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ABSTRACT Most of the existing steganalysis methods are designed for specific steganography methods
in low-bit-rate compressed speech stream and lack of generalization ability. In practical applications, the
steganography methods in compressed speech are various and cannot be predicted in advance. We can only
employ numerous possible steganalysismethod to detect, which is laborious and time-consuming, and cannot
achieve real-time detection. Therefore, it is necessary to develop a general steganalysis method that can
detect multiple steganography methods simultaneously for compressed speech. To this end, a steganalysis
method based on global and local correlation mining is proposed in this paper. Firstly, a codeword
distributed embedding module is introduced to transform the compressed codewords into a compact feature
representation. Then, global-guided correlation mining module and local-guided correlation mining module
are used to extract the correlation change before and after steganography in the view of global and local.
Finally, the detection results can be obtained by the full connection layers. Experimental results show that
the proposed method can reach a better detection performance than the existing steganalysis methods at
different embedding rates and speech lengths.

INDEX TERMS Correlation mining, compressed speech, deep learning, steganography, steganalysis.

I. INTRODUCTION
Information hiding, also known as steganography, is a tech-
nology that utilizes the sensory redundancy of human sense
organ to embed secret information into the carrier in an
undetected way. The choice of carriers is diverse, such as
videos [1], [2], images [3], [4], audios [5], [6], speeches [7],
[8], texts [9], [10], and so so. In recent years, with the rapid
development of network information technology, voice over
IP (VoIP) gradually plays an important role in daily com-
munication of human beings. VoIP is highly dynamic, real-
time and time-varying. It is an excellent carrier of information
hiding. Based on the compressed voice in VoIP, we can build
a covert communication channel conveniently. However, like
every coin has two sides, steganography poses a huge threat
to cyber security. Hackers and criminals can also transmit
illegal message in the network through steganography based
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on compressed speech. To eliminate these security threats,
scholars have carried out research on countermeasure tech-
nology, called steganalysis.

In practical applications, low-bit-rate speech codecs, such
as the analysis-by-synthesis linear predictive coding (AbS-
LPC), are widely used for compressed speech encoding.
Therefore, most steganography methods based lon com-
pressed speech utilize AbS-LPC low-bit-rate speech codecs
to achieve covert communication [11]. According to the
different embedding positions of secret information, these
information hiding methods can be mainly summarized as
three categories. The first category utilizes the pitch filter
to perform information hiding [12]–[15]; the second cate-
gory employs the LPC filter to embed secret information
[16]–[19]; and the third category directly modifies the code-
word in the compressed speech stream [20]–[25].

So far, researchers have studied the corresponding ste-
ganalysis methods for each kind of specific steganography
methods, and achieved satisfactory detection performance.
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However, the general detection of various steganography
algorithms is a problem that has not been well solved. In prac-
tical applications, the possible steganography algorithms are
diverse and cannot be predicted in advance. This determines
that the application scenarios of steganalysis methods that
can only detect a single specific steganography algorithm are
relatively limited.

In addition, some researchers have proposed some ste-
ganalysis methods based on time-domain features, such as
Mel-frequency cepstral coefficients (MFCC) [26]. Low-bit-
rate compressed speech loses a lot of redundant information
in speech coding, and the method based on time-domain fea-
ture extraction cannot well reflect the characteristics of com-
pressed speech. Therefore, these detectionmethods have poor
detection performance for low-bit-rate compressed speech.
It is necessary to develop a general steganalysis methods
which can detect multiple different steganography algorithms
in compressed speech.

Human speech is usually a certain form of continuous
language expression. Hence, there is correlation between
compressed speech sequences. This correlation exists not
only between adjacent words, but also between adjacent,
and even sentences with a longer receptive span. Embed-
ding secret information in compressed speech will affect the
implicit correlation. The key of steganalysis is to capture
the change of correlation before and after steganography.
The target of this paper is to achieve general steganalysis,
which determines that wemust effectively capture all kinds of
correlation changes. Therefore, a steganalysis method based
on global and local correlation mining is proposed here. The
contribution of this paper can be summarized as follows:

1) Analyzing the characteristic of steganography in com-
pressed speech, we propose Global-guided Correlation
Mining (GCM) and Local-guided Correlation Min-
ing (LCM). These two proposed modules conduct
steganography-sensitive correlation feature extraction
in view of global and local respectively.

2) Based on the above modules, an efficient steganalysis
network for steganography in compressed speech is
proposed. For detecting multiple steganography meth-
ods, the proposed steganalysis method can reach an
accuracy of 80%, outperforming the existing methods.
The experimental results reflect on the effectiveness of
our proposed method.

II. RELATED WORK
The target of AbS-LPC is minimizing the error between the
synthetic speech signal and the original speech signal. To this
end, two processes are performed: pitch synthesis filtering
analysis and LPC synthesis filtering analysis. The purpose of
pitch synthesis filtering analysis is to capture the long-term
correlations of the speech signal, whereas that of LPC syn-
thesis filtering analysis is to capture the short-term corre-
lations. To a certain extent, steganography in low-bit-rate
speech coding process will disturb the original correlations

of the speech signal. Therefore, the steganalysis methods are
designed based on the correlation changes before and after
steganography.

In view of the steganalysis of the information hiding
based on the pitch filter, many support vector machine-based
(SVM-based) methods have been proposed. The key step of
these methods is to construct an effective feature vector for
SVM training. Li et al. [27] found that steganography through
modulating pitch period search range [12] would inevitably
change the pitch delay values of adjacent speech frames.
Based on this change, a steganography-sensitive codebook
correlation feature vector was obtained with the help of a
codebook correlation network. In addition, symbiotic char-
acteristics [28], calibrated second-order differential Markov
transition probability feature [29], and calibrated probability
distributions of the difference feature [30] were successively
presented to conduct steganalysis.

For the steganalysis of the information hiding based on the
LPC filter, Li et al. [31] found that the quantization index
modulation (QIM) steganography [16] would change the LPC
indexes. To quantify these correlated characteristics of the
LPC indexes, the first-order Markov transition probabilities
that change the most were used to form the categorical fea-
ture vector for each LPC index. In reference [32], they con-
structed a quantization codeword correlation network model
based on the transition probabilities of intra-frame and inter-
frame correlation of the crossed LPC indexes. In addition,
Bayesian network-based (BN-based) method [33] and neural
network (NN-based) methods [34]–[36] have also been put
forward. In reference [33], a steganography-sensitive Code-
word Bayesian Network (CBN) was proposed based on the
correlation changes of codeword spatiotemporal transition,
and Bayesian inference was used for classification. In refer-
ence [34], Lin et al. proposed a steganalysis network based
on recurrent neural network (RNN). To reduce the time cost
and improve the detection accuracy of the NN-based method,
Yang et al. [35] mapped vector quantization codewords into
a semantic space and utilized one hidden layer to extract the
corrections between the codewords. Yang et al. [36] devel-
oped multi-channel convolutional sliding windows to analyze
the correlations between a given frame and its neighboring
frames.

In terms of the steganalysis of the information hiding based
on codewords modification, Tian et al. [37], [38] proposed
two SVM-based steganalysis methods. In reference [37], they
firstly proved that the probabilities of all speech parameter
values would tend to be equal along with the increase of the
embedding rate. Then, they chose the best performing feature
from four probabilistic features, i.e., histogram distribution,
differential histogram distribution, Markov transition matrix
and differential Markov transition matrix, to implement ste-
ganalysis. In reference [38], the zero-crossing count (ZCC)
statistical features and average Mel-frequency cepstral coef-
ficients feature of inactive speech frames were employed
to construct the feature vector for SVM training. The ZCC
statistical features consist of average ZCC of inactive frames,
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the ratio between the average ZCC, the difference between
the average ZCC and their calibrated versions.

Up to now, most of the steganalysis methods in compressed
speech are designed for a specific kind of steganography
methods. A few steganalysis methods used for detecting
multiple steganography methods have been proposed in
recent years. Yang et al. [39] proposed a NN-based com-
mon steganalysis method, in which a codeword Bayesian
network (CBN) was constructed based on the whole code-
words in speech stream. CBN employed Bayesian inference
to implement classification. Hu et al. [40] proposed a novel
deep model named as steganalysis feature fusion network
(SFFN), which can detect the first two kinds of steganog-
raphy methods simultaneously. Li et al. [41] proposed a
common detection method based on codeword embedding,
Bi-LSTM and CNN attention mechanisms, named CBCA.
CBCA can detect the three kinds of steganography methods
simultaneously with better performance than the previous
two steganalysis methods. However, there is still room for
improvement in detection accuracy. In this paper, a common
steganalysis method is proposed for low-bit-rate compressed
speech which takes full advantage of the global and local
correlations in compressed speech.

III. METHOD
There are strong correlation patterns between codewords in
the compressed codeword stream. These correlation patterns
can be classified as intra-word correlation, intra-sentence
(cross-word) correlation, and cross-sentence correlation. And
these correlations are likely to be attenuatedwhen hidden data
is embedded in the original compressed codeword stream.
Thus, it is inspired that these correlation patterns can be
considered a promising indicator to extract features in the
codeword stream for steganalysis. To this end, a steganalysis
method based on global and local correlation mining is pro-
posed, which will be comprehensively described in the rest
of this section.

A. ARCHITECTURE
The overall architecture of our proposed steganalysis method
is shown in Fig. 1. The model consists of four compo-
nents, codeword distributed embedding, global-guided corre-
lation mining, local-guided correlation mining and prediction
module.

Compressed codeword is highly abstract. Before being
fed into the network, codewords must be converted into a
form that is conductive to feature extraction by the neural
network. This can be realized by introducing the codeword
distributed embedding module [41]. The compressed speech
stream containing T frames with N codewords per frame can
be denoted as a matrix X with a size of T × N :

X =

 X1,1 · · · X1,N
...

. . .
...

XT ,1 · · · XT ,N

 (1)

FIGURE 1. The overall architecture of our proposed steganalysis method.
Four networks are built in our method: codeword distributed
embeddding, global-guided correlation mining, local-guided correlation
mining, and prediction layer.

The one-hot coding is used to map each codeword and then
the one-hot vector of codewords in each frame are concate-
nated together to obtain a new matrixM. SinceM is a sparse
matrix, we transform it to a more compact form. Three differ-
ent mapping dictionaries are constructed to achieve this. The
dimension of them are P1, P2 and P3 respectively. By this,
we can obtain three mapping matrices and concatenate them
to get the final embedding matrix.

Based on the embedding matrix, we conduct global and
local correlation mining. The global-guided correlation mod-
ule consists of Bi-LSTM and multi-head self-attention. The
Bi-LSTM structure is a near-ideal solution for capturing the
global sequence correlation feature. In this paper, we utilize
a two-layer Bi-LSTM network to mine the sequential corre-
lation between words and sentences in compressed speech
stream. To alleviate the gradient vanishing, we introduce a
skip connection composed of 1 × 1 convolution structure.
Besides, a multi-head self-attention mechanism is utilized
to make the detection network focus on several different
representation sub-spaces.

The local-guided correlation module consists of depthwise
and pointwise convolution and convolutional block atten-
tion mechanism. Different from LSTM, convolution structure
have access to modeling the local correlation by controlling
a sliding window (also called convolution kernel). Thus,
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we use a convolution-based structure to capture the corre-
lation change before and after steganography. In an attempt
to be able to improve the representation of key features and
the stability of the network, we present a convolutional block
attention mechanism with residual blocks.

Eventually, the final feature matrix R is input to the fully
connected layer, and the obtained probability value F is used
to determine whether the detected speech coded word stream
contains steganographic information:

Ruturn Result =

{
stege, F ≥ 0.5
cover, F < 0.5

(2)

B. CODEWORD DISTRIBUTED EMBEDDING
Inspired by natural language processing, we came up with the
idea of constructing a mapping from compressed codewords
to compact and powerful feature representations. By this,
we can transform the codewords in compressed speech stream
into a form that facilitates deep feature extraction with the
help of neural-based models. Also, such a form is beneficial
for mining the correlations in the view of global and local.

The approach of one-hot encoding is to use N -bit status
registers to encodeN states, each of which has its independent
register bits and only one of which is valid. That is to say, only
one bit is 1 and the rest are 0. If the value of the codeword is
b and its encoding range is 0 to 2a−1, then the unique thermal
encoding of the codeword can be expressed as:

Lone - hot(X ) =
{
0 ≤ i ≤ 2a−1|hi == i?1 : 0

}
(3)

We stitch the codewords in the phonetic codeword matrix
X after unique thermal encoding to obtain the matrix M. M
is the mapped sparse matrix, which can be represented as:

M =

 Lone - hot(X1,1) · · · Lone - hot(X1,N )
...

. . .
...

Lone - hot(XT ,1) · · · Lone - hot(XT ,N )

 (4)

To obtain a compact representation of the codewordmatrix,
we create three empty matrices of different dimensions, P1,
P2 and P3, map each frame in the M matrix to these three
matrices to obtain the new embedding matrix, and stitch them
together into a complete matrix S as the input to the following
network.

C. GLOBAL-GUIDED CORRELATION MINING
The compressed speech stream is a typical time sequence
signal. To extract the contextual feature of sequence signal,
the Recurrent Neural Network (RNN) structure is considered
as a prevailing solution. However, for the standard RNN,
the vanishing gradient is an inevitable problem in practical
applications. To solve this, the Long Short Term Memory
network (LSTM) is commonly used. An LSTM structure
consists of a set of recurrently connected blocks, also called
memory blocks. Each block contains one or more recurrently
connected memory cells and three multiplicative units, i.e.,
the input, output and forget gates. These units can provide

FIGURE 2. The structure of LSTM is composed of three gates, forget gate,
input gate and output gate.

continuous analogs of write, read and reset operations for the
cells. The net can only interact with the cells via the gates.
The structure of an LSTM layer can be seen in Fig. 2 and the
calculation of different units are as follows:

The calculation formulas for the forget gate f is as follows:

fZ = σ (Wf · [hZ−1, xZ ]+ bf ) (5)

The input gate i of LSTM can be calculated by:

iZ = σ (Wi · [hZ−1, xZ ]+ bi) (6)

The alternative memory cell C̃Z will be generated as:

C̃Z = tanh(Wc · [hZ−1, xZ ]+ bc) (7)

Then, the current memory cell C will be updated as:

CZ = fZ · CZ−1 + iZ · C̃Z (8)

Finally, the hidden layer h and the output layer o of the LSTM
network can be obtained by:

fZ = σ (Wo · [hZ−1, xZ ]+ bo) (9)

hZ = oZ · tanh(CZ ) (10)

The structure of Bi-LSTM is shown in Fig. 3. In the ste-
ganalysis process, after the codeword distributed embedding,
the transposed matrix Xembedding is used as the input of the
Bi-LSTM model. Each frame passes through the Bi-LSTM
network to extract the context features of the compressed
speech stream.

The attention mechanism can determine which part of
the entire input needs more attention. Inspired by this,
we introduce a multi-head attention mechanism to increase
the weights of feature points that are helpful for steganalysis,,
as shown in Fig. 4 and Fig. 5. The calculation process of
the introduced multi-head attention is as follows. For the i-th
head, the output of Bi-LSTM layerL passes through different
linear layers to obtain Q(i),K(i) and V(i) as follows:

Q(i)
= LTW(i)

Q (11)

K(i)
= LTW(i)

K (12)

V(i)
= LTW(i)

V (13)
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FIGURE 3. Composition structure of BI-LSTM: two Lstm models are
spliced together before and after.

FIGURE 4. The multi-attentional process. By different linear layers, the
input is converted to Q, K and V respectively. The output of different
heads are concatenated through the linear layer.

where WQ,WK ,WV denote weight matrices. For the i-th
heads H(i),there is:

H(i)
= softmax(

Q(i)(K(i))′
√
dk

)V(i) (14)

where 1
√
dk

represents scaling factor. The results between the
different heads will be concatenated together as the final
output after linear transformation.

OMA = concat(H(1),H(2), · · · ,H(Nh))WML (15)

where Nh denotes the number of heads and WML repre-
sents the final linear transformation weight matrix. Besides,
we introduce a skip connection composed of 1 × 1 con-
volution structure to alleviate the gradient vanishing. The
global-guided feature B is obtained by concatenating OMA
and the output of 1× 1 convolution structure.

D. LOCAL-GUIDED CORRELATION MINING
In this section, we will explain the local-guided correlation
mining module in detail. It consists of convolution blocks and
Convolutional Block Attention Mechanism (CBAM). Firstly,
we employ a depthwise convolution layer to convolve B in
groups and extract the inra-word features inB. Assuming that
the convolution kernel has a weight ofWd and the dimension
of input and output are i and a, respectively, the output can be

FIGURE 5. The structure of the scaling dot product attention model, the
parameters W of Q, K and V for linear transformation are different, and
the parameters of different heads are not shared.

represented as:

Cd (i, a) =
k∑
j=1

Wd (a, j) · BT ([i+ j−
[k + 1]

2
], a) (16)

where k is the convolution kernel size, d is the number of
output channels. Furthermore, we use a 1 × 1 pointwise
convolution kernel to extract deeper intra-word correlations,
and fuse features. The convolution output O can be denoted
as:

O(i, j) =
d∑
j=1

Wp(i, j) · cd (j, a) (17)

To refine high-level features and suppress irrelevant noises,
a convolutional block attention mechanism with residuals is
introduced. It is able to focus on features on the spatial and
channel perspectives, outperforming in classification tasks
than methods that focus only on the channel perspective. The
first component of CBAM is the channel attention module,
and the architecture is shown in Fig. 6. The input feature
map of channel attention is O ∈ RC×H×W . To integrate
the spatial information on each channel, two spatial features
describing the channels are firstly generated by averaging
pooling and maximum pooling. Then these two features are
fed into a shared fully connected network, and the new spatial
information obtained through the shared network is summed
to obtain the channel attention feature map by activation
function. The above process can be formulated as:

Mc(O) = σ (MLP(AvgPool(O))+MLP(MaxPool(O)))

= σ (Wb(Wa(Oc
avg))+Wb(Wa(Oc

max))) (18)

Before entering the spatial attention module, we multiply
the channel attention weight Mc with the feature map O to
turn it into the weighted feature map O′:

O′ = Mc(O)⊗O (19)

The spatial attention module can explore the intrinsic rela-
tionship between the spatial dimensions of the feature map,

78476 VOLUME 10, 2022



J. Wang et al.: Steganalysis of Compressed Speech Based on Global and Local Correlation Mining

FIGURE 6. The architecture of channel attention module.

FIGURE 7. The architecture of spatial attention module.

i.e., noticing the effective features and ignoring the irrelevant
noise. The architecture is shown in Fig. 7. In view of obtaining
the information of the channel dimension in the feature map,
we first conduct average pooling and maximum pooling and
then concatenate the pooling results together. Next, a standard
7× 7 convolution layer with sigmoid activation function can
be used to obtain the spatial attention feature map. The above
process can be formulated as:

Ms(O′) = σ (f7×7(concat(AvgPool(O′),MaxPool(O′))))

= σ (f7×7(concat(Os
avg,O

s
max))) (20)

Finally, we multiply the spatial attention weight with the
feature map to turn it into the weighted feature map:

O′′ = Ms(O′)⊗O′ (21)

To make the network more stable and to improve the
de-fitting of the ideal state, a mechanism of residuals is used
in the convolutional block attention. The ultimate feature
space R of this model is obtained by adding the feature map
to the input feature map of the convolution block attention,
which can be expressed as:

R = (O′′ +O) (22)

IV. EXPERIMENTS AND DISCUSSIONS
A. EXPERIMENTAL SETTINGS
We perform experiments on the speech dataset presented
in [34]. The dataset contains 41 hours of Mandarin speeches
and 72 hours of English speeches. The chosen low-bit-
rate speech codec is G.723.1 (6.3 kbit/s). The encoded

speeches constitute the dataset of cover (non-steganographic)
speech. To comprehensively evaluate the performance of
our proposed steganalysis method, five steganography meth-
ods, called ACL [12], CNV [16], HYF [20], SEC [17] and
NPP [19] are used. Embedding hidden information in the
cover speeches by these five steganography methods respec-
tively, we get five different stego (steganographic) datasets.
We compare our proposed method with four latest steganaly-
sis methods, MFCC [26], CEBN [39], SFFN [40] and CBCA
[41]. Both the training and testing stages were executed on
GeForce GTX 3090 GPU with 24 G Graphics Memory.
We use PyTorch to help implement the model and algorithm.
In addition, in the process of training the neural network,
we choose Adam as the optimizer with a learning rate of
0.001 and the cross entropy as the loss function. The maximal
training epoch is 200, and the batch size in the training pro-
cess is 128. The metric for evaluation is detection accuracy.

B. PERFORMANCE ANALYSIS UNDER DIFFERENT
EMBEDDING RATES
The embedding rate is defined as the ratio of the number of
embedded bits to the entire embedding capacity. Under ten
different embedding rates (10%-100%) of 10 second speech
length, five detection methods are compared. The results of
the experiment are shown in Table 1 and Table 2. From
the experimental results in the table, we can demonstrate
that the detection accuracy of the five detection methods
increases with the increase of the embedding rate. The lower
the embedding rate is, the less the steganographic part of the
speech is, and the harder it is to be detected. Usually, the
quality of a model is evaluated according to its performance
under the condition of low embedding rate.

In the Mandarin dataset, in the face of the three steganog-
raphy methods CNV, HYF and SEC, the detection accuracies
of MFCC, CEBN and SFFN are all lower than 60% when
the embedding rate is 10%, while CBCA and our proposed
method can achieve a satisfactory performance. Besides, the
detection accuracy of our method is the highest, outperform-
ing than CBCA. For ACL and NPP steganography methods,
when the embedding rate is 10%, the detection accuracies of
our proposed method are 89.88% and 93.26%, which is sig-
nificantly better than other comparison steganalysis methods.

In the English dataset, the overall detection accuracy is
better than that in the Mandarin dataset. However, in the
face of HYF and SEC steganography methods, the detection
accuracy of MFCC, CEBN and SFFN are still lower than
60% when the embedding rate is 10%. For CNV and NPP
steganography methods, the proposed method is significantly
better than other four detection methods, reaching an accu-
racy of 87.5% and 96.19%. For SEC steganography, which is
the most difficult to detect, the detection accuracy of the pro-
posed method can also achieve 92.35% when the embedding
rate is 30%, and can exceed 99.3% for other steganography
methods. This shows that our method can still maintain satis-
factory detection performance in the face of some information
hiding algorithms that are difficult to detect.
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TABLE 1. The detection accuracies for the Mandarin dataset at different embedding rates.

C. PERFORMANCE ANALYSIS UNDER DIFFERENT SPEECH
LENGTHS
For steganalysis, speech length is also an important factor
affecting the detection accuracy. Experiments analyze the
detection performance of the model under different speech
lengths. Under the condition of 100% embedding rate and
speech length from 1s to 10s. we evaluate the performance
of five steganalysis methods. The experimental results are
shown in Table 3 and Table 4.

It can be seen from the figure that in the Mandarin dataset,
for ACL, the method in this paper achieves 100% detection
accuracy when the speech length is 1s, and for CNV and
NPP, when the speech length is 1s, the accuracy reaches
99.36% and 99.74%. significantly better than other compar-
ison methods. In the English dataset, for ACL and NPP, our
method slightly outperforms SFFN and CBCA, and signif-
icantly outperforms MFCC and CEBN. For SEC, when the
speech length is 1s, the detection accuracy of MFCC is only
over 50%, while that of SFFN is over 75%. This method
further improves the detection accuracy to 95.51%. For CNV
and HYF, the detection accuracy of our method can exceed
99.4% even when the speech length is 1 s. The results show

that the detection method in this paper still has good detection
performance for low-length speech samples.

D. GENERAL PERFORMANCE ANALYSIS OF THE MODEL
UNDER MIXED DATA SET
In practical application, facing a compressed speech stream,
we will not have prior knowledge to know which stegano-
graphic method is adopted in advance. Once our detection
model is trained, it should be able to detect various stegano-
graphic algorithms simultaneously. To this end, we construct
a MIX dataset, including 1/5 of each of the five stegano-
graphic datasets, ACL, CNV, HYF, SEC and NPP, and then
mix them. This dataset is used to evaluate the detection per-
formance onwhether the unknown compressed speech stream
contains hidden information.

First, the performance of the model under different embed-
ding rates (10%-100%) when the speech length is 10 seconds
is tested. The higher the accuracy, the better the performance
of the model in the face of unknown steganography method.
The experimental results are shown in Fig. 9. Experimental
results show that the performance of the proposed model is
better than that of the four models compared. In the English
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TABLE 2. The detection accuracies for the English dataset at different embedding rates.

FIGURE 8. The detection accuracies for the Mix dateset at different embedding. (a) Mandarin Mix dataset. (b) English Mix dataset.

mixed data set, the model is obviously superior to MFCC,
CEBN and SFFN models. In the detection tasks with low
embedding rates of 10% and 20%, themodel is 4%-6%higher
than the previous excellent CBCAmodel, and the accuracy is
up to 82.46% and 91.76%. When the embedding rate is 30%,

the detection accuracy of the proposed model is higher than
that ofMFCC, CEBN and SFFNmodels when the embedding
rate is 100%.

Next, the performance of the model at different voice
durations (1s-10s) with 100% embedding rate was tested. The

VOLUME 10, 2022 78479



J. Wang et al.: Steganalysis of Compressed Speech Based on Global and Local Correlation Mining

TABLE 3. The detection accuracies for the Mandarin dataset at different speech lengths.

FIGURE 9. The detection accuracies for the Mix dateset at different speech length. (a) Mandarin Mix dataset. (b) English Mix dataset.

experimental results are shown in Fig. 10. According to the
experimental results, in the face of different speech duration
detection tasks, the proposed model still shows better per-
formance than the previous four models. In the Mandarin
mixed data set, when the speech duration is 5s, the detection
accuracy of this model has reached 100%. In the speech
detection task with low duration (1s), the detection accuracy

of the proposed model can reach above 96%, showing good
performance.

E. ANALYSIS OF THE INFLUENCE OF DIFFERENT MODEL
STRUCTURES ON PERFORMANCE
In this section, the effects of different submodel structures
on model performance are discussed. In order to reflect the
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TABLE 4. The detection accuracies for the English dataset at different speech lengths.

TABLE 5. The influence of different model structures on performance.

influence of different model substructures on model per-
formance, a mixed data set with speech length of 10s and
embedding rate of 10% was used for the experiment. The
experimental results are shown in Table 5. It can be seen
from the table that in unknown steganography analysis with
low embedding rate, it is not enough to obtain the code word
information with compact representation only by Codeword
Distributed Embedding (CDE) structure model. The perfor-
mance of the model was improved by adding GCM structure
after CDE structure. This is because Bi-LSTM model and
multi-head attention mechanism are introduced to pay atten-
tion to the information of before and after speech frames and
different subspaces. LCM structure is added after the above
model structure, and the convolutional neural network and

TABLE 6. Comparsion of neural network models on time complexity.

CBCA model in LCM structure are used to supplement the
spatial information in different frames of speech, so that the
model performance is improved again.

F. TIME COMPLEXITY ANALYSIS
Network compressed voice detection task needs to check
whether the voice is steganography in real time. Therefore,
the model detection time of each speech sample should be
as short as possible. In this section, the time complexity
of the model will be analyzed. The speech of 1s to 10s is
selected for detection, and the average detection time is used
as the detection time of the model. In this part, a platform
equippedwithGTX3090GPU is used to conduct the test time
experiment. Since MFCC and CEBN methods are not neural
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network models and do not require GPU testing, this part
is only compared with SFFN and CBCA. The experimental
results are shown in Table 6.

As can be seen from the table, the test time is between
CBCA and SFFN. When the tested speech length is 1s, the
test time of the model in this paper is 1.31%of the total time,
that is, it takes 1.31 ms to detect a 1s speech sample. It can
be seen that the proposed model in this paper can achieve
real-time performance in the network compressed speech
detection task.

V. CONCLUSION
Aiming at the lack of an efficient general ABS-LPC ste-
ganalysis method for low rate compressed speech. A ste-
ganalysis method based on global association mining and
local association mining is proposed in this paper. In practice,
no matter which steganography method is used, the correla-
tions in speech codeword stream will be changed. Therefore,
our proposed method focuses on extracting relevant changes
before and after steganography from global and local perspec-
tives. Experimental results show that the proposed method
has better performance than the existing general steganalysis
methods. In the future, we hope to achieve a general detection
method for unknown speech steganography methods with
better performance under very low embedding rate and short
duration.
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