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ABSTRACT Parallax processing has long been a significant and challenging task in image stitching. In this
paper, we study a new hybrid warping model based on multi-homography and structure preservation to
achieve accurate alignment of regions at different depths while preserving local and global image structures.
The homographies of different depth regions are estimated by dividing matching feature pairs into multiple
layers. Then, layered warping is performed by determining the spatial relationships between the image
mesh and these multi-homography, and then refining the local and global structural distortions through
mesh optimization. Four constraints are considered during the local optimization process, including the local
alignment error, global alignment error, and similarity error. In addition, we explore and introduce collinear
structures into an objective function as a constraint formesh optimizationwarping, which can preserve salient
line structures while alleviating distortions in nonoverlapping areas. Furthermore, we develop an optimal
seam search method based on seam error evaluation to improve the quality of the seams. Experimental results
demonstrate that compared to existing methods, the proposed algorithm presents more accurate stitching
results for images with large parallax and preserves salient image structures, and outperforming the existing
methods both qualitatively and quantitatively.

INDEX TERMS Image stitching, multi-homography, optimal seam search, parallax, structure preservation.

I. INTRODUCTION
Image stitching is an important technology widely used in
the field of computer graphics and vision. Its aim is to
generate a high-quality, ghosting-free and wide-view image
from multiple smaller source images at the lowest computa-
tional cost [1]–[3]. Commercial tools for security monitor-
ing, virtual reality (VR) cameras, and outdoor live-broadcast
cameras seem able to achieve good results in generating
panoramic images in this way. However, one important fact
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is overlooked: the input images for these tools change only
with rotation or panning of the camera; under this assumption,
an affine transformation and a perspective transformation can
be used finish the stitching work well. When complex struc-
tures or parallax problems are present in captured images,
the stitching results of the previous methods will suffer from
ghosting artifacts and misalignment. Such parallax-tolerant
image stitching has always been a challenging task.

At present, the solutions to the parallax tolerance prob-
lem have the following characteristics. First, adaptive mod-
els are based on spatially varying warping [4]–[7]. In early
work, the global homography computed by matching scale
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FIGURE 1. Comparison of the results of a representative spatially varying warping method (APAP) [4] and our method. (a): The input image [13]. (b): The
stitching results of APAP, which exhibit not only visual distortion but also obvious ghosting. (c): The stitching result of our approach, in which the
distortion and ghosting are eliminated.

invariant feature transform (SIFT) features [8] has been
used to align the input images, and good results can be
achieved when the input image satisfies certain assump-
tions, e.g., when the camera is positioned with a single opti-
cal center or when the images contain only one principal
plane. To obtain more natural results in scenes dominated
by two planes, Gao et al. proposed using a dual-homology
model for image stitching [7]. However, it is difficult for
the dual-homology model to adapt to the diversity in real
scenes and to refine local alignment. Zaragoza et al. proposed
the method of as-projective-as-possible (APAP) warping to
achieve the local alignment of target images [4]; this method
is forward looking in the development of spatially varying
warps based on grids. However, these methods still face the
problems of ghosting in overlapping regions and perspective
distortion in non-overlapping regions, especially in the pres-
ence of large parallax (see Fig. 1-(b)). Jing et al. proposed a
method for parallax image stitching based on an elastic warp-
ing model, which adaptively removes incorrect local matches
by means of a Bayesian feature refinement model and then
calculates the optimal homography to improve the image
alignment quality [19]. However, problems of local structural
distortion and different degrees of ghosting when using a
grid-based model and direct deformation strategy to process
parallax images of multiple depth layers. To alleviate projec-
tive distortions and refine local alignment, researchers have
introduced constraint terms into the mesh warping process to
obtain smooth transitions. Moreover, it has been confirmed
that adding content-preserving constraints during the warping
process is beneficial for local adjustment [9], [10]. Pan et al.
proposed a method combining global 2D homography with
a local warping method based on mesh optimization, which
produces accurate stitching results for local structures at the
same depth in a scene [34]. However, these measures cannot
guarantee accurate alignment for scenes with different depths
captured in large-parallax images and lack the ability to pre-
serve the global image structure; thus, they can easily cause
distortion of nonoverlapping regions. Recently, Zhang et al.
proposed an approach for content preserving image stitching
with regular boundary constraints [11]; in this approach,

through suitable analysis of an irregular boundary, an optimal
piecewise rectangular boundary can be constructed to reduce
unwanted distortions. However, these methods lack ghosting
processing for the overlapping areas of large-parallax images.

Second, seam cutting [10], [12] refers to the process of
finding seams in overlapping regions while minimizing costs
and then stitching the input images together at the seam. Such
methods show good performance in object shape preserva-
tion. However, relying on traditional seam cutting will lead
to mutilated and overlapped of objects. A third approach
is known as optimal homography [13]–[15]. Xu et al. the
optimal homography matrix is obtained by analyzing feature
point distribution and minimizing the registration error [14].
Lee et al. proposed a warping residual-based image stitching
method [15]. First, the images are segmented into superpix-
els, and then, the feature point weights are calculated based on
residual deformation to find the optimal homography for each
superpixel. Our approach differs from optimal homography
methods in that we propose a strategy of optimizing the
spatially varying warping process from coarse to fine, which
is also adopted in the evaluation of seams; these strategies
achieve more precise alignment results and the searched
seams can introduce fewer artifacts.

In this paper, we study a new hybrid warping model based
on multi-homography and structure preservation. According
to our observations, it is unrealistic to assume that images
that need to be stitched together will be captured while
only translating or rotating the camera in daily life. Usually,
large-parallax images will contain multiple different scene
depths. When global alignment methods [1], [2] are applied
to such images, ghosting artifacts can easily be generated in
overlapping regions, and perspective distortion will appear
in nonoverlapping regions. To address these problems, the
homographies of different depth regions are estimated by
dividing the matching points in the source images into differ-
ent depth layers. Then, layered warping is performed based
on the spatial relationships between the image mesh and
the multi-homography to achieve the precise alignment of
regions at different depths. To alleviate the distortion caused
by parallax, a new structure-preserving warping method is
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introduced to preserve the local and global image structures,
especially the line structure, in order to achieve accurate
image alignment. The basic mathematical model of this
method comes from Liu [9]. Finally, we develop an optimal
seam search method for seam error evaluation based on tradi-
tional seam cuttingmethods, which not only reduces ghosting
and misalignment in overlapping regions but also introduces
fewer artifacts (see Fig. 1-(c)).

In summary, the main contributions of the proposed
method can be summarized as follows:

1) To the best of our knowledge, we are the first to use a
hybrid warping model of layered warping and structure
preservation to improve warping quality from coarse to
fine.

2) We propose a new structure-preserving warping
method to preserve the local and global image struc-
tures during warping.

3) We develop an optimal seam search method based on
seam error evaluations to improve the seam quality and
reduce artifacts.

The rest of this paper is organized as follows: Related
works on the stitching of images with large parallaxes are
introduced in Sec. 2. The details of the proposed approach
are described in Sec. 3. Experimental results and comparisons
with other methods are shown in Sec. 4. Finally, the paper is
concluded in Sec. 5.

II. RELATED WORK
In previous image stitching techniques, the input images
have been aligned by estimating the global homography.
If the optical centers are not identical or the scene is not
a single plane of input images, these methods cannot guar-
antee local alignment in the stitched image. To solve this
problem, researchers have proposed spatially varying warp-
ing methods, content preservation methods and seam cutting
methods. However, these methods still have deficiencies in
regard to parallax tolerance and image structure preservation.
A detailed investigation of image stitching and alignment
principles has been presented in [16]. In this section, we will
review relevant work from four perspectives: homography
alignment, spatially varying warping, shape- and structure-
preserving warping and seam cutting.

A. HOMOGRAPHY ALIGNMENT
When certain assumptions are satisfied, aligning overlap-
ping images by using global homography [1], [2] can also
yield satisfactory alignment results. However, if the necessary
assumptions are not satisfied, the stitched images will be
seriously misaligned. Gao et al. proposed a dual-homography
alignment model containing two dominant planes; in this
model, each image is divided into a far plane and a ground
plane, and the homography values of the two planes are
calculated separately [7]. This method achieves good results
when there are only two depth layers (planes). Li et al.
proposed a multiplane alignment method based on superpixel

segmentation to overcome the problem of image misalign-
ment [17], but failed to address the challenges presented by
large-parallax images.

B. SPATIALLY VARYING WARPING
For more flexible handling of local alignment, a series
of spatially varying warping methods have been proposed.
Lin et al. introduced a smooth affine splice field instead of
a global affine transformation and processed parallel lines
more flexibly by extending them to multiple planes [18].
However, the local alignment result could not be refined.
Zaragoza et al. proposed the APAP warping method for
image stitching, in which themoving direct linear transforma-
tion (DLT) method is used to estimate the optimal homogra-
phy of the image grid and edge error adjustment is performed
through local feature weighting [4]. To alleviate the perspec-
tive distortion caused by the APAP method, Lin et al. pro-
posed a method that combines local homography and global
similarity trans-formations, in which the global similarity
is used to alleviate perspective distortion in nonoverlapping
regions [6]. Li et al. proposed a mosaic image method based
on robust elastic warping that uses the analytical warping
function to eliminate parallax errors [19]. Recently, Li et al.
proposed a local-adaptive image alignment method based on
triangular facet approximation and introduced planar triangu-
lation and spherical triangulation strategies for image align-
ment [20]. Chen et al. devised a strategy for using an objective
function and a global similarity prior (GSP) to specify the
desired characteristics of warps [21]. Herrmann et al. pro-
posed the use of multiple registrations to reduce errors in the
image stitching of scenes with significant depth variations or
object motion [22]. However, their method has difficulty pre-
serving linear structures without corresponding relationships
in large- parallax image stitching. In contrast, our method can
preserve both local and global linear structures.

C. SHAPE- AND STRUCTURE-PRESERVING WARPING
Shape- and structure-preserving warping mainly aims to pre-
serve the similarity of image structures in order to gen-
erate stitching results with natural shapes and structures.
Chang et al. proposed a spatial combination of projective
transform-ation and similarity transformation to extrapolate
the projective transformation of an overlapping region to
non-overlapping regions in order to correct the shape of
the stitched image (preventing excessive skew), and reduce
distortion in non-overlapping regions [23]. However, this
approach is similar to APAP [4] because structural distortion
occurs in the over-lapping area. Liao et al. propose single-
perspective warps (SPW) to protect linear structures while
suppress distortions [24]. Lin et al. proposed a mesh-based
photometric alignment method that combines the superior
performance of dense photometric alignment with the effi-
ciency of mesh-based image warping to improve content-
preserving robustness in low textured areas [25]. Luo et al.
used positional relationship constraints on feature points and
lines to accomplish accurate alignment [26]. These methods
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show excellent performance in preserving the shapes and lin-
ear structures of images but cannot explicitly handle parallax.

D. SEAM CUTTING
Gao et al. proposed a seam-driven image stitching strategy,
in which the optimal homography is selected based on a seam
cutting loss and the seam with the lowest cost is selected
as the location at which to stitch the input images [12].
Zhang et al. developed a stitching method that combines
content-preserving warping (CPW) [9] and seam cutting; this
method preserves the local shape of an image and reduces
distortion [10]. Lin et al. guided the selection of the optimal
homography by means of seam estimation to improve the
stitching quality [13]. Li et al. proposed a visual perception-
based seam cutting method in which the weight ratio of
the color difference and saliency of different objects in the
human visual system is simulated to optimize the energy
function [27]. The traditional energy-minimizing seam evalu-
ationmethod in large-parallax image stitching not only causes
ghosting and misalignment in overlapping regions but also
introduces artifacts.

III. THE PROPOSED APPROACH
In this section, we introduce our proposed method in ref-
erence to the common stitching process. The outline of our
proposed method is shown in Fig. 2. Specifically, our hybrid
warping model consists of two steps: first, matching points
are divided into different depth layers to estimate the homo-
graphies of different depth regions, and then, layered warping
is performed by determining the spatial relationships between
the image mesh and multi-homography to achieve the precise
alignment of regions at different depths. Subsequently, the
mesh warping is optimized by means of structural constraints
on the local alignment error, global alignment error, local
similarity error, and line collinearity error. After complet-
ing the coarse-to-fine warping process, we apply an opti-
mal seam search method based on seam error evaluation to
find the optimal line at which to stitch the aligned images
together. Our main contribution is that we to propose a new
image alignment and stitching method, which not only is the
difficulty of aligning scenes with different depth layers in
large-parallax images using global homography solved by
means of a hybrid warping model, but also the salient line
structure is also effectively preserved by introducing a line
collinearity constraint. Moreover, an optimal seam search
method yields image stitching results with minimal artifacts
and ghosting.

A. MULTIHOMOGRAPHY ESTIMATION AND LAYERED
WARPING
1) MULTIHOMOGRAPHY ESTIMATION
Given two partially overlapping images I and I ′, matching
feature points are obtained using SIFT [8], and the matching
feature pairs are denoted by {Pϕ,P′ϕ}

n
ϕ=1. The projective

transformation between the matching feature pairs can be

Algorithm 1 Local Homography Estimation
Input: Initial pair set F1 = F = {Pϕ,P′ϕ}

n
ϕ=1, threshold Nmin

and iteration index k = 0;
Output: The matching pair set Tk for each layer and the

corresponding homography Hk for each layer;
1: repeat
2: k = k + 1;
3: Apply RANSAC to the matching pair set Fk for the

model 03×1 = P′k,ϕ + HPk,ϕ , where (P
′
k,ϕ,Pk,ϕ) ∈ Fk ;

4: Divide the inliers T ′in and outliers T ′out according to H ;
5: if |T ′in| ≥ Nmin then
6: Set the matching pair set for the k-th layer to Tk ,

|Tk | = T ′in;
7: Set the homography of the k-th layer to Hk , Hk = H ;
8: end if
9: Set a new matching pair set Fk+1, where Fk+1 = T ′out ;
10: until |Fk+1| < Nmin.

expressed as P′ = HgP. The specific equation details are as
follows:  x ′

y′

1

 =
 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x
y
1

 , (1)

whereHg ∈ R3×3 is the global homography; (x ′, y′) and (x, y)
are the homogeneous coordinates of the matching feature
points p′ and p, respectively; and the value of h33 is 1.

Using the DLT [28] method, (1) can be rewritten as:

03×1 = ah =

 01×3 −PT y′PT

PT 01×3 −x ′PT

−y′PT x ′PT 01×3


 h11
...

h33

 , (2)

where the two rows of a ∈ R3×9 are linearly independent.
A constant h is set, and the quantity ‖ aih ‖ is the algebraic
error of the i-th datum. The sum of the squared algebraic
errors is minimized, as follows:

ĥ = argmin
h

n∑
i=1

||aih||2 = argmin
h
||Ah||2, (3)

where ‖ h ‖ = 1 and the matrix A ∈ R2N×9 is obtained by
vertically stacking the ai for all [1, n]. The global homogra-
phy Hg can be extrapolated from ĥ by calculating the least
significant right singular vector of A ∈ R2N×9.
In this section, we group the features to compute the

local homographies for different scene depth layers. First,
the feature points are divided into different layers using the
random sample consensus (RANSAC) algorithm [29], and
then, the homography of each layer is estimated. The set of
matching feature matching pairs in the k-th layer is denoted
by Fk , the number of matching pairs in the k-th layer is
|Fk |, and the corresponding homography of the k-th layer
is Hk . To limit the warping similarity of each layer, we set
a threshold Nmin, which represents the minimum number of
matching pairs that |Fk | must satisfy; otherwise, the process
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FIGURE 2. Summary of the proposed method. The hybrid warping model is used to accurately align and preserve the image structure, while the optimal
seam search based on seam error evaluation is conducted to search for the optimal seam.

FIGURE 3. Flowchart of the proposed image stitching approach.

will be terminated at the k-th layer. The specific process of
calculating the local homography corresponding to each layer
is illustrated in Algorithm 1.

2) LAYERED WARPING
We combine the local homography Hk of each layer with the
global homography Hg to obtain our layered warping result.
First, we divide the target image into a unifiedmesh ofM ×N
to improve our computing efficiency. Since arbitrary feature
points usually do not coincide with any mesh vertices, the
degree of dependence of themeshwarping on the local homo-
graphies of the different layers is determined in accordance
with the distance between the mesh center and the nearest
matching points of different feature layers.

The center of mesh cell gi is represented by ci, where i
represents the specific i-th mesh cell, and the homography of
mesh cell gi is represented by Hi. Under the assumption that
the feature points are finally separated into γ different layers,
the final homography of mesh cell i is expressed as:

Hi =
γ∑
k=2

ωikHk + (1−
γ∑
k=2

ωik )Hg, (4)

where ωik is the weight of each layer of homography in
the specified mesh. wi

k
= d i

k
/
∑
ϕ

d i
ϕ
, where d ik is a position-

dependent Gaussian weight

d i
k
= max
ϕ∈Fk

exp(
− ‖ ci − pϕ ‖2

σ 2 ), (5)

with σ being a scale constant.
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FIGURE 4. (a) the pϕ in the feature matching pair (pϕ, p′
ϕ ) is represented

by the bilinear interpolation weight of its four enclosing vertices. (b) p̂ϕ in
the warped target image is represented in the same way. (c) Local
coordinates of V̄1 in the triangle formed by V̄1, V̄2 and V̄3.

B. STRUCTURE-PRESERVING WARPING
The multi-homography method addresses the problem of the
alignment of image regions at different scene depths. How-
ever, structural dislocation may still exist in small local areas,
which especially salient line structures. Liu et al. applied a
content-preservingwarping (CPW)method in the video stabi-
lizationwork [9] and achieved satisfying results in local areas.
Inspired by this success, we use CPW to further align target
images pre-warped by multi-homography method. However,
in contrast to CPW, our proposed structure-preserving warp-
ing method introduces a global alignment term and a line
collinearity term to alleviate perspective distortion in large-
parallax images and preserve line structure alignment. In our
work, we use I , Ī and Î respectively to represent the target
images in three different stages—the input, the pre-warping
result and the final warping result and still use the mesh
divided on the target image in the previous stage to guide
the local warping of the image. The mesh vertices in I , Ī
and Î are denoted by Vi, V̄i and V̂i, respectively. Any point
p in the target image mesh can be represented by a linear
combination of four mesh vertices: Vi(P)= wiVi, where Vi =[
V 1
i ,V

2
i ,V

3
i ,V

4
i

]
denotes the four vertices of the mesh and

wi =
[
w1
i ,w

2
i ,w

3
i ,w

4
i

]T
denotes the weights assigned to each

mesh vertices in the bilinear interpolation calculation. Thus,
the point warping problem can be transformed into a mesh
warping problem based on the optimization of an objective
function. The energy terms contained in our proposed objec-
tive function are specified as follows:

1) LOCAL ALIGNMENT TERM Ep

Since feature points usually do not coincide with any mesh
vertices, a point pϕ can be represented by a 2D bilin-
ear interpolation of the four vertices of the smallest mesh
cell enclosing it (see Fig. 4-(a)). For the warped ver-
tices V̂i =

[
V̂ 1
i , V̂

2
i , V̂

3
i , V̂

4
i

]
, we expect to use the same

weights to represent the corresponding point p̂ϕ after warp-
ing (see Fig. 4-(b)). To align the feature points pϕ and p̂ϕ ,
we define the local alignment term to minimize the following
distance:

Ep =
n∑
ϕ

χϕ ‖wiV̂i − p̂ϕ ‖2, (6)

where n is the size of the matching feature set and χϕ is the
weight of the corresponding feature point.

2) GLOBAL ALIGNMENT TERM Eg

To force regions without feature points to be closer to the pre-
warping result Ī , we define the following global alignment
terms to constrain excessive movement of the mesh vertices
in nonoverlapping regions,

Eg =
∑
i

τi ‖V̂i − V̄i ‖2, (7)

where V̄i and V̂i are the corresponding mesh vertices in the
pre-warping and structure-preserving warping results. τi is a
binary value. We set this binary value to 1 if there is a feature
point or an extracted line structure in the neighborhood of Vi;
otherwise, it is set to 0.

3) SMOOTHNESS TERM Es

We use the similarity transform-ation constraint from
CPW [9] to preserve the similarity of each mesh
transformation while reducing the local distortion of the
image during the warping process. The similarity transfor-
mation constraint measures the deviation of the similarity
transformation between each twisted mesh element and its
reference input mesh element. Each mesh cell is divided
into two triangles. As shown in Fig. 4-(c), for each triangle
1V̄1V̄2V̄3, the specific position of vertex V̄1 in the local
coordinate system can be represented in terms of vertices
V̄2, V̄3 as follows:

V̄1 = V̄2 + u(V̄3 − V̄2)+ vR90(V̄3 − V̄2),

R90 =
[

0 1
−1 0

]
, (8)

where (u, v) denotes the local coordinates of V̄1. The local
coordinates of the new vertex V̂1 are still represented in terms
of V̂2, V̂3. We want the deformation of each element in the
mesh to approximate a similarity transformation. Therefore,
we can guide the similarity transformation of a given triangle
by minimizing the following similarity transformation cost
term while preserving the spatial smoothness of the mesh cell
warping.

Es =
∑
i

8∑
j=0

ws ‖ V̂1,j

−

(
V̂2,j + u(V̂3,j − V̂2,j)+ vR90(V̂3,j − V̂2,j)

)
‖
2, (9)

where u and v are calculated in accordance with (8). and ws
is the saliency value of the triangle; we use the method in
CPW [9] to measure the saliency of the triangle. Note that
there are a total of four quadrangles containing V̂1 vertexes,
and each quad has two such triangles. We consider all eight
triangles containing vertex V̂i and apply the corresponding
similarity transformation to each triangle.

4) LINE COLLINEARITY TERM El
The process of mesh warping destroys the overall structure
of a line. Therefore, it is necessary to add a line collinearity
energy term to preserve the collinearity of the points on a line
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after warping. Since long lines can be divided into short lines,
the tension of long lines in an image can be enhanced by using
the collinearity of corresponding short lines. First, we use the
linear segment detector (LSD) [30] to detect line segments
and then remove shorter lines. Let SI be the set of straight-line
segments in image I .We assign the labels

{
sl1, sl2, sl3 · · · slη

}
to represent the endpoints of the short line segments into
which the straight-line segment sl is divided, and any sly1 , sly22
and sly33 satisfy the following line segment proportions:

r ly =
|sly2 − sly1 |
|sly3 − sly1 |

, (10)

where r ly ∈ (0, 1). To preserve the proportion and orienta-
tion of the collinear line segments after the final warping,
we define the line collinearity term as follows:

El =
|SI |∑
l=1

∑
y

‖ (ŝly2 − ŝly1 )−r ly(ŝly3 − ŝly1 ) ‖2, (11)

where |SI | represents the number of straight-line segments
in the set SI and y is over all three-point combinations for
the warped line in Î . The squared difference represents the
distance between the different end points of the scaled warped
collinear segment.

5) OBJECTIVE FUNCTION E
Based on the above four energy terms, the objective function
is constructed as follows:

E = Ep + λ1Eg + λ2Es + λ3El, (12)

where λ1, λ2 and λ3 are weight factors that control the contri-
bution of each energy term (λ1 = 1, λ2 = 0.5 and λ3 = 10 in
our implementation). The problem of minimizing the above
objective function can be solved by a sparse linear solver.

C. OPTIMAL SEAM SEARCH
The seam cutting method is widely used to alleviate the arti-
facts caused by local dislocations of parallax images. Existing
seam quality assessment methods are usually formulated in
terms of energy minimization. However, in large-parallax
image stitching, seam quality assessment methods that com-
pletely rely on energy minimization cannot find an optimal
seam consistent with human visual perception. Therefore,
this paper introduces an optimal seam search method based
on a seam error evaluation to improve seam quality and
reduce the parallax in overlapping areas. The details of the
method are as follows.

We use N to represent the overlapping area between images
I and I ′, define a label set L = {0,1}, and assign a label lp ∈
L to each pixel pi of the seam within the overlapping area,
where 0 corresponds to I and 1 corresponds to I ′. The goal
of traditional seam cutting methods is to find a set of labels
l (i.e., a mapping from p to L) that minimizes the following
energy function:

E(l) =
∑
p∈N

Dp(lp)+
∑

(p,q)∈Z

Sp,q(lp, lq), (13)

where Z ⊂ N × N is the collection of neighborhood pixels,
the data term Dp(lp) represents the penalty term for assigning
label lp to a pixel p ∈ N, and the seam smoothing term
Sp,q(lp, lq) represents the cost of assigning a pair of labels
(lp, lq) to a pair of pixels (p, q). The seam smoothing term
is defined as:

Sp,q(lp, lq) =
1
2
|lp − lq|(I∗(p)+ I∗(q)), (14)

I∗(p)||I (·)− I ′(·)||2 (15)

where I∗(·) denotes the Euclidean-metric difference map.
Please refer to [31] for more details about the minimization
solution for the energy function in (13).

The goal of the hybrid warping model is to achieve the
precise alignment of different depth regions while preserving
local and global structural similarity. Then, we compute the
structural similarity index (SSIM) score [32] and zero mean
normalized cross- correlation (ZNCC) score to evaluate the
pixel errors along the seams. We define a 17× 17 local patch
centered on the pixel of the seam and define the local patch
cost of the pixel as:

Epatch(pi) =
2− (SSIM(pi)+ κZNCC(pi))

4
, (16)

where the index value range of SSIM and ZNCC is [−1, 1],
and their values are 1 only when the two patches are exactly
the same. κ is a weighting factor (κ = 0.35).
For large-parallax images capturing different scene depths,

relying on the local patch cost to evaluate seam pixel errors
at the edges of different depth layers may result in erroneous
evaluations. Thus, point cost terms are added along the seam
pixels to refine the seam error estimation.

Epoint(pi) =
‖ I (pi)− I ′(pi) ‖ + ‖ I (qi)− I ′(qi) ‖

2
, (17)

where pi and qi represent adjacent pixels in the overlapping
region. The point cost term is used to measure the difference
between the pixels on both sides of the seam to effectively
solve the problem of incorrect evaluation of local patches.
Experimentally, it is found that this analysis based on local
patches endows the local image with better ‘‘continuity,’’
and the point cost term plays an important role in the pixel
evaluation at edges in the image. The patch cost and point
cost have the same monotonicity when significant errors are
produced by the developed seam error assessment method:

E(pi) = ζ · Êpatch(pi) · Êpoint(pi), (18)

where Ê is the denoised costs and ζ is an error scale preser-
vation coefficient. With the above seam error evaluation
method, we adopt an iterative updating approach to find the
optimal seam. Large seam errors usually indicate misaligned
pixels. Thus, in the optimal seam search process, we adjust
the smoothing cost of misaligned pixels at the seam by modi-
fying the function f (x) = eσ (x−ε). Specifically, we define the
following function to calculate the update smoothing term:

Ĩd (pi) =

{
f (E(pi)) · Id (p), p ∈ N(seam),
Id (p), otherwise.

(19)
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FIGURE 5. The datasets used for the ablation experiments in this paper,
from left to right are the ‘‘Fence,’’ ‘‘Sidewalk,’’ and ‘‘House’’ images from
Lin [6].

where N (seam) is the strip area obtained by extending the
left and right sides of the current seam by 5 pixels. Then, the
modified function is used to estimate the seam energy. This
procedure is iterated multiple times until currently estimated
seam is completely contained within the previous seam strip
region; then, the search for a new seam is terminated, and the
current seam is considered the optimal seam.

Fig. 3 illustrates the flow of the proposed method and the
related algorithms. The hybrid warping model consists of
two parts: including coarse warping, which considers dif-
ferent scene depth layers and fine warping, in which the
mesh changes are optimized using structure-preserving con-
straints. In the coarse warping stage, the matching feature
points are first divided into different depth layers; then,
the homographies of the different layers are obtained; and
finally uses formula (4) to calculate the local homography
to obtain the pre-warping image Ī . The objective function
for structure-preserving optimization is composed of local
alignment error, global alignment error, local similarity error,
and line collinearity error terms.We regard the imagewarping
problem as a mesh warping problem, which is defined as an
optimization problem. The goal is to align the pre-warping
image Ī to the reference image while avoiding significant
structural distortion. The representation illustrated in Fig. 4 is
used to adjust the relationships between each mesh vertex and
corresponding mesh points through the structure preserving
optimization item, and thus, the final warping image Î is
obtained. Finally, the image is stitched by iteratively search-
ing for the optimal seam to minimize the seam error to reduce
artifacts in the overlapping area, which is difficult to achieve
with pixel fusion methods.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
Weused 18 pairs of test images to evaluate the performance of
the proposed image stitching algorithm. The dataset sources
include image data published in [6], [10], [22], [33], and the
data can be found on corresponding project websites or in
their supplementary materials. In addition, three real-world
image sets were captured by our group.We compared the per-
formance of the proposed algorithm with that of five existing
algorithms: APAP [4], ELA [19], GSP [21], SPHP [23] and
SPW [24]. The parameters of the algorithms considered for
comparison were set in accordance with the suggestions in
the original papers. The experiments were conducted on a PC
with an Intel I7-11800h 2.3 GHz CPU and 16 GB of RAM.

FIGURE 6. Ablation study on the ‘‘Sidewalk,’’ and ‘‘Fence’’ images. The
first column from top to bottom shows the results of our method without
the structure-preserving term (top), and our method without the line
collinearity term (bottom). The second column shows the results of our
full method. The yellow boxes show the distortion and misalignment
caused by the lack of structure-preserving warping, and the green boxes
show images with a more natural and reasonable appearance.

FIGURE 7. Results of the ablation experiment on the ‘‘Street’’ image. The
first row shows the results of our method without the optimal seam
search, where the red box shows the clipping and ghosting caused by
parallax. The second row shows the result of our optimal seam stitching
method, where the green box shows the same image region as the red
box but with a more natural and reasonable appearance.

A. ABLATION STUDY
To better test and evaluate the performance of each com-
ponent of the algorithm, we conducted an ablation experi-
ment. In this experiment test images, including the ‘‘Fence,’’
‘‘Sidewalk,’’ and ‘‘House’’ images from Lin [6] (see Fig. 5).
The results verify the unique contributions of the structure-
preserving warping, the linear collinearity term and the opti-
mal seam search. More details are shown in Fig. 6 and Fig. 7.
We summarize the main results of the ablation experiments
as follows:

1) Structure-preserving warping refines local alignment
and preserves salient scene structures during warping.

2) The line collinearity term is key for preserving the
overall structure of lines.

3) The optimal seam search method based on the seam
error evaluation improves the quality of the seams and
introduces fewer artifacts.
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FIGURE 8. The dataset used in the comparison experiments in this paper. The 01-03 image data pairs (‘‘Landmark,’’ ‘‘Granite,’’ and ‘‘Water pipe’’) were
captured by our group, the 04-05 image data pairs (‘‘Bike’’ and ‘‘Graffiti building’’) from [33] and [22], and the comparative experiment on the 01-05 data
groups demonstrates the advantages and disadvantages of each algorithm in detail. The 06-15 image data pairs from [10], from top to bottom, are the
‘‘Truck,’’ ‘‘Boat,’’ ‘‘Lawn,’’ ‘‘Propeller,’’ ‘‘Building,’’ ‘‘Seattle,’’ ‘‘Carpark,’’ ‘‘Submarine,’’ ‘‘Building group,’’ and ‘‘Garden’’ images, and these data are used for
a secondary proof.

As shown in Fig. 6, the layered warping process can align
image regions at different depth layers but cannot constrain
the local shape warping results in the images; e.g., without
structure-preserving warping, the tops of the streetlights in
the ‘‘Sidewalk’’ image suffer from obvious distortion. Sec-
ond, the introduction of the line collinearity term into the
structure-preserving warping process helps preserve the over-
all structure of lines in large-parallax images. For example,
without line collinearity constraint, the foreground objects
in the ‘‘Fence’’ image suffer from significant misalignment.
We conclude that the proposed hybrid warpingmodel can bet-
ter align local objects at different scene depths and preserve
structural stability when dealing with large-parallax images
(the second column). As shown in Fig. 7, when there is partial
occlusion in the foreground of the large-parallax image, our
optimal seam search still finds the visually perceptual optimal
seam (second row) and alleviates the artifacts introduced by
traditional seam cutting methods and other seam drivenmeth-
ods (first row). These comparative experiments show that our
method preserves salient scene structures during warping and
produces high-quality seams.

B. COMPARISON WITH EXISTING METHODS
To further evaluate the performance of our proposed method,
we compare it with five existing algorithms, namely APAP
[4], ELA [19], GSP [21], SPHP [23] and SPW [24]. APAP
uses spatial distance weighting and the moving DLT method
to calculate the warping of the image mesh cells. ELA adap-
tively aligns grid cells by using analytical warping functions
and Bayesian feature refinement models. GSP utilizes a grid-
based local alignment model and a global similarity prior
to control image warping. SPHP extrapolates the projective
transformation from an overlapping region to at nonover-
lapping region by combining the projection transform and
the similarity transform in space to reduce the distortion in

nonoverlapping regions. SPW uses single-perspective warps
to preserve linear structures while suppress distortion.

Among the experimental images (see Fig. 8), the image
data pairs 01–03 (‘‘Landmark,’’ ‘‘Granite,’’ and ‘‘Water
pipe’’) were collected by our group; image data pairs 04 and
05 (‘‘Bike’’ and ‘‘Graffiti building’’) were obtained from
[33] and [22], respectively; and image data pairs 06–15 were
obtained from [10]. We used the first 5 pairs of images
as the first group of test data and the rest as the second
group of test data. The scene depth characteristics of the first
group (01–05) of test images are not complicated, but the
parallax caused by the variability of the capture positions
and angles makes image warping and fusion challenging.
As seen in Fig. 9, these comparative experiments show that
existing methods cannot accurately align foreground objects
at different scene depths and produce severe ghosting artifacts
in overlapping areas, such as the silver object in the ‘‘Land-
mark’’ image, the granite in the ‘‘Granite’’ image, the water
pipe object in the ‘‘Water pipe’’ image and the graffiti pattern
in ‘‘Graffiti building’’ image. In addition, although the win-
dow in the background of the ‘‘Bike’’ image is well aligned by
the existing methods, the bicycle wheels in the stitched image
are incorrectly aligned. Moreover, the background regions in
both the ‘‘Granite’’ image stitched with GSP and the ‘‘Graffiti
building’’ images stitched with ELA and GSP are distorted.

In contrast, to reduce the distortion of the background
objects in each image, our method takes into account different
scene depth layers through layered warping and adaptively
optimizes the local warping through structure-preserving
warping. Finally, we apply our optimal seam search method
to improve the seam quality and reduce the ghosting artifacts
caused by parallax effects. As shown in Fig. 9, our method
results in natural and reasonable appear-ance for the granite
object in the ‘‘Granite’’ image, the water pipe object in the
‘‘Water pipe’’ image and the graffiti pattern in the ‘‘Graffiti
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FIGURE 9. The results of our method on the first group of test data for comparison with those of the five existing methods: APAP [4], ELA [19], GSP [21],
SPHP [23] and SPW [24]. From top to bottom are the ‘‘Landmark,’’ ‘‘Granite,’’ ‘‘Water pipe,’’ ‘‘Bike,’’ and ‘‘Graffiti building’’ images are shown.

TABLE 1. Comparison on PSNR and SSIM.

building’’ image. The warping of background objects, such
as the background buildings in the ‘‘Graffiti building’’ and
‘‘Granite’’ images, also looks more natural.

The images in the second group of test data (06–15)
contain various objects at different depths of field, which
makes it more challenging to obtain natural and aesthetically
pleasing stitching results. The results of the corresponding
comparative experiments are shown in Fig. 10. Due to the

small parallax in the ‘‘Propeller’’ and ‘‘Carpark’’ images, the
existing methods can produce acceptable results. However,
because the pixels of some foreground objects in the reference
image and the target image do not satisfy the requirements
of the neighborhood operation, these foreground objects at
different scene depths exhibit different degrees of ghost-
ing artifacts when the existing methods are used. Examples
include the truck object in the ‘‘Truck’’ image, the flower
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FIGURE 10. The results of our method on the second group of test data for comparison with those of the five existing methods: APAP [4], ELA [19], GSP
[21], SPHP [23] and SPW [24]. From top to bottom are the ‘‘Truck,’’ ‘‘Boat,’’ ‘‘Lawn,’’ ‘‘Propeller,’’ ‘‘Building,’’ ‘‘Seattle,’’ ‘‘Carpark,’’ ‘‘Submarine,’’ ‘‘Building
group,’’ and ‘‘Garden’’ images are shown.

region of the ‘‘Lawn’’ image, the umbrella object in the
‘‘Building’’ image, the red object in the ‘‘Seattle’’ image,
the car in the ‘‘Carpark’’ image, the iron bracket region in
the ‘‘Submarine’’ image, the top of the skyscraper in the
‘‘Building group’’ image, and the top of the pavilion in the
‘‘Garden’’ image.

In addition, the line structures are distorted in the mesh
warping method, e.g., the mast in the ‘‘Boat’’ image and the
pillar part in the ‘‘Garden’’ image. On the other hand, our
pro-posed hybrid warping model can align both local and
global structures while the exploiting an optimal seam search
to effectively avoid ghosting artifacts on foreground objects,
e.g., the red object in the ‘‘Seattle’’ image and the top of the
skyscraper in the ‘‘Building group’’ image.

Furthermore, we compute the SSIM score [32] and PSNR
score to quantitatively evaluate the stitching quality of the

FIGURE 11. Quantitative performance comparison of the image stitching
results of the different algorithms. (a): Average PSNR. (b): Average SSIM.

different methods: the results are shown in Table 1. Consid-
ering the diversity of the test data, we also compute the mean
values to compare the SSIM and PSNR scores. The average
PSNR scores obtained by APAP, ELA, GSP, SPHP, SPW,
and our method are 24.6029, 22.0074, 23.9175, 22.7954,
24.0689 and 28.1234, respectively (see Fig. 11-(a)), and the
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average SSIM scores are 0.6785, 0.6340, 0.7475, 0.6924,
0.7501 and 0.8927 (see Fig. 11-(b)). These results show that
our algorithm achieves satisfactory scores in terms of both the
SSIM and PSNR metrics.

V. CONCLUSION
In this paper, we study a new hybrid warping model based on
multi-homography and structure preservation. Layered warp-
ing is performed based on the spatial relationship between
the image mesh and the multi-homography to achieve precise
alignment of image regions at different depths. Both local and
global structures are preserved during warping by structure-
preserving warping. Finally, we apply an optimal seam search
method based on seam error evaluation to improve the seam
quality. On test images with challenging degrees of parallax,
we compared the results of our method with those of the
APAP, ELA, GSP, SPHP and SPWmethods. The experimen-
tal results show that the method achieves accurate stitching
results for large parallax images and outperform some state-
of-the-art warping algorithms in both qualitative and quanti-
tative aspects. However, there is still no clear improvement
in the stitching efficiency. In future work, we will incor-
porate deep learning to optimize the alignment of different
depth layers in imaged scenes. We will also conduct a study
of curvilinear structural preservation using linear features.
Moreover, we will investigate the use of an end-to-end image
stitching network to improve processing efficiency.
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