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ABSTRACT This paper discusses how to integrate a widely used, inexpensive laser range finder (LRF),
the Hokuyo URG-04LX-UG01, with an easy-to-use Arduino microcontroller, into a science, technology,
engineering, and mathematics (STEM) program for mechanical engineering students. The LRF has been
used in several autonomous robots, in conjunction with laptops and desktop computers, due to its low cost.
In addition, Arduino microcontrollers are suitable for educational purposes due to their open-source design
and cost-effectiveness. Thus, combining the Hokuyo LRFwith Arduinomicrocontrollers seems to be the best
option to teach mechatronics to undergraduate students majoring in non-electrical and electronic engineering
subjects, such as mechanical engineering. However, they have seldom been integrated for use in STEM
education. Here, we built an autonomous robot integrating these devices and designed a course that teaches
several aspects of mechatronics, including control engineering, programming, and embedded systems. The
course for mechanical engineering students is 10 weeks in duration, easy to implement, and has a high
cost-benefit ratio given the low cost of the robot (∼1,350 USD). The results of a questionnaire given to
the student participants upon completion of the course indicated that the course enhanced their knowledge,
motivation, interest, and satisfaction. Therefore, we believe that this report will be helpful in providing a
STEM education framework that allows students to acquire the basic skills and knowledge necessary to
solve real-world problems.

INDEX TERMS Course assessment, course design, higher education, LiDAR, LRF, microcontroller, mobile
robot, STEM, undergraduate.

I. INTRODUCTION
Science, technology, engineering, and mathematics (STEM)
is a major focus in Japan, and the Ministry of Education,
Culture, Sports, Science and Technology requires all ele-
mentary schools to provide technical education, such as
computer programming and electronics. Recently, the use of
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the arts as an enhancer of the educational experience has been
incorporated into STEM education. The main objective of
STEM education is to develop students’ skills in autonomous
learning, innovation, decision-making, and problem-solving
through experience. In the context of engineering, STEM
education should increase students’ understanding of how
things work and improve their use of technologies [1].
However, university graduates have reported that some
engineering science courses are not useful, due to their
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lack of applicability to professions outside the engineering
sciences [2].

In mechanical engineering, the gap between theory and
practice often seems wider than in other engineering fields,
because traditional mechanical engineering education is
based around the study of dynamics, i.e., mechanics, mate-
rials, fluid, and thermodynamics. The complexities of the
instrumentation and control systems require interdisciplinary
knowledge (e.g., [3]) of electrical engineering, electronics,
and information technology; however, these areas are seldom
covered in any depth in mechanical engineering curriculums.
Thus, mechanical engineering education has often fallen
below expectations, despite clear demand, leaving mechan-
ical engineering graduates at a considerable disadvantage in
the job market. Especially in Japan, it is not uncommon that
undergraduate students do not learn computer programming
until they join labs for their graduation research in standard
mechanical engineering departments.

Mechanical engineering education is traditionally based
on classroom learning, with experimental and practical
teaching conducted in groups. Self-education, including trial
and error learning, has presented challenges due to safety
concerns. In contrast, project-based learning (PBL) has been
encouraged in engineering fields [4]. Furthermore, case
studies can improve students’ critical thinking, problem-
solving, and higher-order thinking skills, as well as their
conceptual understanding and motivation to learn [5], [6].
It has been reported that microcontrollers are useful tools
for PBL [7]. Microcontroller-based devices and appliances
are important in all aspects of everyday human life and in
automated industries. The recently developed, inexpensive,
open-source Arduinomicrocontrollers (Arduino, Turin, Italy)
are useful in many laboratory environments [8] and for
prototyping [9]. In addition to their low cost, these microcon-
trollers can be used by individuals with modest programming
and electronics skills, such as mechanical engineering
students.

Robots can help achieve learning objectives [10] and are
suitable for STEM education [11]. In particular, mobile
robots are important for PBL in the context of undergraduate
education, as they have become more commonplace in
commercial and industrial settings, including military and
security environments. Moreover, the core technologies of
mobile robots are the same as those of autonomous cars [12],
as they are based on laser range finders (LRFs) [13]–[15].
LRFs have been used in a broad range of applications, includ-
ing those involving localization, obstacle avoidance, range
detection, pattern detection, and mapping [16]. Although
LRFs are generally costly, recently, inexpensive LRFs have
been used in autonomous robots. One inexpensive LRF,
the URG-04LX-UG01 (Hokuyo Automatic, Tokyo, Japan),
is now the most popular among robot designers, due to
its low cost of about 1,000 USD, compactness, and low
weight [17]. The Hokuyo URG-04LX-UG01 also exhibits
a repeatability that is comparable to the LMS 200 (Sick,
Waldkirch, Germany), which has a price of 6,000 USD [18].

Combining the Hokuyo LRF and Arduino boards provides
an optimal system for building inexpensive robots for
educational purposes; however, integration of these devices
has not been widely reported.

This paper discusses how to use the Hokuyo LRF, URG-
04LX-UG01, in conjunction with Arduino microcontrollers,
to build an inexpensive autonomous robot. We show how
this can be applied to mechanical engineering education
for undergraduates as a 10-week course. The course mate-
rials and programming codes are available on GitHub
( https://github.com/yuki-ueyama/NDA-Mobile-Robot) and
the course is easy to implement. Our questionnaire assess-
ment showed the robot build project and the associated
program were well received by mechanical engineering
students.

II. RELATED WORK
Given that robotics offer enormous potential as a learning
tool [19], there have been a number of approaches to bring
robots into the forefront of education curriculums. This
chapter reviews the literature on educational robotics and
course development.

A. EDUCATIONAL ROBOTICS
Social robotics is a major component of educational robotics.
Social robots can serve as tutors or peer learners. They
enhance cognitive and affective outcomes; they are as good
as human tutors in certain situations [20]. For example, they
have been used for pre-tertiary education (e.g., [21]–[23]) and
also as a tool for improving the social skills of children with
autism spectrum disorder [24]. However, there are limitations
with respect to successfully applying social robots to real-
life classroom settings, with ethical and safety concerns as
ongoing issues [25].

On the other hand, it has been suggested that robotics
can easily facilitate discussions in STEM education
[26, 27], including computational thinking [28]. This is due
mainly to the difference between robots and computers in
aspects of full embodiment, as it is much more appealing to
interact with robots than with software. With the objective
of introducing robots to STEM education, several types of
robots have been developed for both commercial and non-
commercial purposes [29]–[32]. LEGOMindstorms (LEGO,
Billund, Denmark) may be one of the most successful
commercial robot platforms for education, given its ability
to target a wide audience ranging in age from elementary
to undergraduate students. There have been many reports
about LEGOMindstorms as an effective tool for engineering
education including data acquisition, and real-time control
system design [33]. It can easily fulfill several STEM
requirements at the undergraduate and postgraduate academic
levels.

Building robot kits with structured materials increases
students’ awareness of the robotization of machines [34].
However, unfortunately, such robot kits do not usually
allow for, nor support, modifications to their electrical
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and mechanical systems. Thus, having to use the original
programming tools and user interfaces induces a lack of
versatility and often limits education curriculums that use
such embedded systems, even though there are some benefits
in its ease-of-use for novice learners [35].

Versatility and compatibility are necessary to support
long-term learning and a shift to mainstream industrial
requirements [36]. As such, open-source design has become
increasing popular as one of the most important concepts in
development robotics platforms for higher education [29].
The open-source concept provides better compatibility with
standard programming environments and greater flexibility
regarding hardware modifications. Moreover, teachers have
better accessibility to various tools for exploring and teaching
a wide range of topics such as mechanics, electronics, and
software. As an example, the TurtleBot series (Robotis,
Seoul, Korea) of commercial robots have adopted an
open-source design [31].

Although numerous educational robots have been devel-
oped and some of them are available commercially, questions
remain as to how an educator goes about choosing the
best robotic tool from several candidates to achieve an
educational purpose. A previous study proposed a framework
to support the development and evaluation of educational
robots targeted for use in formal education settings [37].
However, the costs of the educational robots have remained
the greatest barrier to decidingwhether to introduce them and,
thus, have limited widespread adoption in various educational
settings and objectives [29], [30], [38], [39].

B. COURSE DEVELOPMENT
Robotics is a multidisciplinary yield that includes mechanical
engineering, electrical and electronic engineering, and com-
puter science. Specifically, it is an aggregate of three core
knowledge areas [40]: control engineering, programming,
and electronics including embedded systems. These core
areas are directly related to the design of STEM courses in
mechanical engineering departments.

Control engineering is an area of knowledge with signif-
icant mathematical content, including differential equations,
linear algebra, differential geometry, and complex variables,
among others, and the subject matter tends to be difficult
for most students [41]. Thus, it has been reported that
experimental and practical-based teachings aremore effective
than classroom-based ones to gain a better understanding
of the theoretical aspects [42]. Several educational robotics
tools have been developed to address these educational
needs, with the expectation of motivating students more
effectively [43], [44].

Previous studies have reported that the most frequently
cited skills necessary for learning programming are related
to problem solving and mathematical ability, followed by
motivation and engagement, given the difficulties in learning
the syntax of programming languages [45]. Educational
robots can be used as alternative tools to embody com-
putational concepts in programming education [32]. Robot

programming is effective in the acquisition of programming
concepts, and it can enhance students’ descriptive abstraction
and motivation more effectively [30], [46]. In particular,
several studies have suggested that the learning-by-teaching
methodology through games and competitions can be used to
promote computer science, including programming starting
in the primary years and continuing through undergraduate
studies [47]–[49].

A knowledge of embedded systems could be acquired
through robot prototyping and construction, and fitted to an
adaptation of PBL [7]. Robotics education including proto-
typing has had a significant impact on students’ academic
outcomes with respect to incorporating interdisciplinary
knowledge and instilling the technical and professional skills
required in pursuing a successful career [10]. The curriculum
is organized such that the students can systematically solve
real-world problems.

Most of the previous studies have focused mainly on
solution proposal and evaluation of individual problems.
On the other hand, curriculum content and assessment have
had a broader focus [50].

C. MOTIVATION FOR THIS WORK
Cost has been the most important factor limiting the
introduction of robots into STEM education. The integration
of the Arduino microcontrollers and Hokuyo LRF has not
been widely reported, although they are known to be useful
tools with respect to their price point and performance. Yet,
there have been few reports addressing the effectiveness of
curriculum content in STEM education. Thus, we consider
the following two questions as the motivation for this
research: 1) Is it possible to integrate the Arduino micro-
controllers and the LRF as mobile robots for implementation
in undergraduate education curriculums? and 2) Does the
combination have educational effects?

To answer these questions, this work was conducted as
part of an undergraduate education course in the Department
of Mechanical Engineering at our institution, the National
Defense Academy of Japan (NDA). We developed the course
using an inexpensive autonomous mobile robot, based on
Arduino microcontrollers and Hokuyo LRFs. After the end of
the course, we examined the outcomes in terms of technical
knowledge, motivation, interest, and satisfaction using a
questionnaire. The course materials and codes are freely
available online. It is our hope that others in the field will find
the information helpful for designingmechanical engineering
curriculums.

III. MATERIALS AND METHODS
A. INEXPENSIVE AUTONOMOUS MOBILE ROBOT
The inexpensive autonomous mobile robot includes the
Hokuyo LRF, located on a three-dimensional (3D)-printed
acrylonitrile butadiene styrene (ABS) plate, assembled on an
Arduino microcontroller-based robotic platform (Omnirover
3WD; Vstone, Osaka, Japan; Fig. 1a-b). The robot was
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FIGURE 1. Inexpensive autonomous mobile robot: (a) overview and (b)
three-dimensional view. (c) Twelve components of the robot. LRF: laser
range finder; ABS: acrylonitrile butadiene styrene; USB: universal serial
bus.

TABLE 1. List of autonomous mobile robot components and prices.

composed of 12 parts (Fig. 1c). The parts were assembled
using hex spacers and pan head screws. The robotic platform
is equipped with three omni-wheels and a control board
(V-duino VS-RC202; Vstone) including a microcontroller
(ESP-WROOM-02; Espressif Systems, Shanghai, China).

The robotic platform costs 120 USD (TABLE 1), but it is
not too inexpensive compared to other successfully used
low-cost mobile robot platforms costing 125 USD (under
an exchange ratio of 1 USD = 0.8 GBP) [29] and another
of less than 25 USD [39]. In our design, the board is
compatible with Arduino and does not depend on a specific
robotic platform. The program codes can be written using
the Arduino IDE development tool. Thus, our source codes
are editable and easy to modify for use with other Arduino
microcontrollers. The robot can move in all directions via
the three omni-wheels actuated by servo motors and the
control board. The above specification is not essential; the
robot can be substituted with others that have Arduino
microcontrollers.

The Hokuyo LRF is designed for ease of use as the
power source; data transfer occurs through a USB interface.
Although direct connection of this product with a laptop
or desktop computer is straightforward [51], communication
between the Hokuyo LRF and Arduino microcontrollers
has not been widely reported because Arduino boards do
not have a USB interface for external inputs, excluding
communication with personal computers. Thus, we used a
USB host driver (VDIP1; FTDI, Glasgow, UK) to convert
the output data of the LRF to a serial communication
protocol, i.e., UART, which is compatible with Arduino
microcontrollers (Fig. 2a). The connections were wired on
a breadboard using jumper wires (Fig. 2b-c). We confirmed
that this configuration was also valid for other Arduino
microcontrollers. Note that the latest firmware of the USB
host driver VDIP1 may not work properly; if this occurs, the
firmware can be downgraded to version 3.64, which has been
confirmed to work well.

The total cost of each robot was almost 1,350 USD,
including the Ni-MH AA batteries but not the battery charger
(TABLE 1). In our configuration, the robot operated con-
tinuously for about 60 min using battery power. A previous
study reported that 3,300 USD was required to construct
an inexpensive robot for student education applications,
excluding the power supply, motor, and sensors [38]. Our
setup was more cost-effective than other autonomous robot
construction projects, although 80% of the total cost was
attributable to the LRF.

B. COURSE DESIGN
We developed a course enabling mechanical engineering
students to understand basic concepts pertaining to embedded
systems and mobile robotics and then had them apply these
concepts in practice. The course emphasizes practical, rather
than theoretical application of mechatronics technology to
solve engineering problems, in accordance with a past
report [52], with an overall aim of integrating actuators, sen-
sors, controls, and embedded systems into a PBL framework
to help students learn about these technologies over a short
period.

The course was designed for students majoring in mechan-
ical engineering, most of whom had not attended any classes
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FIGURE 2. Communication between the LRF and microcontroller.
(a) Schematic diagram of the communication pathways between the LRF
and microcontroller. UART: universal asynchronous receiver/transmitter.
(b) Actual wire connections (top) and the schematic diagram (bottom)
between the LRF (via the USB host driover on the breadboard) and the
microcontroller.

in electrical, electronic, or computer engineering (including
computer programming), but they had learned the basics of
control engineering and mechanical dynamics via classroom
lectures. The course goals were to construct an algorithm,
experience easy electronic work, and obtain an understanding
of feedforward and feedback controls. These goals were
introduced at different points during the course, targeted at
the development of an autonomous control system. After
the course, we administered a questionnaire to assess the
effects.

The students were required to design and develop an
autonomous mobile robot system. This necessitated an
understanding of the technological basis for unmanned
mobile vehicles and autonomous driving systems. Course
components included embedded programming, as well as
learning about instrumentation and control techniques for
LRFs. Alternating course design and implementation is
desirable [53]. Our course was 10 weeks in duration, as stated
above, with one 90-min class held once per week (Fig. 3a).
From the first through the sixth week, the course was
provided as a lecture that focused on basic programming
practices and robot control systems. From the seventh week,
the students started a project and prepared their presentations

FIGURE 3. Course program: (a) learning materials, (b) example obstacles
requiring the coding of feedforward and feedback controls for
circumvention with a robot (Supplementary Material S1.mp4), and
(c) project work to develop the autonomous control system
(supplementary material S2.mp4).

under the supervision of at least one tutor. However, the
students were given laboratory access to practice their skills
and enhance their understanding for successful completion
of the final project. The difficulty of the course could
be modified by adjusting the class timings. The learning
objectives and content of each class were as follows:

Week 1: Course objectives. The first course lec-
ture introduces its aims and the learning materials.
An overview of embedded systems using microcon-
trollers is provided, along with basic coding instruc-
tions regarding how to move a mobile robot.
Weeks 2–3: Embedded programming. Embedded pro-
gramming based on the Arduino microcontroller is
taught in lecture format. Topics covered include
basic computer programming concepts, including con-
ditional execution (i.e., IF and ELSE statements),
iterative execution (i.e., FOR and WHILE statements),
functions, and arrays. The students are required to input
sample code by themselves, to develop their coding
skills.
Week 4: Servo motors. The students are required to con-
trol servo motors using the programming techniques
learned in the previous lessons. Then, they learn about
the kinematics of the omni-wheel robot andmust create
feedforward control code to control the robot as it
circles an obstacle (Fig. 3b).
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Weeks 5–6: Feedback control using an LRF. The
students learn about the mechanisms underlying the
LRFs used in autonomous robots and cars and create
code for feedback control of their robot using an
LRF. They are also required to create code for the
Arduino microcontroller allowing acquisition of sensor
information by the LRF, and then embed it in the robot.
The feedback control code should enable the robot to
circle an obstacle, similar to the week 4 task. Finally,
the students represent their algorithm in flowchart
form.
Weeks 7–8: Project work. The teacher provides each
student with a project, which requires the design and
development of a control system to navigate a course
with several obstacles (Fig. 3c).
Week 9: Presentation Preparation. The Students Pre-
pare a Presentation to Summarize Their Ideas and
Results
Week 10: Presentation and evaluation. Each student
presents their project, including a demonstration of
their robot navigating the course via the developed
control system.

We have offered this program to fourth-year mechanical
engineering students at NDA since 2019. The students at
NDA are required to achieve both academic and military
programs. The academic program is equivalent to a standard
four-year university, and the students belong to a department
from their second year after liberal studies in their first year.
There is no difference in the academic curriculum of the
mechanical engineering department between NDA and other
typical universities in Japan.

C. PARTICIPANTS
In 2021, our course was attended and completed by nine
students, making up 25% of the fourth-year students of
the mechanical engineering department, and one robot was
provided for each student. For this research, we asked all nine
students to answer a questionnaire to assess the content; the
students were all male and aged 21–24 years. Additionally,
as a control group, we also asked nine other fourth-year
students in the department at NDA, who did not attend the
course, to complete a modified questionnaire. The students
included one female, aged 21–22 years.

The questionnaires were filled out anonymously. We did
not give them any details about this survey. They agreed to
the publication of the data and provided written informed
consent. However, ethical approvals were exempt, because
our survey was in bearer form.

D. QUESTIONNAIRE ASSESSMENT
We developed a questionnaire for course assessment. The
questionnaire was composed of 21 questions to evaluate
‘‘technical knowledge,’’ ‘‘motivation and interest,’’ ‘‘impres-
sion of difficulty,’’ and ‘‘satisfaction’’ (Fig. 4, left). Notably,
the students of the control group were asked to complete
a modified questionnaire with only 14 questions for the

evaluation of ‘‘technical knowledge’’ and ‘‘motivation and
interest’’ (Fig. 5, left). The students were required to rate
their answers on a 5-point scale (in which ‘‘1’’ represented
‘‘none’’ and ‘‘5’’ represented ‘‘very much’’). The questions
were determined in accordance with a previously reported
format [33].

The answers obtained from the students in the attending
group were categorized according to the purpose of each
question: technical knowledge before (Q1, Q3, Q5, and Q6)
and after the course (Q2, Q4, Q6, and Q8), motivation and
interest before (Q9, Q11, and Q13) and after the course (Q10,
Q12, and Q14), impression of the difficulty (Q15–Q19), and
satisfaction (Q20 and Q21).

Other students in the control group were asked only two
categorical questions: technical knowledge before belonging
to the mechanical engineering department (Q1’, Q3’, Q5’,
and Q6’) and at present (Q2’, Q4’, Q6’, and Q8’), and
motivation and interest before belonging to the mechanical
engineering department (Q9’, Q11’, and Q13’) and at
present (Q10’, Q12’, and Q14’). The questions about before
belonging to the mechanical engineering department were
dummy questions, with the purpose of comparing students
in the attending and the control groups at the same academic
times (i.e., first semester of the four years).

The scores were normalized between 0 and 1 in each
category. Technical knowledge, motivation, and interest were
compared to determine whether these had improved from
before using one-tailedWilcoxon signed-rank tests. To evalu-
ate whether our course improved the scores, we compared the
students in the attending and control groups using one-tailed
Welch’s t-tests.

IV. RESULTS
We evaluated the course based on the results of the
questionnaire survey (Fig. 4, right). All students reported
that the course improved their technical knowledge score
(increase of 0.40± 0.18 [mean± standard deviation]) and the
difference was statistically significant (p = 0.002), although
their initial self-assessment was very low (0.12 ± 0.09)
(Fig. 6a). The students were highly motivated by the course
(0.69 ± 0.12) (Fig. 6b), and this improved significantly over
the course (from 0.12 ± 0.09; p = 0.002). We presumed
that the difficulty of the course was appropriate for the
students. Although they considered the course to be difficult
(0.69 ± 0.18), they felt there were no major barriers to
using the microcontroller and LRF. The students reported
no marked differences between the difficulty of the pro-
gramming of microcontrollers and desktop computers (the
mean score of Q17 was moderate; 0.50 ± 0.17) (Fig. 4,
right). Furthermore, this assessment showed a fair degree of
satisfaction (0.70 ± 0.21) (Fig. 6c). The course was clearly
considered to be beneficial (very high mean Q21 score:
0.92 ± 0.12) (Fig. 4, right), although not all students were
satisfiedwith the quality of their final project (moderate mean
Q20 score: 0.47 ± 0.38) (Fig. 4, right).
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FIGURE 4. Questionnaire administered to students who attend our course (attending group), and the results. Questions categorized
according to the assessment purpose, ‘‘technical knowledge,’’ ‘‘motivation and interest,’’ ‘‘difficulty,’’ and ‘‘satisfaction,’’ indicated in
blue, red, yellow, and green, respectively. The questions were answered on a 5-point scale, from 1 (none) to 5 (very much), and each
answer was normalized to the score from 0 to 1. In right panel, horizontal bars and lines show the mean scores of the participants and
the standard deviations (SDs), respectively. Dots show the data of individual participants.

In the control group, the students reported how their
technical knowledge, motivation, and interest had improved
from when they started, at the beginning of the program steps
(Fig. 5, right). All of them indicated significant improvement
in ‘‘technical knowledge’’ and in ‘‘motivation and interest’’
at present: 0.31 ± 0.13 from 0.04 ± 0.05 (p = 0.002) and
0.60 ± 0.15 from 0.36 ± 0.20 (p = 0.004), respectively
(Fig. 6d–e).

During same academic periods, the attending group
showed higher scores on ‘‘technical knowledge’’ (0.40 ±
0.18) than the control group (0.31 ± 0.13) (Fig. 6a–d).
The score for ‘‘motivation and interest’’ (0.69 ± 0.12) was
also higher than that of the control group (0.60 ± 0.15)
(Fig. 6b–e). However, the differences were not significant
but marginally significant (technical knowledge: p = 0.064;
motivation and interest: p = 0.086).
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FIGURE 5. Questionnaire administered to students in the control group to compare students ‘before belonging to the department’ with
the present. The students did not attend our course. The format is same as Fig. 4.

V. DISCUSSION
This paper describes an inexpensive mobile robot for applica-
tion to STEM education for mechanical engineering students
and then outlines the course for the project. We implemented
this course in our classes and evaluated it by administering
a questionnaire to the students. The students reported that
the course improved their knowledge and encouraged their
motivation and interest in the technologies of embedded
systems and robotics. The students were satisfied with the
course program. Although they experienced some difficulty
in using the computers and robots, they did not perceive
any big difference in programming the robot compared to
that required for desktop computers. On the other hand,
not all students felt satisfied with the quality of their
final project. These findings indicate that the course was
appropriate for the students in terms of difficulty. There-
fore, our robotics course improved technical knowledge,
and motivation and interest, in mechanical engineering
students.

It should be noted that, at present, it is difficult to apply
Arduino microcontrollers in conjunction with the Hokuyo
LRF to simultaneous localization and mapping (SLAM)
algorithms, due to the limited processing capacity of the

microcontrollers. A commercial mobile robot TurtleBot3
Burger (Robotis, Seoul, Korea) is equipped with several
advanced sensors, including an LRF, for a significantly lower
price (549 USD). However, it uses the Robot Operating
System (ROS) [54], which often requires the use of a
command line interface (e.g., shell script or command
prompt), which makes it more suitable for higher level
students, such as graduate/masters-level students, as opposed
to undergraduates [31]. In addition, the ROS has a crit-
ical disadvantage of incompatibility, due to its limited
adoption in industrial applications, depending on software
versions.

Raspberry Pi (Raspberry Pi Foundation, Cambridge, UK)
is well known as an inexpensive computer for educational
use, similar to the Arduino concept. Raspberry Pi achieves
multifunctionality and multitasking, allowing for advanced
processing. Thus, Raspberry Pi can be connected to multiple
LRFs, including those made by Hokuyo LRFs. However,
unlike Arduino, it requires a Linux-based operating sys-
tem (OS) such as Raspbian, and beginner users must start by
learning how to use the OS. Besides, Raspberry Pi has poor
compatibility with some electronic components, making it
challenging to work with analog circuits. Therefore, Arduino
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FIGURE 6. Course assessment and comparison with the control group. Dots, gray lines, and vertical lines show the data of individual participants,
their changes, and the SDs, respectively. In (a–b, d–e), p-values comparing two components are shown near lines bridging them. (a) Technical
knowledge before and after the course. (b) Motivation and interest in relevant technologies before and after the course. (c) Impression of the
difficulty and satisfaction with the course. (d) Technical knowledge from the past before belonging to the department and at present.
(e) Motivation and interest in relevant technologies in the past before belonging to the department and at present.

is considered suitable for beginners in programming for
simple applications such as controlling motors. We believe
the best approach for students is to start with Arduino and
then move to Raspberry Pi when they are ready for more
advanced learning.

In recent years, cheaper LRFs have been produced. To our
knowledge, the RPLIDAR-A1 (Shanghai Slamtec, Shanghai,
China) is the cheapest LRF, costing only 100 USD. This
LRF provides good performance for educational purposes,
although its durability is unclear [55]. As the Shanghai
Slamtec LRF family uses serial universal asynchronous
receiver/transmitter and USB interfaces, it could potentially
replace the Hokuyo LRF described in this paper; this would
reduce the total system cost to 365 USD, which is lower than
the TurtleBot3 Burger.

Some limitations should be noted. First, at present, it is
difficult to apply Arduino microcontrollers in conjunction
with the Hokuyo LRF for SLAM algorithms, due to the
limited processing capacity of themicrocontrollers. However,
because our robot allows for communication with other
devices via aWi-Fi connection, SLAMcould be implemented
by cooperating with an external computer.

Second, the study participants were similar in age and
gender; thus, the diversity among participants was small.
Additionally, they belonged to the same, single school, and

the sample size of our survey was small. In this regard,
a recent study reported that girls are more likely to have a
negative attitude toward mathematics than boys as they grow
up during the primary school years [56]. Thus, there may be
gender gaps in attitude toward STEM education.

Third, the small sample size was not insufficient for our
course assessment according to a post-hoc analysis. The
effect sizes were 1.7 at least. The effect size could be
computed as the statistical power at 0.998 for the one-tailed
Wilcoxon signed-rank test from a statistical power analysis
using G∗ Power [57], under an assumption of a significance
level at 0.05, and sample size of 9. The results suggest that
the small sample size was not a significant problem regarding
evaluation of skill/motivation improvements after taking the
course. However, the effect sizes between the attending and
control groups were at most 0.76. The statistical power was
low at 0.46, computed for the one-tailed Welch’s t-test under
an assumption of a significance level at 0.05, and the total
sample size of 18 (attending group: 9 students; control group:
9 students). This indicates that the sample size was not
sufficient for this comparison. A total sample size of 46
(23 students in each group) is required to satisfy the
significance level at 0.05, and statistical power of 0.80.
Thus, a further survey is required to validate the comparison
between the attending and control groups.
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VI. CONCLUSION
This paper and the associated online materials discuss how to
integrate a Hokuyo LRF with an Arduino microcontroller to
build a cost-effective autonomous mobile robot. Application
to a STEM education class for mechanical engineering
students is also described. We recommend the integration of
this LRF and this microcontroller for educational purposes.
Our materials can help teachers of mechanical engineering
departments to incorporate these devices into their courses,
thus helping students to become more enthusiastic about the
class and project work. Earlier, we proposed two research
questions regarding 1) the ability and cost-effectiveness of
integrating Arduino and Hokuyo LRFs to create an educa-
tional robot and 2) the educational effects. The first question
was solved, with online materials and codes provided for
those interested. The second question was addressed in the
questionnaire results.

In future work, we will incorporate the SLAM system into
the course program. Furthermore, we are developing another
theme for the project work. It is planned as a swarm control
application that integrates robots of multiple units with a
motion capture system.
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