As shown in Figs. 14 (a-4, 5, and 6), the robot selected
the right avoidance trajectory in a short time and executed
it to avoid the human without collision. We confirmed that
the robot executed trajectory planning in real-time, and high
response movement was possible. Specifically, all actual cal-
culation times were less than 0.45 s at the distance of 6.0 m
and less than 0.1 s at the distance of 1.0 m.

V. DISCUSSION
A. EXPANDABILITY TO ACTIVE INDUCEMENT STRATEGY
The passive avoidance strategy (PAS), where the robot finds
a collision-free path, does not allow the robot to coordinate
with humans. This will cause a freezing problem [30]. Thus,
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we previously proposed an active inducement strategy (AIS)
to collaboratively move by conveying the intent of the robot
to the human by using light signals, projection [32], gesture,
voice, and physical touch [26], [33]. This AIS enables the
robot to execute proximal navigation and providemore robust
and efficient navigation in human-crowded spaces. We con-
firmed through experiments using an actual robot and humans
that the AIS enabled the robot to move more efficiently and
naturally by using inducement methods (e.g., path indication,
voice interaction, and notifying touch) according to the situ-
ations (e.g., space attribute, available width, and the number
of humans) [26]. DWN can easily generate an inducement
trajectory so that the robot indicates its intent to pass near
a human by setting waypoints that are shifted to the human
side. We will make a DWN-based trajectory planning suited
to AIS in the future.

B. FUTURE IMPROVEMENT
In this feasibility study, we demonstrated only the adaptive
trajectory planning to avoid one person due to the limitation
of the pages, but we have already confirmed the DWN’s
expandability to multiple-human avoidance in the simulation.
Specifically, the robot continuously executes path planning
one by one by considering avoiding chattering behaviors
among humans and a deadlock state and reducing the calcu-
lation cost. The details of the mathematical model and imple-
mentation in a real robot will be reported in the future paper.
We will apply more advanced methodologies in localization,
human velocity-vector estimation, as well as real-time cal-
culation algorithm, and construct a human-aware navigation
system with DWN as a core.

VI. CONCLUSION AND FUTURE WORKS
In this study, we newly proposed Dynamic Waypoint Navi-
gation (DWN) for human-symbiotic mobile robots. Specif-
ically, DWN predicts human-robot path interference, and
the time and position of the interference then dynamically
designated several waypoints considering the time delay of
both calculation time and robot travel time. DWN generates
several trajectories by combining different speeds (default,
acceleration, and deceleration) and paths (default, right, and
left) and selects the best trajectory in terms of an interference-
avoidance energy cost. In the simulation, we confirmed that
the robot could select the trajectory with the minimum cost
from several trajectory candidates, and in the real-robot
experiment, we confirmed that DWN could generate trajecto-
ries in real-time, could select the lowest-cost behavior, and re-
plan and re-execute. For the field of robot navigation, DWN
would contribute to providing a new option that has a model-
based simple but adaptive and expandable algorithm. DWN
could be useful in industrial applications where are difficult to
adopt data-driven approaches, e.g., deep learning, and need to
combine other planning modules, such as monitoring, visual
tracking, and precise manipulation.

In the future, we will plan to extend DWN to cope with sce-
narios in which multiple dynamic obstacles, e.g., humans in

a station, exist and/or they move faster. Moreover, we further
investigate by introducing DWN into other mobile platforms
such as electric wheelchairs.
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