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ABSTRACT Traditional model-based control methods typically require accurate system dynamics.
However, when controlling a complex non-linear system such as a quadrotor unmanned aerial vehicle
(QUAV), the dynamics are unknown and it is challenging to tune the control parameters manually. This
paper proposes a novel model-free learning method that combines the advantages of a model-based method,
i.e., sliding mode control (SMC), with the iterative learning control (ILC) method. Specifically, we selected
a designed sliding surface to obtain the expected tracking error trajectory as the learning objective, and the
system tracking errors of the angles of the QUAV constitute the state space. Then, the policy of converging
to the sliding surface is learned by an ILC algorithm. We have provided theoretical proof of the convergence,
and validated the proposed method with real-world experiments where the sine wave signals of roll and pitch
angles were tracked. The results have demonstrated the effectiveness of the method with less tracking errors
as well as faster learning speed compared with a baseline PID controller and a sliding mode controller.

INDEX TERMS UAV, sliding mode control, iterative learning control, non-linear control, model-free.

I. INTRODUCTION
In the past decades, a variety of control methods have been
developed for complex non-linear systems, e.g., Lyapunov
method for controlling voltage source converter [1] and
uncertain fractional-order systems [2], sliding model control
for controlling wireless sensor networks [3], hybrid switched
systems [4] and stochastic singular semi-Markov jump sys-
tems [5], back-stepping for controlling surface vessels [6] and
non-smooth non-linear systems [7], and Proportion Integra-
tion Differentiation (PID) for controlling DC motors [8] and
fluid transportation systems [9]. Many of the above methods
are model-based that assume the accurate system dynamics
available. However, this is not applicable for controlling
many real-time robotic systems in uncertain and dynamic
environments. The PID controller has been proved useful for
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controlling a quadrotor UAV (QUAV) in a landing task [10]
and a transportation task [11]. It is a closed-loop control
method that calculates the differences between the desired
trajectory and a measured variable, using the proportional,
integral and derivative terms of corrections based on real-time
tracking errors, without the need of an accurate systemmodel.
PID has the advantage of stability while it suffers the problem
of manual parameter tuning. Although automatic parameter
tuning can be realized by combining PID with other methods
such as reinforcement learning [12], [13], it cannot guarantee
policy convergence if there exists constant system errors.

Sliding mode control (SMC) [14] is another choice for
the control of a QUAV. One important characteristic of SMC
is that the desired system trajectory could be designed as a
sliding surface [15], so that the system trajectories are forced
into a reduced-order subspace and then held there sliding
along the surface. Besides, a feedback control law guarantees
the system trajectory intersects and stays on the manifold
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or sliding surface. Once the trajectory reached the sliding
surface, the system would switch to the sliding mode. For
example, Vazquez-Nicolas et al. [16] used SMC to realize
robust altitude control. They defined a sliding surface which
was the desired altitude error trajectory, and combined SMC
with the PD controller to improve the UAV’s performance.
Chen et al. [17] developed a regular SMC controller to con-
trol the attitude subsystem (Inner loop) to guarantee fast
convergence of Euler angles. They also defined a sliding
manifold as the desired attitude error trajectory. They applied
the back-stepping technique to the position control loop until
the desired attitudes were obtained. Rossomando et al. [18]
developed a neural sliding mode controller to perform a
dynamic compensation for possible parametric uncertainties
to realize formation control. They defined a desired error
trajectory as the sliding surface. Then, a model-based control
law was obtained to force the tracking errors to reach the slid-
ing surface. Yang et al. [19], [20] overcame themain obstacle
in sliding-mode surfaces analysis and designed a new adap-
tive controller for the underactuated systems. No doubt such
new approaches will be a solid foundation for the expansion
of SMC in the follow-up studies. Another work [21] has
proposed an algorithm which called model-free sliding mode
control, but the approach actually uses an estimated online
model to formulate the SMC design. It is still challenging
to find a satisfying feedback control law with good stability
because many control laws include sort of system dynamics
which are not always available or inaccurate.

Iterative learning control (ILC) can be used with SMC
to handle unknown system dynamics which can also be
called model-free ILC (MFILC). For example, the accuracy
of parameter estimation can be improved [22] or the exter-
nal disturbances [23] can be handled by using ILC. For
the translational and rotational motion control of a QUAV,
Allahverdy et al. [24] used back-stepping integral SMC to
track desired trajectories and developed ILC to improve
the robustness of the control strategy. However, the above
approaches rely on estimated model parameters to construct
accurate SMC controllers, which cannot always be guaran-
teed due to stochastic external disturbance. Different from
reference [24], the proposed algorithm does not obtain system
parameters to formulate controllers. As for other applications
using the model-free ILC method, Riccardo et al. [25] used
the ILC method to estimate the system parameters to for-
mulate a torque-based ILC scheme. Bogdan and Precup [26]
used a hierarchical control system structure in which the opti-
mality of the behavior is formulated as a reference trajectory
tracking problem. The learning solutions which are obtained
by MFILC are stored in a library and the reference input
primitives are optimized by the higher hierarchical level of
the control system structure. Xiaodong et al. [27] proposed
two adaptive ILC algorithms to solve nonlinear control prob-
lems with non-parametric uncertainties. The memory space
in implementations is reduced. Eddine et al. [28] proposed
an ILC controller which works under the practical alignment
condition and noncyclic desired trajectories. It should be

TABLE 1. Comparison of several control algorithms.

noted that, though ourmethodology in this work is in a similar
spirit as [27], this paper simplifies the existing work and
applies the simplified controller to control the QUAV system
in the real world.

Control methods such as PID [29], SMC [30], back-
stepping [31], Q-learning [32], LQR [33] are either
model-based or slow to obtain an appropriate control law
to satisfy the desired tracking error trajectory. Compared
with the traditional Q-learning method to control the QUAV
system, the proposed algorithm of the training process to
obtain the control law is faster. The motivation of this paper
is to develop a model-free learning method that supports the
design of the system error behavior, meanwhile it guaran-
tees fast convergence of system tracking errors. Instead of
applying ILC to estimate the model parameters as well as the
external disturbance to construct accurate SMC controllers,
we use ILC to learn an appropriate control law to force the
system tracking error towards the sliding surface.

The main contributions of this paper are as follows.
We propose a Sliding Surface-based iterative learn-

ing (SSIL) method that is designable and model-free (see
Table 1), which combines the advantages of sliding mode
control (SMC) and iterative learning control (ILC). An appro-
priate control law can be obtained without the need to identify
the system dynamics or model parameters which is more
convenient than the existing SMC method. Different from
designing the adaptive controller, the proposed algorithm
uses iteration learning to obtain the final control law. If the
environment has changed, the proposed algorithm also can
obtain appropriate control law by iteration learning.

We design a novel unknown non-linear system by taking
the original system’s tracking error as the state of the ILC
algorithm,which satisfies the requirement of consistent initial
condition for ILC.

Inspired by the work of [27], we simplify the structure of
the controller and provide the theoretical proof of conver-
gence of the tracking errors to the target, and we demonstrate
fast convergence of the control law through real-world exper-
iments with a quadrotor UAV.

This paper is organized as follows. Section II formulates
the problem and briefly introduces the preliminaries of non-
linear control. Section III provides the details of the pro-
posed method with theoretical proof of convergence, fol-
lowed by simulation experiments in Section IV as well as
physical experiments in Section V. Section VI discusses the
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proposed algorithm. Finally, SectionVII concludes the paper
and outlines the future work.

II. PRELIMINARIES
In the sequel, we introduce the non-linear control problem
and sliding mode control (SMC) for solving it. Consider the
continuous-time non-linear affine systems described by:

ẋ1(t) = x2(t)

ẋ2(t) = f(x(t))+ gu(t)+ w (1)

where x(t) ∈ Rn is the system state vector, and u(t) ∈ Rm

represents the input of the system with physical limitations
described as �m = {u(t)|u(t) ∈ Rm, |ui(t)| ≤ N , i =
1, . . . ,m}. Besides, y(t) ∈ Rp represents the output vector
of the system, f(x(t)) ∈ Rp is the unknown drift dynamics,
g ∈ Rn×m is the unknown input matrix. w is the external dis-
turbance. For the convenience of further discussion, several
assumptions are made as follows:
Assumption 1: f(0) = 0 and f(x) + g(x)u is Lipschitz, and

that the non-linear affine system is stabilizable.
Assumption 2: There exists an unknown function wM such

that ‖w‖ ≤ wM .
Assumption 1 guarantees that the origin is the equilibrium

point of the non-linear system. Assumption 2 guarantees the
perturbation of the non-linear system is bounded.

We aim to design a feedback controller to guarantee the
globally exponential stability of the closed-loop system. The
closed-loop behavior can be achieved by designing a sliding
surface as follows:

s = ė1 + µe1 = 0;µ > 0. (2)

where e is the trajectory tracking error, and µ is a positive
definite constant matrix. Denote the desired trajectory as xd ,
and then the error can be described as follows:

e1 = xd − x1, e2 = ẋd − x2 (3)

The sliding surface is designed to approach zero so that the
error would also approach zero. The derivative of the error is
described as follows:

ė1 = ẋd − x2 (4)

We choose the exponential form of the reaching law:

ṡ = −ks− εsgn(s) (5)

where k is a positive definite constant matrix. Finally, the
control law can be described as follows:

u = g−1[ẍd − f+ µ(ẋd − ẋ1)− ṡ] (6)

With an accurate model of the system dynamics f2 and
the external disturbance w, the control law (6) ensures that
the sliding mode s will approach to 0. If the sliding mode
equals to 0 and the desired trajectory satisfies xd = 0, the
behavior of the system state x1 would satisfy x1 = x1(0)e−µt .
We note that a sliding surface s corresponds to a specific error
convergence rate. However, due to stochastic dynamics and

FIGURE 1. The structure of the proposed algorithm.

cost constraints, the model and the external disturbance are
difficult or expensive to acquire in some situations. Then,
the traditional SMC algorithm can hardly be used to obtain
a feasible control policy without the knowledge of system
dynamics. In this paper, we develop a novel method to solve
this problem by using a learning algorithm to obtain the
control policy that guarantees the convergence of the system
tracking error.

III. METHODOLOGY
Specifically, we use an iterative learning algorithm to
obtain the control policy. We formulate the error differen-
tial equation into a new non-linear system with unknown
dynamics. As for the new non-linear system, the error dynam-
ics equation of the primary non-linear system constitutes
the new dynamics equation. The output equation is con-
stituted by the sliding surface equation. Then, the original
unknown non-linear system control problem is converted into
a new non-linear control problem with known desired output.
The sliding surface satisfies the design requirement and the
system states will approach the sliding surface following
an appropriate learning strategy. With the influence of the
desired output equation, the novel non-linear system’s out-
put y will gradually converge to the desired output. Finally,
the original system will become stable. The structure of the
proposed algorithm is shown in Fig. 1.

A. SYSTEM DYNAMICS STRUCTURE
In this paper, we assume that the non-linear system dynamics
are unknown and continuous. The error equations are shown
as follows:

ė(t) = ẋd − f(x(t))− g(x(t))u(t)− w (7)

where e(t) ∈ Rn is the system state vector available through
measurement, and u(t) ∈ Rm represents the inputs of the non-
linear constrained by�m = {u(t)|u(t) ∈ Rm, |ui(t)| ≤ N , i =
1, . . . ,m}. The states of the new non-linear system are the
tracking error of the original non-linear system. The output
vector is designed to be the sliding mode of the original non-
linear system. The desired output equations are as follows:

y(t) = s = ė1 + µe1
yd (t) = 0

(8)

The error between the desired ouput and the actual output
of the system (9) are described as follows

1y = y− yd = s (9)
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We set the sliding mode s as the output equation of the
novel non-linear system. The main task is to find an appro-
priate control law acting on the original non-linear system
to force the tracking error approach to the sliding surface.
Then the new output equation y will gradually approach
the desired output. When the output of the new non-linear
system (7) equals to 0, the tracking error of the original non-
linear system (1) will converge exponentially.

lim
t→∞

1y = lim
t→∞

(ė+ µe) = 0 (10)

Assumption 3: The control input matrix g is invertible and
is positive definite. g−1 is assumed to be differentiable and
bounded.

‖g−1‖m∞ ≤ lb

where lb is an unknown constant. ‖An×n‖m∞ = nmax|aij|.
Assumption 4: The alignment condition holds for all

iterations.

xi−1(T ) = xk (0)

Assumption 5: The nonlinear function f(x(t)) satisfies the
linear growth condition

‖f(x(t))‖∞ ≤ c1‖x(t)‖∞ + c2

where c1 and c2 are positive unknown constants. ‖x‖∞ =
max|xi|
Assumption 6: The desired trajectory f(xd ) and its nth

(n = 1, 2) derivations are continous and bounded.

‖xd‖∞ ≤ lxr , ‖ẋd‖∞ ≤ lxr

where lxr is known and positive constant.
Assumption 7: System states x(t) is bounded.

‖x‖∞ ≤ lx

where lx is known positive constant confirmed from the safety
flight considerations.

Inspired by [27], we proposed the simplified controller and
the theoretical proof of convergence of the tracking error.
Theorem 1: Consider the novel non-linear system (9) with

the desired trajectory xd under assumptions 1-7. The control
input satisfies the following equation:

ui(t) = Ksi(t)+ si(t)η̂i(t) (11)

η̂i = η̂i−1(t)+ sTi (t)Γ si(t) (12)

where i ∈ N denotes the number of iterations. ui(t) denotes
the control input in the i-th iteration.Γ represents the learning
gain matrix. The initial control η̂(0) can be set to zero.

Then, the bounded control law (11) ensures the asymptotic
closed-loop stability of the uncertain non-linear system (1),
lim
i→∞

ei = 0.

Proof: During the iterative process, we rewrite the dynamic
system (7) at each learning iteration as

ėi(t) = ẋi,d − fi(x(t))− giui(t)− wi (13)

We define a Lyapunov function as

Li =
1
2
sTi g
−1
i si +

1
2

∫ t

0
η̃Ti Γ

−1η̃idτ (14)

where, η̃i = Λ− η̂i,Λ = diag(η, η). η is defined as

η = lblxr + lbc1lx + lbc2 + lbwM + lbλM lxr + lbλM lx
(15)

Consider the difference of Li at the ith iteration.

1Li =
1
2
sTi g
−1
i si −

1
2
sTi−1g

−1
i−1si−1

+
1
2

∫ t

0
η̂Ti Γ

−1η̃idτ −
1
2

∫ t

0
η̃Ti−1Γ

−1η̃i−1dτ

(16)

Then we have

1
2
sTi g
−1
i (xi(t))si =

1
2
sTi (0)g

−1
i si(0)+

∫ t

0
sTi g
−1
i ṡidτ

+
1
2

∫ t

0
sTi
dg−1i
dt

sidτ (17)

Then, combining (3), (4), (8) and (17),we obtain

1
2
sTi g
−1
i (xi(t))si =

1
2
sTi (0)g

−1
i (xi(0))si(0)

+

∫ t

0
sTi g
−1
i (ẍd − f (x(t))

− giu(t)− wi + µe2)τ

+
1
2

∫ t

0
sTi
dg−1i
dt

sidτ (18)

Then,we have

1
2
sTi g
−1
i (xi(t))si =

1
2
sTi (0)g

−1
i (xi(0))si(0)

+

∫ t

0
sTi (g

−1
i ẍd − g

−1
i f (x(t))

− u(t)− g−1i wi + µg
−1
i e2

+
1
2

dg−1i
dt

si)dτ (19)

The input matrix is a constant matrix, then
dg−1i
dt = 0. The

following inequality is obtained

sTi (g
−1
i ẍd − g

−1
i f (x(t))− g−1i wi + µg

−1
i e2)

≤ ‖sTi ‖∞‖(g
−1
i ẍd − g

−1
i f (x(t))− g−1i wi + µg

−1
i e2)‖∞

≤ ‖sTi ‖∞(‖g
−1
i ‖m∞‖ẍd‖∞ + ‖g

−1
i ‖m∞‖f ‖∞

+‖g−1i ‖m∞‖wi‖∞ + ‖µg
−1
i ‖m∞‖e2‖∞) (20)

According to the assumptions (2-7), the following inequal-
ity can be obtained

sTi (g
−1
i ẍd − g

−1
i f (x(t))− g−1i wi + µg

−1
i e2)

≤ ‖sTi ‖∞(‖g
−1
i ‖m∞‖ẍd‖∞ + ‖g

−1
i ‖m∞(c1‖x(t)‖∞ + c2)

+‖g−1i ‖m∞‖wi‖∞ + ‖µg
−1
i ‖m∞‖e2‖∞)

79672 VOLUME 10, 2022



C. An et al.: Fast Model-Free Learning for Controlling a Quadrotor UAV With Designed Error Trajectory

≤ ‖sTi ‖∞(lblxr + lbc1lx + lbc2 + lbwM
+ lbλM lxr + lbλM lx)

≤ η‖sTi ‖∞ ≤ ηs
T
i si (21)

The last term of the difference of Lyapunov function can
also be described

1
2

∫ t

0
η̃Ti Γ

−1η̃idτ −
1
2

∫ t

0
η̃Ti−1Γ

−1η̃i−1dτ

=

∫ t

0
(η̂i − η)TΓ −1(η̂i − η̂i−1)dτ

−
1
2
(η̂i − η̂i−1)TΓ −1(η̂i − η̂i−1)dτ (22)

By substituting the updating law (12) into (22), we get

1
2

∫ t

0
η̃Ti Γ

−1η̃idτ −
1
2

∫ t

0
η̃Ti−1Γ

−1η̃i−1dτ =

−

∫ t

0
sTi η̃isi −

1
2
sTi s

T
i Γ

T sisidτ (23)

Then, the difference of Li can also be described as

1Li ≤
1
2
sTi (0)g

−1
i (xi(0))si(0)+

∫ t

0
sTi [ηsi − u(t)− η̃si]dτ

−

∫ t

0

1
2
sTi s

T
i Γ

T sisidτ −
1
2
sTi−1g

−1
i−1si−1 (24)

Substituting the control law (11) into (24) yields

1Li ≤
1
2
sTi (0)g

−1
i (xi(0))si(0)−

∫ t

0
sTi Ksidτ

−

∫ t

0

1
2
sTi s

T
i Γ

T sisidτ −
1
2
sTi−1g

−1
i−1si−1 (25)

Note that Li can be represented as follows

Lk = L1 +
k∑
i=2

1Li (26)

Hence, substituting (25) into (26) yields

Lk ≤ L1 +
k∑
i=2

[
1
2
sTi (0)g

−1
i (xi(0))si(0)

+

∫ t

0
sTi [ηsi − u(t)− η̃si]dτ

−

∫ t

0

1
2
sTi s

T
i Γ

T sisidτ −
1
2
sTi−1g

−1
i−1si−1] (27)

Based on Assumption 4, we can get

1
2
si(0)T g

−1
i si(0) =

1
2
si−1(T )T g

−1
i−1si−1(T ) (28)

Then, inequality (27) can be rewritten as

Lk ≤ L1 −
k∑
i=2

Km

∫ t

0
‖si‖2dτ −

k∑
i=2

1
2
Γm

∫ t

0
‖sTi si‖dτ

(29)

where Km and Γm represent the minimum eigenvalue of the
matrix K and Γ respectively.

According to the definition of Lyapunov function Li. L1 can
be descibed as

L1 =
1
2
sT1 g
−1
1 s1 +

1
2

∫ t

0
η̃T1 Γ

−1η̃1dτ (30)

The time derivative of L1 is represented by

L̇1 =
1
2
sT1 g
−1
1 ṡ1 +

1
2
sT1
dg−1

dt
s1 +

1
2
η̃T1 Γ

−1η̃1 (31)

According to (22), (23) and η̂ = 0, we can obtain

1
2
η̃T1 Γ

−1η̃1 =
1
2
(η̃T1 Γ

−1η̃1 − η̃
T
0 Γ
−1η̃0)+

1
2
η̃T0 Γ

−1η̃0

= −sT1 s1η̃1 −
1
2
sT1 s

T
1 Γ

T sT1 s
T
1 +

1
2
ηTΓ −1η

(32)

Therefore

L̇1 ≤ −sT1 s1η̃1 −
1
2
sT1 s

T
1 Γ

T sT1 s
T
1 +

1
2
ηTΓ −1η ≤

1
2
ηTΓ −1η

(33)

Because ηTΓ −1η is positive in the iteration [0,T ]. Thus,
we have

L1 = L1(0)+
∫ t

0
L̇1dτ ≤ L1(0)+

∫ t

0

1
2
ηTΓ −1ηdτ <∞

(34)

Since L1(0) = 1
2µ(xd,1(0)−x1,1(0))

T gµ(xd,1(0)−x1,1(0))
is bounded. Thus, L1(t) is bounded over t ∈ [0,T ]. As the Li
is positive abd L1 is bounded, we can obtain

‖si‖2→ 0 as i→∞ (35)

Then, we can obatin

ė1,i + µe1,i→ 0 as i→∞ (36)

Finally, we can obatin

e1,i→ 0 and e2,i→ 0 as i→∞ (37)

Remark 2: Applying the traditional SMC algorithm needs
the identification of the system dynamics. To deal with this
problem, we have developed a novel unknown non-linear
system that the error equation of the original system is used
by the iterative learning algorithm to force the error of the
original system towards the sliding surface. When the state
error of the original system reaches the sliding mode surface,
the original system will become stable. The proposed control
structure does not need to identify the system dynamics, and
the appropriate control law can still be obtained.

B. SLIDING SURFACE BASED ITERATIVE LEARNING
To implement the SMC algorithm, the prior knowledge of
system dynamics is necessary. However, with stochastic
dynamics and cost constraints, the complete or partial system
dynamics are difficult to acquire. Besides, when the number
of system state increases, the dynamics become even more
difficult to obtain. In the sequel, we propose an ILC-based
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algorithm to solve this problem. δ denotes the designed
threshold of the tracking error. Γ denotes iterative learning
parameters which are obtained by trial and error. µ is a
designed parameter that decides the error trajectory.

Algorithm 1 Sliding Surface Based Interative Learning
(SSIL)
Require: µ, Γ , δ, K
Ensure: u∗(x)
1: Design µ to formulate the sliding surafce

si = ėi + µei;µ > 0
2: Obtain the desired output equation and the output of the

new non-linear system.
x′ = ei

y′ = ė+ µe; yd = 0;
3: Obtain the iterative learning law:

ui(t) = Ksi(t)+ si(t)η̂i(t)
η̂i = η̂i−1(t)+ sTi (t)Γ si(t)

4: if ‖ei‖ ≤ δ then
5: u∗(t) = ui(t);
6: break;
7: else
8: i← i+ 1;
9: Go to Step 2;

10: end if

Remark 3: Instead of obtaining the accurate system dynam-
ics, Algorithm 1 uses the iterative learning algorithm to solve
the non-linear control problem. Specifically, we convert the
original non-linear control problem into a novel non-linear
control problem with known desired output formalized as the
output equation. In other words, the sliding surface s which
satisfies the design criteria is the desired output. We apply
the error of the original system equation to be the novel non-
linear system. We use iterative learning algorithm to drive the
novel state, i.e. the error of the original system, towards the
desired output. As a result, the error of the original system can
reach the sliding surface. Finally, the system will be stable
and the performance of the system will satisfy the designed
criteria.

IV. NUMERICAL SIMULATION
In this paper, we deal with the angular control of the
continuous-time non-linear QUAV system described as fol-
lows. The position of the QUAV is denoted by a vector
x1 = [x, y, z]T , measured with respect to the inertial frame.
The linear velocities x2 = [u, v,w]T and angular velocities
x4 = [p, q, r]T are defined with respect to the body frame.
The attitude angles are described by a vector x3 = [φ, θ, ψ]T .
Themodel of theQUAVconsists of kinematics and dynamics.

ẋ2 = f1(x2, x4)+ g1(ẋ1,T (x5))+ d1 (38)

with unknown non-linear term d1 = [d11, d12, d13]T ,
including model uncertainties and unmodeled dynamics.

The function f1(x2, x4) and g1(ẋ1,T (x5)) are denoted as
follows:

f1(x2, x4) =

 rv− qw
pw− ru
qu− pv

 (39)

g1(ẋ1,T (x5)) = −
1
m

 Dx ẋ2

Dyẏ2

Dzż2 + T

+ R1g (40)

R1 =

 − sin θ
cos θ sinφ
cos θ cosφ

 (41)

where x5 = [w1,w2,w3,w4]T is the vector of propeller
rotation speeds. Di(i = x, y, z) represents the air resistance
coefficients. m is the mass of the QUAV. T is the total thrust
with respect to the body frame described by

T (x5) =
4∑
i=1

bw2
i (42)

where b is the thrust factor. The rotational motion dynamics
of the QUAV can be described as follows:

ẋ4 = f2(x4)+ f3g2(x5)+ d2 (43)

with the diagonal matrix Ji(i = x, y, z) where f3 =
diag(1/Jx , 1/Jy, 1/Jz) is the moment of inertia of the QUAV.
d2 = [d21, d22, d23]T denotes the model uncertainties and
measurement noises, and

f2(x4) =


Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq

 (44)

g2(x5) =

 lb(−w2
2 + w

2
4)

lb(w2
1 − w

2
3)

d(w2
1 − w

2
2 + w

2
3 − w

2
4)

 (45)

where g2(x5) is the additional moment acted on the QUAV,
l is the distance from the gravity center of QUAV to the
gravity center of each propeller rotor, b is the thrust factor,
and d is the torque coefficient of the propeller.

The kinematics of the QUAV in body-fixed coordinate is
given as follows:

ẋ1 = f5(x3)x2 + d3 (46)

ẋ3 = f4(x3)x4 + d4 (47)

where d3 and d4 denote the model uncertainties,i.e., the
measurement noises and external disturbances, with

f4(x3) =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 (48)

f5(x3) =

 c2c3 s1s2c1 − c1c3 c1s2c3 + s1s3
c2c3 s1s2s3 + c1c3 c1c2s3 − s1c3
−s2 s1c2 c1c2

 (49)
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TABLE 2. Main parameters of the QUAV.

FIGURE 2. The cascaded control framework of a QUAV, where the output
of each loop controller is a function of the state vector of the next loop,
and the desired input is bounded to ensure flight safety. Algorithm 1 is
used as the angle controller to reduce the tracking error.

where c1 = cosφ, c2 = cos θ , c3 = cosψ , s1 = sinφ,
s2 = sin θ , and s3 = sinψ .

In order to verify the effectiveness of Algorithm 1,
sine waves were selected as the desired angle trajectory.
The desired angle trajectory was governed by φd =
π
12 sin(π t/10), θd =

π
12 sin(π t/10), ψd =

π
12 sin(π t/10).

The initial condition were as follows: x1(0) = [0, 0,−100]T ,
x2(0) = [0, 0, 0]T , x3(0) = [0, 0, 0]T and x4(0) = [0, 0, 0]T .
The main parameters of QUAV for simulation are shown in
Table 2.

A. DESIGN OF THE SLIDING SURFACE
We used Algorithm 1 and SMC algorithm to control the inner
loop of the QUAV. The position controller of QUAV was a
proportional controller and the parameters of the controller
were adjusted by trial and error. The velocity controller was
a PID controller and the parameters of the controller were
also adjusted by trial and errors. The main parameters of the
angular velocity controllers are shown in Table 3. As for the
inner loop controller, the states that needed to be stabilized
were the angles and the angular velocities. The structure
of the flight controller is shown in Fig. 2. In other words,
we designed the sliding surface as follows:

s = µe1 + e2;µ > 0 (50)

where e1 = [eφ, eθ , eψ ]T was the error of angles, e2 =
[ep, eq, er ]T was the error of angular velocities, and µ was

TABLE 3. Parameter settings in numerical simulation.

the parameter to be designed. We set µ = 5. The error
dynamics of angles and angular velocities were reformulated
to be the new non-linear system. The output of the new non-
linear system was the sliding surface equation.

y(t) = CE = µ(xd − x1)+ ẋd − x2 = µe1 + e2 (51)

The inner loop controller was designed as follows:

ui(t) = Ksi(t)+ si(t)η̂i(t);

η̂i = η̂i−1(t)+ sTi (t)Γ si(t) (52)

Set Γ = diag(0.6, 0.6, 1.5), K = diag(0.5, 0.5, 0.7) and
u0 = [0, 0, 0]T .

B. SIMULATION RESULTS
The intermediate tracking results for Euler angles are shown
in Fig. 3 to Fig. 5. The red line denotes the desired trajectories,
and the blue line shows the Euler angles of the QUAV system
at the first iteration. The mean tracking error of Euler angles
in each iteration is shown in Fig. 6, which demonstrates the
effectiveness of Algorithm 1 that the stability of the inner
control loop of the QUAV can be guaranteed. As the iteration
goes on, the tracking error is gradually reduced. The changes
of the sliding mode are shown in Fig. 7. The sliding mode s
gradually approaches 0 that satisfies the equation (11). It was
in accordance with the theoretical proof of the convergence of
Algorithm 1 in Section III. The tracking performance of the
proposed algorithm in the tenth iteration and sliding mode
control is shown in Fig. 8 to Fig. 10. The proposed algorithm
can make the system stable without applying system parame-
ters and the tracking error is less than that of the sliding mode
control algorithm.

V. REAL-WORLD EXPERIMENTS
A. EXPERIMENTAL SETTINGS
In order to verify the proposed method to control a real-world
non-linear system, we chose to control the Euler angles of
a real QUAV. We note that the physical parameters of the
QUAV were unknown. Fig. 11 shows the real-world exper-
imental environment.

It consisted of a ground station, a QUAV platform, and
a remote controller. The ground station was responsible for
managing the information of the states of the QUAV as well
as for tuning the control parameters. The remote controller
was responsible for providing the input signals to initiate
Algorithm 1. The hardware of the QUAV was a four-motor
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FIGURE 3. Desired and actual Euler angles φ, θ , and ψ in the first iteration.

FIGURE 4. Desired and actual Euler angles φ, θ , and ψ in the
fifth iteration.

FIGURE 5. Desired and actual Euler angles φ, θ , and ψ in the
tenth iteration.

FIGURE 6. Learning performance (as measured by the MAE Euler angles
tracking error) for tracking a sine wave.

driven DJI-F330 ,1 which had three degrees of freedom. The
on-board flight controller was an FMUV5+.2 Themain FMU
processor was STM32F765 and the gyroscope in the flight

1DJI. F330. Accessed: Aug. 12, 2021. [Online]. Available:
https://www.dji.com/flame-wheel-arf/spec

2PX4 Autopilot. CUAV V5. Accessed: Jan 30, 2020. [Online]. Available:
https://px4.io/cuav-v5-and-v5-nano-now-shipping-with-the-latest-stable-
px4-v1-9-preinstalled/

FIGURE 7. Learning performance (as measured by the sliding mode s) for
tracking a sine wave.

FIGURE 8. Tracking errors of φ of the proposed algorithm (SSIL) and
sliding mode control (SMC).

FIGURE 9. Tracking errors of θ of the proposed algorithm (SSIL) and
sliding mode control (SMC).

FIGURE 10. Tracking errors of ψ of the proposed algorithm (SSIL) and
sliding mode control (SMC).

controller was ICM-20602. Algorithm 1 ran on the flight
controller. The software was implemented using C++.

B. SLIDING SURFACE DESIGN FOR THE QUAV
A sine curve was provided as the desired roll angle φd and
desired pitch angle θd that were sent to Algorithm 1. In each
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FIGURE 11. Experiment Setup of practical experiment.

TABLE 4. Parameter settings in real-world experiment.

iteration, the desired roll angle and pitch angle trajectory were
governed by φd = − π

18 sin(π t/5) and θd = −
π
18 sin(π t/5).

After 10 seconds, the desired angle would be 0 until toggling
the switch on the remote controller. Considering the safety
and reliability of the experiment, the output of the motors
would also be set to 0 after 10 seconds. We designed the
sliding surface as follows:

y = s = µe1 + e2;µ > 0 (53)

where e1 = [eφ, eθ ]T was the error vector of the roll angle and
pitch angles, and e2 = ė1 was the derivative vector accord-
ingly. Considering the adjustment capacity of the QUAV
system, µ was designed to be µ = diag(µ1, µ2). Table 4
shows the numerical settings of the constants used in tests.

The angle controller was designed as follows:

ui(t) = Ksi(t)+ si(t)η̂i(t);

η̂i = η̂i−1(t)+ sTi (t)Γ si(t) (54)

where i ∈ Nwas the number of iterations, Γ = diag(Γ1, Γ2),
and the initial control input was u0 = [0, 0]T . Set K =
diag(0.5, 0.8).

C. EXPERIMENTAL RESULTS
The tracking results for the roll and pitch angles are shown
in Fig. 14 and Fig. 15. As can be seen, the initial errors
were not equal to 0. The attitude of the QUAV system began
to respond about 0.5 seconds after the desired signals were
provided. Different from the simulation results, the actual
system needed a response time to handle the desired signals.
This explains why the attitude trackingwas not effective at the
beginning of the real-world experiment. As shown in Fig. 12,
the trend of the desired signals could be roughly tracked, but
there existed significant tracking errors in the first iteration.

FIGURE 12. Desired and actual roll angle φ and pitch angle θ in the first
iteration.

The tracking results for the roll and pitch angles in the
fifth iteration are shown in the fifth subgraph of Fig. 14
and Fig. 15. The tracking errors were obviously reduced, but
not converged. In the tenth iteration, as shown in the tenth
subgraph of Fig. 14 and Fig. 15, the angles could almost
capture the trends of the desired signals and tracking errors
were significantly reduced. The mean absolute errors of the
roll and pitch angles have been reduced to 5 degrees after
10 iterations.

Due to the sensory noises and the vibration of the experi-
mental apparatus, the tracking errors could not be completely
eliminated. The measured Mean Absolute Error (MAE) in
the real-world experiment is shown in Fig. 16, and MAE
gradually approached to 0. Besides, the mean of the tracking
error might slightly increase between the iterations. Overall,
the mean of tracking error shows the trend of decreasing
towards 0. In other words, we demonstrated that Algorithm 1
could reduce the tracking errors with an appropriate sliding
surface. Fig. 17 shows the change of the learning compensa-
tion Γ si(t) in each iteration. The trend is similar to the vari-
ation trend of the sliding surface. This trend is also satisfied
the equation (11). This means that the Algorithm 1 can satisfy
equation (11) in real-world applications. As we can see from
the tracking results, Algorithm 1 can effectively reduce the
tracking error.

VI. DISCUSSION
A. ROBUSTNESS OF THE PROPOSED SSIL ALGORITHM
Comparing flight data in Fig. 14 and Fig. 15, the initial
attitude angle error was different due to the difference of the
QUAV placement at the beginning of each experiment. Initial
errors in the real-world experiment were shown in Table 5.
The initial error was bounded because the QUAV placement
did not vary significantly at the beginning of the experiment.
It did not satisfy Assumption 5 but experimental results show
that the mean of the tracking error generally decreased to 0.
We note that the proposed SSIL algorithm can also make the
tracking errors of states approach 0 when the initial errors of
states are bounded.
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FIGURE 13. Desired and actual roll angle φ and pitch angle θ in the tenth
iteration.

FIGURE 14. Desired and actual roll angle φ in the real-world experiment.
The red line denotes the desired roll angle φd . The blue line denotes the
actual roll angle φ. The subtitle of this picture i (i=1,. . . 10) denotes the
number of iterations. The abscissa axis is the time of the real-world
experiment and the unit is second. The vertical coordinate represents the
roll angle φ and the unit of this coordinate is degree.

B. THE CHOICE OF DERIVATIVES IN REAL-WORLD
EXPERIMENTS
The changes of the actual roll angular rate in the real-world
experiment in the tenth iteration are shown in Fig. 18. Due
to the performance of the sensor and external noises, angular
velocity changed rapidly. In the real-world experiment, e2 =
ė1 was the derivative vector which was used to constitute the
sliding surface. Considering the safety of the QUAV system,
the angular error was the main influence factor in the sliding
surface. Unlike the design of sliding surface with angular

FIGURE 15. Desired and actual pitch angle θ in the real-world
experiment. The red line denotes the desired roll angle θd . The blue line
denotes the actual roll angle θ . The subtitle of this picture i (i = 1, . . .10)
denotes the number of iterations. The abscissa axis is the time of the
real-world experiment and the unit is second. The vertical coordinate
represents the pitch angle θ and the unit of this coordinate is degree.

FIGURE 16. Learning performance (as measured by the MAE angles
tracking error) for tracking sine wave.

velocity in the numerical simulation, we used derivatives
of the error of roll and pitch angles to constitute the sliding
surface.

C. PERFORMANCE OF THE PROPOSED SSIL ALGORITHM
Compared with PID, Fig. 19 shows that the tracking errors
have been significantly reduced after 10 iterations. It demon-
strates that the proposed SSIL algorithm can further improve
the performance of the PD control law.

When assigning a specific closed-loop behavior, the PD
method requires parameter tuning to satisfy the design
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FIGURE 17. Learning compensation values Γ si (t) in each iterations.

TABLE 5. Initial error in our ten tests.

FIGURE 18. Measured angular velocity p and q in the tenth iteration.

requirements which can be time consuming. Compared with
the PD method, the SSIL designs the sliding surface which
satisfies the assigned requirement. With the influence of ILC,
the sliding mode s will approach 0. When the sliding mode s
equals to 0, the tracking errors will converge exponentially
to 0. This phenomenon can be seen in Fig. 7 and Fig. 17.
Fig. 7 shows that the iterative learning law makes the sliding
mode s approach 0 in the simulation experiment, and Fig. 17
shows that the iterative learning lawmakes the sliding mode s
approach 0 in the real-world experiment. Due to sensor noises
and external disturbances, the change of the sliding mode s
sometimes increases slightly in the real-world experiment.
The convergence process of the sliding mode is realized by
ILC. This process is approximately diagrammed in Fig. 19.
Red arrows in Fig. 19 represent the process of tuning PID
parameters. Blue arrows in Fig. 19 represent the process of
the iterative learning. In the iterative learning process, the

FIGURE 19. Schematic diagram of the error convergence.

sliding mode s gradually approaches 0, and the tracking error
approaches 0.

VII. CONCLUSION
In this paper, we have proposed a designable and model-free
method to solve non-linear control problems. The proposed
Sliding Surface based Iterative Learning (SSIL) algorithm
combines the advantages of sliding mode control (SMC) and
iterative learning control (ILC). The desired tracking error
trajectory is defined as the learning objective according to
the actual task requirements, and then the tracking error
is regarded as the state space of a new non-linear system.
A learning algorithm is applied to obtain the control law
to force the tracking error to converge to the desired error
trajectory. One advantage of the proposed method is that no
effort is needed to model the system dynamics or to identify
the model parameters. The obtained control law can force
the tracking error to converge to the designed desired error
trajectory. We use ILC as the learning algorithm and the con-
vergence of the proposed control framework has been proved.
The trend of the tracking errors has been shown approaching
0 in both the simulation and the real-world experiments. For
future work, we will try other online learning algorithms to
enhance the anti-interference ability of the proposed algo-
rithm. Besides, we will also test the proposed algorithm to
control a QUAV in more difficult real-world tasks.
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