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ABSTRACT Voltage sag is one of the most harmful power quality issues. In practical engineering,
harmonic and noise interference problems will bring big challenges to the analysis of voltage signals.
These disturbances can easily lead to a delay or even false detection of the voltage signal. To address this
problem, adaptive processing and diagnosis methods of the voltage signal, such as the Empirical Mode
Decomposition (EMD) and the Variational Mode Decomposition (VMD), have become a research hotspot.
In order to overcome the interference of voltage harmonic and achieve rapid voltage sag detection, this paper
first analyzes the performance of EMD and VMD in decomposing voltage sag signals. Then, a tailored
EMD-based adaptive voltage signal expansion method for real-time voltage sag detection is proposed. The
sampling voltage signal is automatically expanded using the real-time voltage signal to achieve the rapid
detection of voltage sag under complex operational environments. Numerical results demonstrate that the
proposed method can detect the voltage sag within 1 millisecond.

INDEX TERMS Power quality, voltage sag, tailored empirical mode decomposition, Hilbert transform.

I. INTRODUCTION
The power quality problems have plagued industrial pro-
duction for a long time. With the rapid development of
the social output, power quality problems have become the
focus of public attention. Intermittent distributed generation,
nonlinear loads, and various power electronic devices make
power quality problems the main challenges for power grids.
At the same time, with the rapid development of computer and
digital technology, intelligent control technology, precision
machining, manufacturing technology, and related industries,
more sensitive loads have appeared in the power grid, which
has caused the importance of power quality issues to become
increasingly prominent [1].

The voltage sag problem is one of the most severe
power quality problems [2], [3]. Power quality management
devices, such as Dynamic Voltage Regulator (DVR) and
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Uninterrupted Power Supply (UPS), will often be used to
solve voltage sag. The transient disturbance detection and
identification technology is the prerequisite for achieving
voltage sag treatment. Recently, some researches [4] and [5]
focus on voltage sag detection, but the identification time is
usually within 5ms. For conventional loads, this detection
time is acceptable. While for precision loads, such as
MOCVD and lithography machines, this detection time is
too long. It is particularly crucial to achieving real-time
monitoring and analysis of voltage signals. Meanwhile, the
voltage harmonics also significantly impact the effectiveness
of voltage sag detection. Therefore, a fast and effective signal
processing method is necessary to extract fault information
from voltage signals [6]–[8].

Based on the requirements above, various signal pro-
cessing tools have been proposed in many documents,
which can be used for automatic anomaly detection and
fault feature extraction of the voltage signal. Among these
detection methods, the Root-Mean-Square (RMS) method

80138 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-5769-1557
https://orcid.org/0000-0003-3767-3981
https://orcid.org/0000-0003-4154-5587


H. Li et al.: Automatic Expansion of Voltage Signals Using EMD for Voltage Sag Detection

is recommended in the standards [9], [10]. This method is
nearly based on stationary assumptions and is widely used
in many fields. Although using the RMS value to detect the
voltage sag is simple and easy to implement in principle, it’s
prone to delay and susceptible to interferencewhen extracting
the characteristics of the voltage signal. For instance, in many
cases when the voltage sag occurs, the RMS value of the
voltage needs transition time to decrease to a specific value,
and it will not decrease immediately. Similarly, the RMS
value of the voltage will not be restored immediately after
the fault is removed, which may cause errors in the detection
of voltage sag. In addition, the standards also propose the use
of Fast Fourier Transform (FFT). Still, due to the ambiguity
of the voltage information in the transient when the voltage
sag occurs and ends, FFT has shortcomings such as spectrum
leakage and loss of time information.

The Wavelet Transform (WT) has been proposed in
the literature [11], [12], which is also a commonly used
method for signal analysis. WT analysis can provide uniform
resolution for all signal scales, and it is the advantage that
can make WT more efficient in processing signals with
gradually changing frequencies. The most important step of
WT is to determine the mother wavelet and the number of
decomposition levels, but the choice is often subjective and
difficult. Another shortage of the WT analysis is its non-
adaptive feature. Discrete Wavelet Transform (DWT) and
Maximum Overlap Discrete Wavelet Transform (MODWT)
are also proposed for voltage disturbance detection [13], [14].
They can decompose the sampled signal into scale coeffi-
cients and wavelet coefficients, which can be analyzed to
determine when the voltage sag starts and ends. Similarly, the
crucial step of DWT or MDOWT is the choice of the mother
wavelet, which affects the calculation of coefficients to a
large extent [15], [16]. The Wigner-Ville distribution is also
referred to as the Heisenberg wavelet and has been widely
used in electrical engineering. The biggest disadvantage
of this wavelet is that there will be severe cross-terms in
some frequency ranges of the signal, which manifests as the
existence of negative power [17].

In [18], [19], different detection methods are compared
and analyzed in terms of detection accuracy and real-time
performance, such as Kalman Filter (KF), FFT, DFT, and
so on. The advantage of KF is that it can resist noise
interference better. Still, its computational complexity will
change with the influence of harmonics, and KF cannot
track the fundamental voltage signal. Comparative analysis
shows that almost all time-domain detection methods cannot
completely overcome the interference of harmonics and
noise, and they cannot give accurate results when the
interference exists. At this time, an additional filter is needed
to assist in extracting the fundamental voltage signal, but this
will cause the phase delay of the voltage signal so that it
cannot provide accurate phase jump information, which is
an essential parameter for some devices. Besides, the results
show that each method has a considerable time latency for
detecting the voltage sag [20].

In recent years, the adaptive processing of signals has
become popular research. Due to the characteristics of adap-
tive decomposition, extensive research has been conducted
on the adaptive signal decomposition methods, including
Empirical Mode Decomposition (EMD), Variational Mode
Decomposition (VMD), etc. Among these methods, EMD is
the earliest adaptive signal decomposition method proposed
by Huang et al. [21] applied EMD to vibration signal analysis
in gearbox fault location diagnosis, Liu et al. EMD is a
multi-resolution, adaptive time-frequency domain analysis
tool, which has been proved as an efficient tool for voltage
signal decomposition and analysis in [22]–[25], during the
frequency variations and in the presence of noise. It allows
the voltage signal to be decomposed into a finite number
of intrinsic modal functions (IMFs) and a residual trend.
Two definitions are used to choose the IMFs: the number
of extreme values and zero crossings must be equal or
differ by at most one in the entire dataset; the average
value of the envelope defined by the local maximum and
the envelope defined by the local minimum is zero at
any time. In addition, to overcome the problems of mode
mixing in EMD, EMD has also been improved in recent
years, such as the Ensemble Empirical Mode Decomposition
(EEMD) [26]–[28], etc. EEMD improves the decomposition
ability by addingGaussianwhite noise and obtainingmultiple
averages. [29] combined EEMDwith wavelet neural network
to identify the faults of locomotive rolling bearings. But
the voltage signal is not particularly complex; EEMD is
too computationally expensive for voltage signal detection.
On the other hand, Variational mode decomposition (VMD)
is also an adaptive signal decomposition method, which can
adaptively decompose a signal into several quasi-orthogonal
bandwidth-limited intrinsic mode functions (BLIMFs). Each
mode is tightly restricted within the frequency band near
the center frequency in the spectral domain [30]. VMD
method has shown a strong ability to solve the problems of
mode mixing and misclassification. In some cases, VMD
can extract signal features better than EMD and EEMD.
Therefore, lots of studies have been conducted on VMD since
it was put forward. In [31], the VMDwas improved to extract
weak bearing repetitive transient signals. VMD depends
heavily on preset parameters, including mode number and
bandwidth control parameters. Thus, choosing appropriate
parameters to optimize the performance of VMD is crucial.

Adaptive decomposition can reflect the underlying oscil-
latory properties of the signals. Both EMD and VMD are
commonly used in the analysis of voltage signals. Each
signal can be decomposed into components with different
frequencies by these two methods, and the instantaneous
amplitude and instantaneous frequency of each component
can be extracted using the Hilbert transform. The power
frequency component can be extracted from them, which
enables the detection and analysis of the signal. Therefore,
we must choose a suitable method, which will be more
efficient, depending on the spectrum of signals to be
analyzed. However, EMD and VMD have not been applied to
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real-time voltage signal detection due to their characteristics,
which will be discussed later.

This paper focuses on the voltage detection problem for
power quality management devices, such as DVR and UPS.
The existing voltage detection algorithms aremainly based on
the voltage root mean square value, the instantaneous voltage
value, and the DQ transformation method of coordinates.
However, these kinds of methods cannot overcome the
voltage harmonic interference, which will delay the detection
of the voltage. In order to overcome the interference of
voltage harmonic and achieve rapid voltage sag detection,
this paper proposes a tailored EMD-based adaptive real-
time voltage signal expansion method for real-time voltage
sag detection. Numerical simulations demonstrate that the
proposed method has great performance in extracting voltage
sag features under complex operational environments and can
detect the voltage sag within 1 millisecond. The contributions
are summarized as follows:

1) A tailored EMD-based adaptive real-time voltage
signal detection method is proposed. As a result, the
sampling voltage signal can be automatically expanded
using the real-time voltage signal to achieve the rapid
detection of voltage sag. To the best of our knowledge,
this is the first application of EMD in the field of
real-time voltage signal detection for power quality
management devices.

2) Although some of the existing real-time voltage signal
detection methods, such as RMS, can also detect
voltage sag, they cannot overcome the interference
of voltage harmonics well. The proposed tailored
EMD-based adaptive real-time voltage signal detection
method can overcome the endpoint effect and the
interference of voltage harmonics, achieving great
performance in extracting voltage sag features under
complex operational environments.

The remainder of this paper is organized as follows.
Section II briefly introduces the mathematical principles of
EMD, VMD and Hilbert transform. Section III compares
and analyzes the ability of EMD and VMD in decomposing
voltage signals. Section IV proposes an improved EMD-
based adaptive voltage signal expansion method for real-time
voltage sag detection. Numerical results and conclusions are
drawn in Sections V and VI.

II. PRINCIPLES OF MATHEMATICS
This section summarizes the basic mathematical principles of
EMD,VMD, andHilbert transform in voltage signal analysis.

A. EMPIRICAL MODE DECOMPOSITION (EMD)
The EMD can decompose any signal into a series of simple
intrinsic modes of oscillations. Each oscillation mode is
represented by an intrinsic mode function (IMF) with the
following definitions [21]:

1) In the entire dataset, the number of extreme values and
zero crossings must be equal or differ by at most one.

2) At any point, the average value of the envelope is
defined by the local maximum, and the envelope
defined by the local minimum is zero.

EMD can be done using the steps given below.
1. First, find the local maxima and local minima points of

the analyzed signal x(t) and mark them.
2. Then connect all the local maxima by a cubic spline to

obtain the envelope of the maxima curve pmax(t). Repeat the
procedure for the local minima to produce the lower envelope
pmin(t).
3. Compute the mean of the envelopes m(t).

m (t) =
pmax (t)+ pmin(t)

2
(1)

4. Extract the first potential IMF (Proto-mode function)
c1(t).

c1 (t) = x (t)− m(t) (2)

5. Whether c1(t) satisfy the definitions of IMF. And if c1(t)
doesn’t satisfy the definitions, then replace x(t) with c1(t)
and repeat steps 1 to 4 until the calculated c1(t) meets the
definitions. Determine c1(t) as IMF-1.

6. Separate c1(t) from x(t) to obtain the residue r1(t).

r1(t) = x (t)− c1(t) (3)

The sifting process of EMD can be stopped when the
residue r1(t) becomes a monotonic function from which no
more IMFs can be extracted. If not, r1(t) is treated as the new
data and subjected to the same sifting process described above
to obtain a new IMF and a new residue.

After signal decomposition, the original signal x (t) can be
reconstructed as:

x (t) =
∑n

i=1
ci(t)+ rn(t) (4)

After that, we can process these components separately.

B. VARIATIONAL MODE DECOMPOSITION (VMD)
The VMD can adaptively decompose the original signal x (t)
into a series of modes bk (t), each mode bk (t) vibrates closely
around a center frequency fk [30].
VMD is the search for the optimal solution of the

following constrained variational modes. Specifically, the
decomposition process of VMD is to solve the constrained
variational problem and the constrained variational problem
of signal x (t) is:

min
{bk },{fk }

{∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)
× bk (t)

]
e−jfk t

∥∥∥∥ 2

2

}
(5)∑

k

bk = x (t) (6)

among them, {bk} = {b1, b2, · · · , bK } represents the set
of K modal components in total, and {fk} is the set of
corresponding center frequencies for each mode, δ(t) is Dirac
distribution.
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By introducing the augmented Lagrangian L, the con-
strained variational problem above can be transformed as
follows:

L ({bk} , {fk} , λ)

= α
∑
k

∥∥∥∥∂t [(δ (t)+ j
π t

)
× bk (t)

]
e−jfk t

∥∥∥∥ 2

2

+

∥∥∥∥∥x (t)−∑
k

bk (t)

∥∥∥∥∥
2

2

+〈λ(t), x(t)−
∑
−kbk (t) 〉 (7)

where λ is Dual ascent and α is the Lagrange multiplier.
The process of updating bk and fk from equation (7) is

summarized as follows:
1.
{
b̂1k
}
and

{
f̂ 1k
}
, λ̂1 are initialized.

2. Dual ascent λ should update for all f ≥ 0.

λ̂n+1 (f ) = λ̂n (f )+ τ

(
x̂ (f )−

∑
k

b̂n+1k (f )

)
(8)

3. Next, each mode needs to be updated iteratively in turn
for all f ≥ 0.

b̂n+1k (f ) =
x̂ (f )−

∑
i<k b̂

n+1
i (f )−

∑
i>k b̂

n
i (f )+

λ̂n(f )
2

1+ 2α
(
f − f nk

)2
(9)

where n represents the number of iterations.
4. At the same time, the update of frequency can be

expressed as:

f n+1k =

∫
∞

0 f
∣∣∣b̂n+1k (f )

∣∣∣2df∫
∞

0

∣∣∣b̂n+1k (f )
∣∣∣2 df (10)

The stoppage criterion of the iterative update:∑
k

∥∥∥b̂n+1k − b̂nk
∥∥∥2
2
/

∥∥∥b̂nk∥∥∥22 < ε (11)

Through the decomposition above, the signal x (t) is decom-
posed into a series of modes bk around the corresponding
center frequency fk .

C. HILBERT TRANSFORM (HT)
The complex conjugate y(t) of any real-valued function c (t)
can be determined through Hilbert Transform [32].

For arbitrary time series c (t), the corresponding Hilbert
transform h(t) is as follows:

h (t) =
1
π
PV

∫
+∞

−∞

c(τ )
t − τ

dτ (12)

where the PV indicates the principal value of the singular
integral. With the Hilbert transform h(t), the analytic signal
y(t) can be expressed as:

y (t) = c (t)+ jh (t) = A (t) ejθ(t) (13)

FIGURE 1. Topology of parallel switched DVR.

Here, A (t) represents the instantaneous amplitude and θ (t)
represents instantaneous phase angle.

Through the summarization above, EMD and VMD can
decompose the input signal into various oscillation modes
with different amplitude and frequencies. We can use Hilbert
Transform for eachmode to obtain the corresponding analytic
signal and extract the essential information. One of the
differences between EMD and VMD is that VMD can
specify the number of modes to be decomposed, while EMD
cannot. However, any differences or connections between
these modes will be studied and compared in the next section
through the analysis of voltage signals by both EMD and
VMD methods.

D. DYNAMIC VOLTAGE REGULATOR (DVR)
The DVR is mainly composed of inverters, output trans-
formers, static switches, and energy storage devices. The
figure below shows the topology of the parallel switching
DVR we studied. Parallel switching DVR is a new voltage
restorer that is currently the most advanced, with stronger
adaptability. Under normal circumstances, it works in the
thyristor conduction mode and directly supplies power to the
load from the power grid. When there is a short-term voltage
change, it switches to the inverter to supply power. If the
energy storage device chooses the supercapacitor system,
it can provide a second-level backup. And if the battery
system is used, it can manage long-term interruptions.

In order to achieve voltage sag control, it is necessary to
achieve fast voltage signal detection. The equipment we have
developed can quickly analyze and process voltage signals for
detection.

III. COMPARATIVE ANALYSIS OF EMD AND VMD IN
VOLTAGE SAG DETECTION
Although the EMD and VMD have been proposed and
applied to voltage signal analysis, their similarities and
differences in analyzing voltage signals have not been
thoroughly investigated. In order to better apply adaptive
processing technology in real-time voltage sag detection, this
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TABLE 1. Voltage signal parameters.

section compares and analyzes the performance of EMD and
VMD in decomposing voltage signals and voltage sag signals.

Firstly, we will test the performance of EMD and VMD
that depends on decomposing the different types of voltage
signals into intrinsic modes and compare the results. In [23]
and [33], high-amplitude harmonics are added to the voltage
signal on voltage signal detection, which is relatively easy to
analyze. In addition, through communication with equipment
manufacturers, the difficulty in voltage sag detection for DVR
andUPSmainly lies in the interference of the 3rd, 5th, and 7th
voltage harmonics [4], [5]; and only the voltage harmonics
below the seventh order will be considered in this paper.
Therefore, the relevant parameters of the tested voltage signal
are set as follows.

u (t) =
3∑
i=0

A2i+1 × sin(2π tf2i+1) (14)

where,
A1 is the amplitude of the fundamental voltage.
A3 is the amplitude of the third harmonic voltage.
A5 is the amplitude of the fifth harmonic voltage.
A7 is the amplitude of the seventh harmonic voltage.
f1 is the frequency of the fundamental voltage.
f3 is the frequency of the third harmonic voltage.
f5 is the frequency of the fifth harmonic voltage.
f7 is the frequency of the seventh harmonic voltage.

Using the standardized value for the amplitude to facilitate
the analysis. The parameters are set as shown in the table
below.

As shown in Figure2, the voltage signal of the fundamental
frequency is 50 Hz, with a sampling frequency of 10 kHz and
a time window of 0.41 seconds. In order to show the details
of the voltage waveform better, only the 100 milliseconds of
the waveform are captured in the figure below.

A. THE DECOMPOSITION OF THE VOLTAGE SIGNAL
Figure 3 and Figure 4 show the results that the voltage signal
has been decomposed by EMD and VMD, and the number
of modes for VMD is set to 5. As shown in the Figures, both
these two methods can decompose the voltage signal from
high to low frequency.

As shown in Figure 3, the number of IMFs decomposed
from the voltage signal by EMD is also 5. It could
be seen from Figure 4 that IMFs decomposed by VMD
nearly contain the fundamental voltage (IMF-5) and all
harmonic components (IMF-2 to IMF-4). But for EMD,
only the fundamental voltage (IMF-2) is decomposed from
the original signal, it could be found that the IMF-1 in
Figure 3 shows the total harmonic components if we observe
carefully. Hence the VMD method is more suitable to extract

FIGURE 2. Voltage signal.

FIGURE 3. Decomposition of the voltage signal by EMD.

high-frequency harmonic components from the voltage signal
than EMD.

However, all these modes decomposed by two methods
contain meaningless components such as IMF-3, IMF-4,
IMF-5 in Figure 3, and IMF-1 in Figure 4, which are caused
by endpoints.

Apart from this, the distortion at the endpoints of VMD
is more severe than EMD seen from the decomposed
meaningful voltage waveform in Figures 5 and 6.

The instantaneous frequency of each mode can be visual-
ized from the Hilbert transform, as shown in Figure 7 and
Figure 8. It can be seen that the frequency of mode IMF-2
decomposed by EMD is 50 Hz, and the frequencies of modes
IMF-2 to IMF-5 decomposed by VMD are 350Hz, 250 Hz,
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FIGURE 4. Decomposition of the voltage signal by VMD.

FIGURE 5. Endpoints of decomposition by EMD.

and 150 Hz, respectively. The results of decomposition above
are also confirmed in the Figures.

When the harmonic voltage has a high amplitude, it could
also be accessible for EMD to decompose the voltage signal
to extract information about the fundamental voltage and the

FIGURE 6. Endpoints of decomposition by VMD.

FIGURE 7. The frequency of IMFs (EMD).

high-frequency harmonic voltage. By comparison, the ability
to extract signals of VMD is better than EMD.

B. THE DECOMPOSITION OF THE VOLTAGE SAG SIGNAL
EMD and VMD have been shown to be able to decompose
the normal voltage signal into a series of modes. The
decomposition of the voltage sag signal could be tested in
this part. Most previous analyses of voltage sag have been
targeted at a deep and prolonged sag [24], which is the easiest
to be detected. Therefore, the depth of voltage sag is set to
25%, and the duration of sag is set to 34ms to check the
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FIGURE 8. The frequency of IMFs (VMD).

FIGURE 9. Voltage sag signal.

performance of these two methods better. Also, the depth of
the voltage sag uses the standardized value.

Firstly, considering the voltage sag occurs at the fundamen-
tal voltage.

sag1 = 0.25sin (2π f1t) (15)

And the time interval of sag is 0.103 seconds to 0.137 sec-
onds and the voltage signal us1 can be described as:

us1 (t) = u (t)− sag1 × (t ≥ 0.103&t ≤ 0.137) (16)

Figure 9 shows the voltage sag signal.
Using EMD and VMD to decompose the voltage sag

signal us1. The decomposition results have been shown in
Figure 10 and Figure 11.

It can be seen from Figure 10 that the voltage sag
signal is decomposed into 6 IMFs by EMD, which are one

FIGURE 10. Decomposition of the voltage sag signal by EMD.

more than normal, due to the occurrence of voltage sag
so that the extreme point configuration changes. Obviously,
the fundamental voltage (IMF-2) has experienced a sudden
change, and the amplitude of IMF-2 has been significantly
reduced. And IMF-1 has been a slight fluctuation in
Figure 10. The sudden change of the fundamental voltage will
make it easier to detect voltage sag quickly.

The number of IMFs decomposed by VMD is still 5 in
Figure 11. Besides, only the fundamental voltage (IMF-5)
has experienced a slight and smooth transition, and other
IMFs have been obvious mutations in Figure 11. Except for
the component IMF-1, which is meaningless, the seventh
harmonic voltage (IMF-2) has an abrupt drop when the sag
occurs and ends. The third harmonic voltage (IMF-4) is
just the opposite; it rises suddenly at the same moment.
Although the fluctuation of the fifth harmonic voltage (IMF-
3) is more subdued than IMF-2 and IMF-4, it is still more
obvious than the fluctuation of IMF-5. In other words, the sag
on the fundamental voltage will impact the high-frequency
harmonics. However, the slight and smooth transition process
of the fundamental voltage (IMF-5) may lead to errors and
delays in detection.

From the analysis of this section above, both EMD and
VMD can decompose signals and extract the fundamental
voltage, which is essential information for analysis. The
biggest difference in decomposition between EMD andVMD
is the harmonic signals. VMD can completely separate
all high-frequency harmonic components from the original
signal, even high-frequency harmonic components with a
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low amplitude. These components would experience obvious
fluctuations when a voltage sag occurs in the fundamental
voltage, which means VMD is sensitive to high-frequency
harmonic components. But EMD cannot extract high-
frequency harmonic components of low amplitude from the
signal and only shows the sum of harmonics.

Another important point to pay attention to is that the
modes decomposed by VMD have severe distortion at the
endpoints of the signal, which is extremely easy to cause
misjudgment of voltage detection. In contrast, the modes
decomposed by EMD with lesser distortion, although there
are endpoint effects. In fact, through repeated experiments,
it has been found that voltage signals with integer multiples
are usually more conducive to decomposition for EMD,
and the decomposed modes hardly contain meaningless
components.

IV. TAILORED EMD-BASED ADAPTIVE REAL-TIME
VOLTAGE SIGNAL EXPANSION METHOD
In the past, EMD and VMD analysis have been used to
monitor the entire signal and have not been applied in
the field of real-time detection. As can be seen from the
analysis in the previous part, the biggest limitation is that
both VMD and EMD are largely dependent on the signal
length. Especially for EMD, the decomposition result largely
depends on the selection of extreme points. In real-time
detection, it is necessary to determine the fault as quickly as
possible after the fault occurs. We can only obtain a signal
of 1 to 2 milliseconds or even shorter after the fault occurs.
In addition, EMD has severe end effects, which could result
in distortion of the extracted signal near the start and end
after the original signal is decomposed. Suppose such a short
fault signal is decomposed by using EMD. In that case,
it is easy to fail to decompose the fault signal or to make a
false diagnosis, even if more information about the original
signal before the fault is stored. These are important reasons
that limit the application of these two methods in real-time
detection.

The analysis of these two methods in the previous section
shows that the distortion of the modes decomposed by VMD
at the endpoints of the voltage signal is more severe than
EMD. Therefore, an EMD-based adaptive real-time voltage
signal expansion method for real-time voltage sag detection
is described in this section. The difficulty of applying EMD
to real-time detection lies in whether it can use limited
signal data to decompose fault characteristic components in
time when voltage sag occurs and must overcome endpoint
effects.

It can be seen from the analysis above, for EMD, each
IMF requires multiple ‘‘screening’’ processes, and for each
screening process, the local average value of the signal needs
to be calculated based on the upper and lower envelopes.
The upper (lower) envelope is obtained from the local
maximum (small) value of the signal through 3rd order spline
interpolation. Due to the number of extreme points near
the endpoints of the signal being limited, and the voltage

signal cannot be at the maximum or minimum value at the
endpoint at the same time, the upper and lower envelopes
will diverge at both ends of the data sequence, which results
in the information at the endpoints of the signal being
unavailable although the fundamental frequency voltage
signal can be decomposed by EMD. Therefore, when the
length of the characteristic sequence of the voltage signal at
the end is insufficient, EMD cannot accurately decompose the
corresponding characteristic waveform. The extreme point
continuation method is often used to solve this problem,
but it also can easily cause the abnormal decomposition of
EMD; that is, the fault waveform is incorrectly decomposed.
Based on this, we can consider adding a sequence of
waveforms at the end of the voltage signal to make up for
the shortcomings of insufficient information at the end and
extract the corresponding characteristics of the end of the
voltage signal. And because of the periodic characteristics
of the voltage signal, we can use the waveform information
of the previous cycle to supplement the end of the real-time
sampling signal, which can ensure the authenticity of the
voltage signal to the greatest extent.

Based on the analysis above, this paper proposes a tailored
EMD-based adaptive real-time voltage signal expansion
method for real-time voltage sag detection.

Insufficient signal length is the main cause of incomplete
decomposition; this paper proposes a method of automatic
expansion of voltage signals with the following steps:

Step 1: In sampling, about 1 cycle of voltage waveform
information P is stored in real-time;
Step 2: Obtain the amplitude A1 of voltage at the
endpoint a of the real-time sampling waveform;
Step 3: Determine the point b where the voltage
amplitude A1 is obtained for the first time in the
real-time stored waveform;
Step 4: Obtain the current time series value t(x) at point
b, and determine the point c at the time series value
t(x + 1);
Step 5: Intercept about the half-cycle waveform Q
starting from point c;
Step 6: The complete waveform W is obtained after
supplementing the waveform Q to point a.

Figure 12 is the explanatory diagram of the real-time
voltage signal expansion method. Figure 13 is the flow chart
of the method proposed in this paper.

We note that the configuration of the extreme points of the
expanded voltage signal will changewhen voltage sag occurs.
The detection and identification of voltage sag can be quickly
achieved by using this change.

Through expanding the voltage signal above, we can
briefly describe the voltage sag detection method proposed
in this paper as shown in the following block diagram.

As shown in Figure 14, the moduleM represents real-time
sampling and stores voltage signals about 1 cycle.

The module N represents that the voltage signal in module
M is expanded by the above-mentioned voltage signal
expansion method.
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FIGURE 11. Decomposition of the voltage sag signal by VMD.

FIGURE 12. Signal Expansion Illustration.

The module X represents that the voltage signal processed
by module N is decomposed by using EMD.

The judging module Z represents whether the fundamental
voltage component decomposed in module X is within the
set threshold range. If the fundamental component is within
the threshold range, it returns to module M ; and if the
fundamental component deviates from the threshold range,
it’s determined that voltage sag occurs.

As shown in the block diagram, it is judgedwhether voltage
sag occurs through the result output by module Z . After that,
the detection flow is repeated.

FIGURE 13. Flowchart of the adaptive real-time voltage signal expansion
method.

V. NUMERICAL RESULTS
A. THE DECOMPOSITION OF THE SHORT-TERM VOLTAGE
SIGNAL
First of all, the performance of EMD in decomposing
the voltage signal with a shorter length could be tested.
Intercepting a section of the voltage signal for decomposition,
and the voltage signal is described as:

u2 (t) = u(t)× (t ≥ 0.08&t ≤ 0.111) (17)

It can be shown in Figure 15.
Then this short-term voltage signal is decomposed using

EMD, which is shown in Figure 16. The dotted line in the
figure is the set threshold interval. The threshold interval is
set as follows.
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FIGURE 14. Block of the voltage sag detection based on voltage signal
expansion and EMD.

FIGURE 15. Short-term voltage signal.

The upper threshold is:

uUL = A1sin (2π f1t)+ 15% (18)

The lower threshold is:

uLL = A1sin (2π f1t)− 15% (19)

As shown in Figure 16, the number of IMFs decomposed by
the EMD for the short-term voltage signal is two. EMD can
still be used to accurately extract the fundamental voltage
component (IMF-2) and total harmonic component (IMF-1).
And IMF-2 is within the set threshold range. The result of
decomposition also shows that the method proposed in this
paper doesn’t produce wrong judgment results under normal
circumstances.

FIGURE 16. Decomposition of the short-term voltage signal by EMD.

FIGURE 17. Real-time voltage sag signal.

B. THE DECOMPOSITION OF REAL-TIME VOLTAGE SAG
SIGNAL
Next, the EMD is used to decompose the real-time voltage
sag signal. Considering the endpoint effect, we intercept
the waveform information about 2 milliseconds after the
occurrence of the voltage sag and retain the waveform
information about 1 cycle before the occurrence of the voltage
sag. Similarly, considering the voltage sag occurs at the
fundamental voltage.

sag2 = 0.25sin (2π f1t) (20)

The voltage sag signal is expressed as follows:

us2 (t) =
(
u (t)− sag2 × (t ≥ 0.101&t ≤ 0.137)

)
×(t ≥ 0.008&t ≤ 0.1029) (21)

Figure 17 shows the signal.
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FIGURE 18. Decomposition of the real-time voltage sag signal by EMD.

EMD is used to decompose the real-time voltage sag
signal, and the results of decomposition are shown in
Figure 18. The dotted line in the figure is the set threshold
interval. The threshold is the same as that described in
equations (18) and (19).

As shown in Figure 18, the fundamental voltage com-
ponent (IMF-2) and the total harmonic component (IMF-1)
fluctuate slightly. Although EMD can decompose the fault
waveform when voltage sag occurs, the result is unclear.
The fundamental voltage component coincides with the
threshold limit, easily leading to detection delay or even
misjudgment. After repeated tests, EMD needs at least
5 milliseconds of waveform information after the sag to be
able tomore accurately decompose the fault waveform,which
is undoubtedly an excessively long time for some precision
instruments.

C. TAILORED EMD-BASED ADAPTIVE REAL-TIME VOLTAGE
SIGNAL EXPANSION
The real-time voltage signal expansion method proposed in
this paper is applied to voltage sag detection. In order to test
the performance of the method, we intercept the waveform
information of 0.9 milliseconds after the occurrence of the
voltage sag and retain the waveform information of about
1 cycle before the occurrence of the voltage sag. Also,
considering the voltage sag occurs at the fundamental voltage.

The new real-time voltage sag signal above can be re-
described as follows.

us3 (t) =
(
u (t)− sag2 × (t ≥ 0.101&t ≤ 0.137)

)
×(t ≥ 0.008&t ≤ 0.1019) (22)

The new real-time voltage sag signal is shown in Figure 19.

FIGURE 19. Real-time voltage sag signal.

FIGURE 20. Expanded voltage sag signal.

Waveform expansion is performed on the new real-time
voltage sag signal, and then EMD is performed on the
expanded voltage sag signal. The expanded signal is shown
in Figure 20, and the results of decomposition are shown in
Figure 21. The dotted line in the figure is the set threshold
interval. The threshold is the same as that described in
equations (18) and (19).

As shown in Figure 20, the configuration of extreme points
of the expanded voltage sag signal changes when voltage
sag occurs. From the results of decomposition, it can be
clearly seen that the fault waveform (IMF-2) is accurately
decomposed from the expanded voltage sag signal by EMD.
The fundamental voltage component IMF-2 has changed
drastically, deviating from setting the threshold interval.
Only the waveform information of 0.9 milliseconds after the
voltage sag is required. This also means that our method can
detect the voltage sag within 1 millisecond after it occurs.
It has been greatly improved compared with the previous
waveform information that requires at least 5 milliseconds
after the occurrence of the voltage sag.

From the analysis in this section above, the ability of EMD
to decompose the short-term voltage signal has been tested.
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FIGURE 21. Decomposition of expanded voltage sag signal by EMD.

EMD can completely decompose the real-time voltage signal
and has good performance under normal conditions; however,
when voltage sag occurs, it cannot accurately decompose
the fault component from the voltage signal due to the
endpoint effect. Using the real-time voltage signal expansion
can effectively overcome the endpoint effect, and combining
it with EMD can decompose the fault components within
1 millisecond. The analysis results show that the method can
overcome harmonic interference to achieve tracking of the
fundamental voltage signal and achieve ultra-fast voltage sag
detection.

VI. CONCLUSION
In this paper, the actual performances of EMD and VMD in
real-time voltage signal detection are compared and analyzed,
where both of them can accurately decompose the voltage
signals. VMD has a greater advantage in decomposing
high-frequency components than EMD. However, VMD is
more sensitive to high-frequency components than EMD
when a voltage sag occurs. Instead, EMD can extract the
information of the fundamental frequency component better.
When a voltage sag occurs, EMD can decompose the
fault information accurately. Besides, the distortion of IMFs
decomposed by VMD at the endpoints of the voltage signal
is more severe than EMD. For short-term voltage signals,
although EMD can still decompose these voltage signals
effectively, it cannot identify faults accurately in a short time
due to the endpoint effect.

In order to overcome the drawbacks of these two methods
in real-time voltage sag detection, this paper proposes
a tailored EMD-based adaptive voltage signal expansion
method for real-time voltage sag detection, which can
effectively avoid harmonic interference and overcome the
endpoint effect of traditional EMD. In the proposed tailored
EMD method, the sampling voltage signal is automatically
expanded using the real-time voltage signal, which can
achieve the rapid detection of voltage sag under complex
operational environments. Numerical results demonstrate that
the proposed method can detect the voltage sag within
1 millisecond.
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