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ABSTRACT This paper deals with the design of an energy-to-peak reduced-order filter (also called L2−L∞
filtering) for continuous-time Markov jump linear systems, assuming that the filter has only access to an
estimate of the Markov parameter, coming from the output of a detector device. To model this situation
we consider that the joint process formed by the Markov parameter and the detector information follows
an exponential hidden Markov model. The result is given in terms of Linear Matrix Inequalities (LMI) so
that the available numerical package tools can be readily implemented to solve the problem. The paper is
concluded with some numerical simulations.

INDEX TERMS Reduced-order filtering, energy-to-peak performance, switched systems, hidden Markov
models, linear matrix inequalities.

I. INTRODUCTION
The research on systems subject to sudden changes has been
the focus of a great deal of attention in the last decades.
Of special interest is the class of hybrid systems subject
to switching rules modelled by random processes, in which
Markov Jump Linear Systems (MJLS) arguably have been
the focal point of study, see, for instance, [1]–[3]. By now,
the use of MJLS as a tool for modeling and design has found
space in a wide range of applications, such as Networked
Control Systems (NCS) in [4], Active-Fault Tolerant Control
Systems (AFTCS) in [5], among others.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaoli Luan .

The main goal of this paper is on the so-called energy-to-
peak reduced-order filtering problem, or L2 − L∞ reduced-
order filtering problem. The aim is to design a filter such
that the ratio between the peak value of the estimation
error and the energy of an L2 external disturbance is less
than a fixed positive value γ . As pointed out in [6], this
class of filters is less conservative than the H∞ filtering
in the sense that the bound restriction is imposed for all t ,
instead of the L2 norm of the estimation error, and has been
applied in several types of applications such as electrical
circuits, navigation systems, communication systems, and
estimation in civil structures, see [7]. As an example of
application, we can mention the estimates of the velocity
or the sideslip angle of vehicles in which, as pointed out
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in [8], what usually matters is that the maximum value
of these variables are limited to ensure a safe drive (see
also [9]). Another application can be found in [6], which
proposes the design of a reduced-order L2 − L∞ filter for
discrete-time systems subject to network-induced delays. The
design problem of energy-to-peak filtering can be dated back
as far as [10] and since then it has been an intensive area of
research. This problem has been analyzed by several authors
under different approaches as, for instance, the seminal
paper [11] which provides necessary and sufficient conditions
for the solution of the filter problem by using LMI and
coupling nonconvex matrix rank constraints. The problem
of robust energy-to-peak filtering for uncertain systems was
considered in [7], [12]–[14]. The energy-to-peak filtering
problem of Markov jump systems is investigated in [15],
[16], while singular semi-Markov jump systems with unideal
measurements was studied in [17]. For sampled nonlinear
systems, the paper [18] focus on the L2−L∞ filtering problem
by using Takagi–Sugeno (T–S) fuzzy systems.

A key point related to MJLS is the (lack of) availability of
the Markov variable, denoted here by θ (t) for the continuous-
time case. The case in which it is not possible to perfectly
measure θ (t) was treated, within the context of AFTCS,
in [5], [19]–[21]. According to [21], AFTCS consists,
essentially, in automatically detecting and identifying the
faulty components and then reconfiguring the control law
on-line in response to this decision. In this context, the fault
is modeled here by the Markov chain θ (t) while the fault
detector, denoted by θ̂ (t), plays the role of the signal coming
from a failure detection and identification (FDI) device. One
important example comes from networked control systems
(NCSs), which are inherently subject to packet dropouts and
imperfect characteristics of the communication channel.

More recently, in [22], [23], a more general exponential
hidden Markov model for the joint process θ̃ (t) = (θ (t), θ̂ (t))
was proposed, allowing the study of the H2 state-feedback
as well as the H∞ static output feedback control problems
for MJLS under the assumption that the controllers can only
have access to the unreliable information coming from the
detector θ̂ (t), and thus θ (t) cannot be perfectly measured.
Other approaches which consider the case in which θ (t) is
not available are the asynchronous case see, for instance,
[8], [24], and the ε-dependent rate of jump case, which was
considered in [25].

Usually it is assumed in filtering problems that the
dimension of the filter state variable is the same as the
one of the original system (known as full-order filters).
However, when the original system has a high dimension as,
for instance, in meteorology and oceanography applications,
full-order filters can be difficult to implement in real
time (see, for instance, [26]). Due to that the study of
reduced-order filters (that is, when the filter’s dimension is
smaller than that of the original system) has been receiving a
great deal of attention. Regarding MJLS, we can mention the
papers [6], which studies the design of robust reduced-order
L2−L∞ filters for a class of discrete-time systems subject to

network-induced delays governed by a Markov chain; [27],
which addresses the reduced-order H∞ filtering problem
for continuous-time MJLS, where the jump parameters are
modelled by a discrete-timeMarkov process; and [28], which
deals with the robust H2 and H∞ reduced-order mode-
dependent, partially mode-dependent, or mode-independent
filters for discrete-time MJLS under a parameter-dependent
LMI approach.

In this paper we focus on the design of L2 − L∞ reduced-
order filtering problem for continuous-time MJLS within
the challenging context of the partial observation of the
Markov parameter. The main contribution is to provide a
design procedure, based on an LMI formulation, to obtain
a reduced-order filter which relies only on the detector θ̂ (t),
so that the L2 − L∞ gain of the estimation error is smaller
than an upper bound γ . On the one hand this set up makes
the problem more realistic and interesting from the practical
point of view but, on the other hand, it imposes new technical
challenges in the deduction of the LMIs, requiring some
special structures for the solution, as can be seen in the
proof of Theorem 1 below. We believe that this convex
approach for the reduced-order filter represents a challenging
and important open problem which, as far as the authors are
aware of, had not been previously analyzed in the literature
under this exponential hidden Markov formulation. Next,
we highlight the main novelties with respect to existing
results:
1) The papers [15], [17] tackle the L2 − L∞ filtering

problem for continuous-time jump systems for the
mode-dependent case, that is, the jump parameter is
accessible to the filter. Differently from that, in the
present paper we consider the more realistic case in
which only an estimate of this parameter is available
for the filter design.

2) When compared to [8], [24] it is important to stress that
our formulation for modeling the detector is different
from the one adopted in these papers, which is based
on a conditional probability restriction that must hold
for all time t (Eq. (4) in [24] and Eq. (6) in [8]), and
also that, to avoid infinite jumps of θ̂ (t) in a finite
time interval, there exists a minimum time interval for
the execution of the detector (see [8]). On the other
hand, under our formulation, the signal θ̃ (t) is modelled
as an exponential hidden Markov process, so that the
time evolution of the extended process θ̃ (t) is well
defined as a continuous-time Markov chain with no
extra conditions (see Section IV).

3) By using the hidden Markov formulation adopted in
this paper, it is not necessary to consider the rate of
jumps of θ̂ (t) as required in [25], which studied theH∞
filtering problem, considering that the Markov chain
θ (t) and the detector θ̂ ε(t) jointly follow an exponential
hidden Markov chain model, with the parameter ε
determining how fast θ̂ ε(t) will switch.

4) The formulation in the present paper encompasses the
detector model used in the context of AFTCS as well
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as the mode-dependent, mode-independent, and cluster
cases, which are different approaches regarding the
availability of θ (t) (see Remark 4 for further details).

5) The papers [29], [30] tackle the control problem
of continuous-time MJLS under the aforementioned
exponential hidden Markov, being the H2, H∞ and
mixed H2/H∞ filtering problems also studied in [30],
but not the L2 − L∞ filtering problem, treated for the
first time in this paper.

6) The robust filtering problem, considering polytopic
uncertainties on the dynamic matrices of the system as
well as the detector rates, can also be handled under our
approach.

7) The developed procedure in this paper is illustrated
by means of a numerical example based on the stable
longitudinal dynamics of an unmanned aircraft derived
in [31] subject to faulty sensor readings and noise.

The paper is organized as follows. In Section II we present
the notation used in the paper. Section III introduces some
preliminary results that will be required along the paper.
The problem formulation is presented in Section IV. The
main result of the paper is in Section V, which provides
design conditions for obtaining a θ̂ (t)-dependent filter such
that the L2 − L∞ gain of the estimation error is smaller
than an upper bound γ . The perfect information and robust
filtering problems are discussed in Subsections V-B and V-C
respectively. Section VI illustrates the obtained results
through some numerical examples. The paper is concluded
in Section VII with some final comments.

II. NOTATION
The real n-dimensional Euclidean space is denoted by Rn.
The linear (norm bounded) space of all m× n real matrices is
represented byB(Rn,Rm), and for simplicity, we setB(Rn) =
B(Rn,Rn). The space of positive semi-definite n×nmatrices
is represented by B(Rn+). The superscript ′ is the transpose
of a matrix. The identity matrix of size n × n is represented
by In (or just I ) and the null matrix of size m × n, by 0m×n
(or just by 0). For G ∈ B(Rn) we set Her(R) , R + R′. For
positive integers N and M , the sets N and M are given by
N , {1, 2, 3 . . . ,N } andM , {1, 2, 3, . . . ,M}, respectively.
On the probabilistic space (�,F ,P) with filtration Ft ,

E(·) is the expected value operator. The space of all
continuous-time signals Ft -adapted processes w = {w(t) ∈
Rr , t ∈ R+} such that ‖w‖22 ,

∫
∞

0 E(‖w(τ )‖2)dτ < ∞,
is represented by Lr2(�,F ,P), or just by L2, for simplicity.
Similarly, by changing the subscript 2 by ∞ we have
that L∞ represents the space of processes w such that
‖w‖2∞ , supt∈R+ E(‖w(t)‖

2) <∞.

III. PRELIMINARIES
We consider in this section the following MJLS defined on
(�,F ,Ft ,P),

G̃ :
{
ẋ(t) = Aθ̃ (t)x(t)+ Jθ̃ (t)w(t)
z(t) = Cθ̃ (t)x(t),

(1)

where x(t) ∈ Rn is the state, z(t) ∈ Rnz is the estimated
output, and w(t) ∈ Rnw is the disturbance. θ̃ (t) is a
homogeneous Markov chain taking values in a finite set Ñ
with transition rate matrix 3̃ , [̃λsv], and θ̃ (0) = θ̃0, where
θ̃0 is a random variable taking values in Ñ .

We present next the stochastic stability definition used
throughout this work.
Definition 1 (Stochastic stability, [32]): System (1) with

w(t) ≡ 0 is said to be stochastically stable (SS) if
‖x‖22 =

∫
∞

0 E(‖x(t)‖2)dt < ∞, for every finite second
moment x(0) and every θ̃0 ∈ Ñ .
The following Lyapunov equation result can be found in
Chapter 3 of [2].
Proposition 1: If there exist Ps > 0, s ∈ Ñ , such that

Her(PsAs)+
∑
v∈Ñ

λ̃sv Pv < 0, (2)

then system (1) is stochastically stable.
Proof 1: See Theorem 3.21 in [2].
Remark 1: It is worth recalling that, as shown in Chapter 4

of [2], if system (1) is stochastically stable then, for
x = {x(t); t ∈ R+} with x(t) given by (1) we have that
x ∈ L2 whenever w ∈ L2.
Before proceeding, we recall the Dynkin’s formula for the
MJLS (1), shown in Chapter 4 of [2]. Set the function
V (s, x) = x ′Psx for matrices Ps > 0, s ∈ Ñ , χs , Asx+Jsw,
and LV (s, x,w) as:

LV (s, x,w) = x ′Psχs + χ ′sPsx + x
′

∑
v∈Ñ

λsvPv

 x. (3)

According to the Dynkin’s formula (see equation (4.16)
in [2]) we have the following equality:

E(x(t)′Pθ̃ (t)x(t))− E(x(0)′Pθ̃ (0)x(0))

= E
( ∫ t

0
LV (θ̃ (τ ), x(τ ),w(τ ))dτ

)
. (4)

In what follows, we consider that x(0) = 0. In the next
proposition we provide sufficient conditions to assure that
system (1) is stochastically stable and, for some γ > 0,
we have, for any t ∈ R+, that E(‖z(t)‖2) ≤ γ 2

‖w‖22. Then,
it is clear that E(‖z(t)‖2) ≤ ‖z‖2∞ ≤ γ

2
‖w‖22.

Proposition 2: If there exist Ps > 0, s ∈ Ñ , such that[
Her(PsAs)+

∑
v∈Ñ λ̃svPv PsJs

J ′sPs −γ 2I

]
< 0, (5)[

Ps C ′s
Cs I

]
≥ 0, (6)

then system (1) is SS and E(‖z(t)‖2) ≤ γ 2
‖w‖22.

Proof 2: From (5) it is clear that (2) is satisfied and thus
from Proposition 1 we have that system (1) is stochastically
stable. Set

8s ,

[
Her(PsAs)+

∑
v∈Ñ λ̃svPv PsJs

J ′sPs −γ 2I

]
.
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Consider any w ∈ L2, w 6= 0. From (5) we get that[
x(t) w(t)

]
8θ̃ (t)

[
x(t)
w(t)

]
= x(t)′Pθ̃ (t)

(
Aθ̃ (t)x(t)

+ Jθ̃ (t)w(t)
)
+

(
Aθ̃ (t)x(t)+ Jθ̃ (t)w(t)

)′
Pθ̃ (t)x(t)

+

∑
v∈Ñ

λ̃θ̃ (t)vx(t)
′Pvx(t)− γ 2

‖w(t)‖2 < 0. (7)

From (3) we have that (7) can be re-written as

LV (θ̃ (τ ), x(τ ),w(τ ))− γ 2
‖w(τ )‖2 < 0. (8)

Recalling that x(0) = 0 we get, after integrating (8) and
applying the Dynkin’s formula (4), that

E
(
x(t)′Pθ̃ (t)x(t)

)
= E

(∫ t

0
LV (θ̃ (τ ), x(τ ),w(τ ))dτ

)
< γ 2

∫ t

0
E(‖w(τ )‖2)dτ ≤ γ 2

‖w‖22. (9)

From (6) it follows that Ps ≥ C ′sCs and thus
E(x(t)′Pθ̃ (t)x(t)) ≥ E(‖z(t)‖2). By combining the previous
equation and (9) we get that E(‖z(t)‖2) ≤ γ 2

‖w‖22.

IV. PROBLEM FORMULATION
We study the following MJLS on (�,F ,Ft ,P),

G :


ẋ(t) = Aθ (t)x(t)+ Jθ (t)w(t)
y(t) = Lθ (t)x(t)+ Hθ (t)w(t)
z(t) = Cθ (t)x(t),

(10)

where x(t) ∈ Rn is the state, y(t) ∈ Rny is the measured
output, z(t) ∈ Rnz is the estimated output, w(t) ∈ Rnw is the
disturbance in L2, and θ (t) is a (homogeneous) Markov chain
taking values in the finite set N with transition rate matrix
3 , [λij], and θ (0) = θ0, where θ0 is a random variable
taking values in N. We also assume that x(0) = 0.
We consider that the state of the Markov chain θ (t)

is not observable, and that the only information available
comes from some detector represented by θ̂ (t) taking
values in M. By defining the extended hidden process as
θ̃ (t) , (θ (t), θ̂ (t)), we consider that {θ̃ (t)} is a homogeneous
Markov process with state space N ×M and transition rate
ν(i,k)(j,`) satisfying:

P
(
θ̃ (t + h) = (j, `) | θ̃ (t) = (i, k)

)
=

{
1+ ν(i,k)(i,k)h+ o(h), (j, `) = (i, k)
ν(i,k)(j,`)h+ o(h), (j, `) 6= (i, k),

where, for (i, k) fixed, the transition rate parameters ν(i,k)(j,`)
are defined as:

ν(i,k)(j,`) =


αkj`λij, j 6= i, ` ∈M,

qik`, j = i, ` 6= k,

λii + qikk , j = i, ` = k,

(11)

with
∑
`∈M α

k
j` = 1, ∀j ∈ N, k ∈ M; λij ≥ 0 for all i 6= j;

qik` ≥ 0, ` 6= k , λii = −
∑

j 6=i λij, q
i
kk = −

∑
6̀=k q

i
k`.

We define V ⊆ N × M, an invariant set for θ̃ (t) (that is,
P(θ̃ (t) ∈ V) = 1 whenever θ̃ (0) ∈ V).
Remark 2: Recalling that λij represents the transition rate

of θ (t), we get that αkj` and qik` models simultaneous and
spontaneous jumps of θ̂ (t), that is, for small h > 0, P(θ̂ (t +
h) = ` | θ (t + h) = j, θ̃ (t) = (ik)) = αkj` + r(h) for some
function such that limh→0 r(h) = 0, and j 6= i, ` ∈ M, and
P(θ̂ (t + h) = ` | θ (t + h) = i, θ̃ (t) = (ik)) = qik`h+ o(h),
for ` 6= k , see [22] and the references therein for further
details. As pointed out in [5], Chapter 4, depending on the
values of the indexes (i, k , `), different interpretations can be
assigned to qik` such as detection delays, rate of false alarms,
rate of errors in detection and identification, etc. Examples
of that can be found in [5]. Moreover, as discussed in [5],
Chapter 4,Monte Carlo simulations and prior information can
be used to estimate the transition rates qik` and similarly for
the probability rates αkj`.
Remark 3: As mentioned in the introduction, the expo-

nential hidden Markov model considered in this paper has
a close connection with the AFTCS (see, e.g., [5] and
the references therein). The main idea in AFTCS is that
there is a fault detection and identification (FDI) device
which provides an estimate θ̂ (t) of the occurrence of a
fault, represented by θ (t), in a dynamic system. Several FDI
approaches have been proposed in the literature, categorized
into signal-based and model-based techniques. As described
in [5], Chapter 2, signal-based methods detect faults by
testing specific properties of measurement signals, with
bandpass filters and spectral analysis being some examples
of the employed techniques, while model-based methods
are performed in two steps: the residual generation and
the residual evaluation. As pointed out in [21], the FDI
scheme can be interpreted as a stochastic hypothesis test,
which can be implemented using single sample tests, moving
window tests or sequential tests. As explained in [5], [21],
in single sample tests, the information used for the FDI tests
is gathered, processed, and discarded at each time sample.
In such cases, and if the noise statistics on the information are
white, then the FDI processing is memoryless, so thatMarkov
models can be used to characterize the transition behaviour of
the state of the FDI process conditioned on the fault status of
the components. In our work we follow a similar approach
and assume the existence of a detector that provides the
estimate θ̂ (t) so that the joint model θ̃ (t) can be modeled
through a hidden Markov process. Although a discussion on
FDI devices and related algorithms is of great interest, this is
a major problem on its own and falls outside the scope of this
paper. We refer the interested reader to [5], Chapter 4, and the
references therein for a deeper discussion on this subject.
The main goal is to design the following filter structure,

Gf :
{
ẋf (t) = Af θ̂ (t)xf (t)+ Bf θ̂ (t)y(t)

zf (t) = Cf θ̂ (t)xf (t),
(12)
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that depends only on the observed variable θ̂ (t), such that,
for a given positive scalar γ , we get that ‖e‖∞ ≤ γ ‖w‖2, for
any w ∈ L2, w 6= 0, where e(t) = z(t) − zf (t). We assume
that xf (0) = 0 and that xf (t) ∈ Rnf , 0 < nf ≤ n, that is,
a reduced-order filter (if nf < n).
Remark 4: By properly defining the parameters of the

detector we can retrieve several cases usually considered in
the literature, as presented next (see also [23] for further
details):
• Mode-dependent case: In this case we have θ̂ ≡ θ ,
which can be characterized in our model by taking
M = N, qik` = 0, αkjj = 1, and αkj` = 0 for j 6= `,
with invariant set V = {(i, i) ∈ N× N}.

• Only Mutual (simultaneous) Jumps: This case is char-
acterized by taking qik` = 0 for all i ∈ N, k, ` ∈ M,
so that, whenever there is a transition of θ (t), there is a
probability that θ̂ (t) will jump as well.

• The Cluster Case: In this case the states of the Markov
chain can be written as the union ofM ≤ N disjoint sets
(clusters) Ni so that N = ∪i∈MNi and there is a function
g : N→M such that g(i) = j indicates that the state i is
associated to the cluster j. Under this approach at each
time t the filter would have only access to g(θ (t)). This
is equivalent, under our approach, to take qik` = 0 and
αkig(i) = 1, so that whenever θ (t) jumps to i, θ̂ (t) also
jumps simultaneously to g(i).

• No Mutual Jumps: This case is characterized by taking
αkjk = 1 and αkj` = 0 for k 6= ` (as in the AFTCSmodel),
and is useful for modelling detection delays and false
alarms (see [20]).

• Mode-independent case: In this case,M = {1}, qik` = 0,
and α1j1 = 1. Thus θ̂ (t) does not provide any information
on θ (t).

Thus the results to be developed will hold for all these cases.

By combining (10) and (12) we get the extended system
given as follows:

Gc:
{
˙̃x(t) = A

θ (t)θ̂ (t)x̃(t)+ Jθ (t)θ̂ (t)w(t)

e(t) = C
θ (t)θ̂ (t)x̃(t),

(13)

where x̃(t)′ ,
[
x(t)′ xf (t)′

]
and for (i, k) ∈ V,

Aik =
[
Ai 0
BfkLi Afk

]
, Jik =

[
Ji

BfkHi

]
,

Cik =
[
C ′i
−C ′fk

]′
. (14)

Thus, by setting Ñ = V, λ̃(i,k),(j`) = ν(i,k),(j`), As = Aik ,
Js = Jik , and Cs = Cik in (5)-(6), the main goal of this work
can be written as follows:
Problem I: Find Afk ,Bfk ,Cfk and Pik > 0 such that (5)-(6)

hold.
Solving Problem I amounts to finding the solution set of

(5)-(6) involving the product of variables (Pik , Afk ) and (Pik ,
Jfk ), which is non-convex. In the next section, we provide

new convex design conditions formulated in an LMI set-up
in order to provide a convex solution to Problem I.

V. MAIN RESULTS
A. DESIGN RESULTS FOR PROBLEM I
In this sub-section we provide design results for solving
Problem I. Due to the possible mismatch between θ (t) and
θ̂ (t), we need the time evolution of both state variables, x(t)
and xf (t), to obtain e(t) (this kind of situation also occurs
in other problems, like in robust filtering, etc). Since the
filter does not affect the system’s dynamic in (10) we must
assume that system (10) is stochastically stable. Notice that
the conservatism can be reduced for the the case in which
θ (t) is perfectly known (that is, θ̂ (t) = θ (t)) and nf = n. See
sub-section V-B for further details of this case.

In order to get the desired (possibly reduced-order) filter,
we need to define the following matrices:

V ′ ,


[
Inf 0nf×n−nf

]
, for n > nf

In, for n = nf .
(15)

In what follows we will consider matrices Gk with the
following structure:

Gk =


[

G1k G2k

0n−nf×nf G4k

]
, for n > nf

G1k , for n = nf

(16)

with G1k ∈ B(Rnf ) for all k ∈ M. We introduce the next
inequalities,

Pik > 0, (17)

Hik + Her(Qik8ik )+ Her(Eik9ik ) < 0, (18)[
Pik ·[

Ci −OkV ′
]
Inz×nz

]
≥ 0, (19)

for (i, k) ∈ V, where

Hik ,

∑(j,`)∈V ν(i,k)(j,`)Pj` · ·

Pik 02n×2n ·

0nw×2n 0nw×2n −υInw

 ,
Q′ik ,

[
R′1ik Y ′1ik R′2ik Y ′2ik R′3ik

]
,

8ik ,
[
Ai 0n×n −In 0n×n Ji

]
,

E ′ik ,
[
In In In In 0n×nw

]
,

9ik ,
[
VFkLi VXkV ′ 0n×n −Gk VFkHi

]
.

We have that the variables in (17)-(19) are: υ ∈ R+, Pik > 0,
Pik ∈ B(R2n+), (i, k) ∈ V, Fk ∈ B(Rny ,Rnf ), Xk ∈ B(Rnf ),
Ok ∈ B(Rnf ,Rnz ),Gk ∈ B(Rn), R1ik ∈ B(Rn), R2ik ∈ B(Rn),
R3ik ∈ B(Rn,Rnw ), Y1ik ∈ B(Rn), Y2ik ∈ B(Rn).

We present in the next theorem design conditions to obtain
a filter as in (12), with order 0 < nf ≤ n, such that
‖e‖∞ ≤ γ ‖w‖2 is satisfied.
Theorem 1: If there exist υ, Pik , Xk , Fk , Ok , Gk , R1ik ,

R2ik , R3ik , Y1ik , and Y2ik such that (17)-(19) hold, with Gk
as in (16), then, by setting γ = υ1/2, Afk = G−11k Xk , Bfk =
G−11k Fk , and Cfk = Ok , we get that ‖e‖∞ ≤ γ ‖w‖2 holds.
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Proof 3: The goal of this proof is to show that (17)-(19)
imply that (5)-(6) hold so that, from Proposition 2, the result
follows. From (18) it is easy to see that −Her(Gk ) < 0, and
therefore we have that Gk is non-singular so that G1k is also
non singular.

Since Xk = G1kAfk and Fk = G1kBfk , we get that (18) can
be re-written as

Hik + Her
([

Qik EikGk
] [8̃ik

9̃ik

])
< 0, (20)

and [
8̃ik

9̃ik

]
=
[
Ãik −I2n×2n J̃ik

]
,

where

Ãik ,

[
Ai 0n×n

VBfkLi VAfkV ′

]
, J̃ik ,

[
Ji

VBfkHi

]
,

[
Qik EikGk

]
=


R1ik Gk
Y1ik Gk
R2ik Gk
Y2ik Gk
R3ik 0nw×n

 ,

G1ik
G2ik
G3ik

 ,
for G1ik ∈ B(R2n), G2ik ∈ B(R2n), and G3ik ∈ B(R2n,Rnw ).
Set

U ,

[
In 0n×nf 0n×(n−nf )

0nf×n Inf 0nf×(n−nf )

]
, (21)

Āik , U ′AikU , J̄ik , U ′Jik , (22)

where Aik and Jik are as in (14) and notice that

UU ′ = In+nf .

We get that (20) can be re-written as follows∑(j,`)∈V ν(i,k)(j,`)Pj` · ·

Pik 0 ·

0 0 −γ 2Inw


+Her

G1ik
G2ik
G3ik

[Āik −I2n J̄ik
] < 0. (23)

Define, for Āik and J̄ik as in (22), T⊥ as

T⊥ ,

[
I2n Ā′ik 0
0 J̄ ′ik Inw

]′
,

so that
[
Āik −I2n J̄ik

]
T⊥ = 0. Multiplying (23) to the

left-hand side by T ′
⊥
and to the right-hand side by its transpose

we have that

T ′
⊥

∑(j,`)∈V ν(i,k)(j,`)Pj` · ·

Pik 0 ·

0 0 −γ 2Inw

T⊥ =
[
Her(PikU ′AikU )+

∑
(j,`)∈V ν(i,k)(j,`)Pj` ·

(U ′J̄ik )′Pik −γ 2Inw

]
< 0.

By multiplying the last inequality by diag(U , Inw ) to the left-
hand side, and diag(U ′, Inw ) to the right-hand side, we get that

(5) is satisfied, after taking s = (i, k), v = (j, `), Ãs = Aik ,
Js = Jik , and Ps = UPikU ′ > 0. Notice now that (19) can be
written as [

Pik ·

CikU Inz

]
≥ 0. (24)

Multiplying (24) to the left-hand side by diag(U , Inz ) and
its transpose to the right-hand side we get (6), after setting
Cs = Cik =

[
Ci −Cfk

]
. From Proposition 2, we get the

desired result.
From Theorem 1, the main goal in Problem I can be

re-written as follows: Problem II: Given υ, find ξ̄ ∈ 4̄(υ),
where ξ̄ = (Pik , Fk , Xk , Ok , Gk , R1ik , R2ik , R3ik , Y1ik , Y2ik ),
and 4̄(υ) is the solution set of (17)-(19) for a given υ > 0.

From Problem II and the linear relation of υ in
(17)-(19), we can write the following LMI optimization
problem for obtaining the lowest upper bound value υ =
γ 2 which ensures that ‖e‖∞ ≤ γ ‖w‖2: minξ∈4 υ,, where
ξ = (υ, Pik , Fk , Xk , Ok , Gk , R1ik , R2ik , R3ik , Y1ik , Y2ik ) and
4 is the solution set of (17)-(19) including υ as a decision
variable.
Remark 5: Regarding the size of the optimization LMI

problem presented above we have, considering V = N×M,
that there areMN symmetric matrix variables,M (5N+4) full
matrix variables of different dimensions, one scalar variable,
and 3MN LMI conditions.

B. PERFECT INFORMATION
As previously mentioned, less conservative results can be
obtained for the case in which θ (t) is perfectly known (that
is, θ̂ (t) = θ (t)) and nf = n. In this case one could work with
a filter in the observer-form as follows:

ẋf (t) = Aθ (t)xf (t)+ Bf θ (t)(y(t)− Lθ (t)xf (t)),

zf (t) = Cθ (t)xf (t).

By defining x̃(t) = x(t)−xf (t) and e(t) = z(t)−zf (t), we end
up with the equations

˙̃x(t) = Āθ (t)x̃(t)+ J̄θ (t)w(t),

e(t) = Cθ (t)x̃(t), (25)

where Āi = Ai − BfiLi, J̄i = Ji − BfiHi, with no need to
consider the augmented system (13) neither that system (10)
is stochastically stable. We have the following result:
Proposition 3: If there exist Pi > 0, Vi, i ∈ N, such that[
Her(PiAi − ViLi)+

∑
j∈N λijPj PiJi − ViHi

J ′iPi − H
′
iV
′
i −γ 2I

]
< 0,[

Pi C ′i
Ci I

]
≥ 0,

then, by taking Bfi = P−1i Vi, we have that system (25) is SS
and ‖e‖ ≤ γ ‖w‖2.
Proof 4: The result follows from Proposition 2 after

noticing that PiĀi = PiAi−ViLi and that PiJ̄i = PiJi−ViHi.
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FIGURE 1. γ ∗ against ᾱ ∈ [0.5,1] in (27) for nf = 4.

C. ROBUST FILTERING
In this section we study the robust filtering case, considering
polytopic uncertainties on Ai, Ji, Li, Hi, Ci as well as on the
detector rates αkj` and q

i
k`. First of all, note that the summation

in ν(i,k)(j,`) in (18), considering (11), can be rewritten as∑
(j,`)∈V

ν(i,k)(j,`)Pj` = (λii + qikk )Pik

+

∑
(j,`)∈V, 6̀=k

qik`Pi`

+

∑
(j,`)∈V, j 6=i

λijα
k
j`Pj` (26)

for all (i, k) ∈ V. Note that the rates αkj` and q
i
k` are affine in

(26). Set 9i = (Ai, Ji,Li,Hi,Ci) and

qi
k
,
[
qik1 . . . qikM

]′
∈ RM , ϒk , [αkj`].

We assume that there are 9i(s), αkj`(s) and qik`(s), for
s = 1, . . . , σ , such that

(qi
k
, ϒk ) =

σ∑
s=1

ηs(qik (s), ϒk (s)),

9i =

σ∑
s=1

ηs9i(s),

for some ηs ≥ 0, s = 1, . . . , σ ,
∑σ

s=1 ηs = 1 Then, since
(18) is affine in 9i, αkj` and qik`, by setting 9i = 9i(s),
αkj` = α

k
j`(s) and q

i
k` = qik`(s) and solving (17)-(19) for each

vertex s ∈ {1, . . . , σ }, we also get that ‖e‖∞ ≤ γ ‖w‖2 with
the filter matrices given as in Theorem 1.
Remark 6: Notice that from (26) we could have the

polytopic uncertainties in λij instead of αkj`.

VI. ILLUSTRATIVE EXAMPLE
We consider an adapted version of the linearized model
of the stable longitudinal dynamics of an unmanned air-
craft discussed in [31]. The original nonlinear model is
obtained by classical (Newtonian) mechanics, by considering
a rigid-body motion and assuming that the Earth is an
inertial (Galilean) frame so that the Coriolis acceleration is
ignored. The components of the state vector are the variations

FIGURE 2. E(x2(t)) (grey line) and E(ẑ(t)) (black dashed line) against t , for
ᾱ = 0.90.

on the pitch rate, airspeed, angle of attack, and pitch angle.
After linearization, the nominal matrices are given by

Ā =


−4.7796 0 −4.5420 0

0 −0.0830 −0.8660 −9.8100
1.0000 −0.0215 −3.6573 0
1.0000 0 0 0

 ,
J̄ ′ =

27.4128 0 0 0
0 0 0 0
0 0 0 0

 .
We assume that we can measure the angle of attack and pitch
angle so that

L̄ =
[
02×2 I2

]
, H̄ =

[
02×1 I2

]
but, however, the sensors are subject to faults. In this case,
the process θ (t) is a Markov chain with three possible states,
so that N = {1, 2, 3}, with:
• State 1 representing the nominal case, so that L1 = L̄
and H1 = H̄ ;

• State 2 representing a faulty mode of operation whereas
there is an attenuation in the measurements of the angle
of attack and pitch angle so that, in this case, L2 = 0.5L̄
and H2 = H̄ ;

• State 3 also representing a faulty mode in which the
measurements are completely lost, that is, L3 = 0, and
the noise level increases so that H3 = 1.2H̄ .

For all modes of operation, we set Ai = Ā, Ji = J̄ , i ∈ N. The
transition rates are given by

[λij] =

−0.4 0.4 0
0.7 −1.0 0.3
0 0.5 −0.5

 .
We consider that it is not possible to measure the fault
process perfectly but, instead, there is a detector θ̂ (t) which
provides some information regarding θ (t), so that M = N.
The goal is to design the matrices Af `, Bf `, Cf ` in (12) to
obtain an estimation of the variations on airspeed, that is,
Ci =

[
0 1 0 0

]
, i ∈ N. We notice that by combining

the matrices Ai, Ji, Li,Hi, Ci of system (10) introduced above
with the filter equations Af `, Bf `, Cf ` of the system (12) we
get the extended system given by (13).
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In this example, we analyse five different cases (see
Remark 4 for an explanation of these cases):
(1) The mode-dependent case;
(2) The case in which we only have mutual (simultaneous)

jumps of θ (t) and θ̂ (t), that is, qik` = 0;
(3) The cluster case;
(4) The case of no mutual jumps;
(5) The mode-independent case,
We recall that, as pointed out in Remark 4, case (2) is

useful for modelling the situation of simultaneous jumps of
θ (t) and θ̂ (t), but with a possible mismatch between them,
while case (4) is useful for modelling detection delays and
false alarms. Case (1) represents the situation of perfect
information of the mode of operation θ (t) while cases (4) and
(5) represent the situation of partial or no information at all
of the the mode of operation θ (t). For the mode-dependent,
simultaneous jumps, and cluster cases, and considering
Remark 4, we set the rates of spontaneous jumps qik` to zero.
For the rate of simultaneous jumps, we set

[αkj`] =

1 0 0
0 ᾱ 1− ᾱ
0 1− ᾱ ᾱ

 (27)

where 0 ≤ ᾱ ≤ 1.0. That is, whenever there is a transition
of θ (t) to ‘‘1’’, θ̂ (t) will also go to ‘‘1’’, meaning a perfect
detection for the nominal mode of operation. On the other
hand, if θ (t) jumps to ‘‘2’’ (or ‘‘3’’), there is a probability ᾱ
of θ̂ (t) going to ‘‘2’’ (or ‘‘3’’), that is, ᾱ is the probability
of correct detection for this two modes of operation.
Considering Remark 4, we get the mode-dependent case (1)
by setting ᾱ = 1 and V = {(1, 1), (2, 2), (3, 3)} and the
simultaneous jump case (2) by setting a chosen value of ᾱ
within the interval [0, 1]. As for the cluster case (3) (see
Remark 4), we set the clusters N1 = {1} and N2 = {2, 3},
that is, the faulty modes are indistinguishable. Regarding the
no mutual jumps case (4) (see Remark 4), we will consider
the situation of detection delays with expected delay time
of 1

2.5 s, which corresponds to taking αkjk = 1 and αkj` =
0 for k 6= `, along with q121 = q131 = q212 = q232 =
q313 = q323 = 2.5, and qik` = 0 for the other cases. Finally,
case (5) is the mode-independent situation, in which we have
only one filter for all modes of operation. By minimizing υ
in (17)-(19), we get γ ∗ =

√
υ∗ for all cases of Remark 4:

(1) ᾱ = 1 (the mode-dependent case), (2) ᾱ = 0.9
(a case of simultaneous jumps); (3) the cluster case; (4)
the no mutual jump case; and (5) the mode-independent
case. The costs γ ∗ obtained through (17)-(19), are shown
in Table 1 for nf ∈ {1, . . . , 4}. From Table 1, we note
that, as we decrease nf , the costs will degrade for all cases,
which is expected since we are using a smaller number of
filter states for the estimation. More specifically, we also
note that,
• For any chosen case, the performance of the filters is
similar for the cases nf = 3 and nf = 2, but considerably
worse than the performance of the case nf = 4.

TABLE 1. γ ∗ for nf ∈ {1, . . . ,4} for (1) the mode-dependent case; (2) a
simultaneous jump case with ᾱ = 0.9; (3) the cluster case; (4) the case of
no mutual jumps; and (5) the mode-independent case.

• As expected the worst performance is obtained with
nf = 1, which corresponds to the filter with only one
state variable. This is not a too realistic situation, since
one is trying to use a scalar filter to estimate an output
from a forth-order system.

The conclusion, in terms of the order nf of the filter, is that the
designer must ponder if it is acceptable to increase the costs
in this proportion whilst using less computational resources
with a reduced order filter. Comparing now the cases, the
best costs, as expected, are obtained for the mode-dependent
case (1), corresponding to ᾱ = 1.0, since in this case there
is no mismatch between the switching process of the filter
and of the plant. Compared to case (1), there is a slight
degradation of the value of the costs for case (2), with the
cluster case (3) presenting some intermediary values in this
example. Case (4), for our choice of rates qik`, presents a
similar performance as the one for case (2), with both cases
outperforming the cluster case (3). The worst case scenario
occurs, in terms of costs, for the mode-independent case,
since the filter is the same for all modes of operation. Finally,
the filter matrices for nf = 3 and the (3) cluster case are given
as follows,

Af 1 =

−6.6115 0.0434 16.5391
22.6821 −0.1192 74.3876
1.1395 −0.0184 −5.7569

 ,
Bf 1 =

14.9512 −0.8588
55.0244 15.1125
−2.9764 0.0476

 ,
Cf 1 =

[
−13.5725 −0.9362 −69.9869

]
and, for ` ∈ {2, 3},

Af ` =

−2.0317 0.0424 6.7956
41.6391 −1.3833 −234.2737
0.5071 −0.0114 −2.0871

 ,
Bf ` =

−0.0501 −0.1901
−7.9312 26.6796
−0.0873 −0.0829


Cf ` =

[
−11.6305 −0.5710 2.7278

]
.

We can have a closer look at the costs for nf = 4 by varying
ᾱ ∈ [0.5, 1.0] while minimizing υ in order to get the values
of γ ∗ against ᾱ, as shown in Figure 1.

From Figure 1, we can see that the smallest cost is obtained
for ᾱ = 1.0, which corresponds to the mode-dependent
case (see Remark 4). As we decrease ᾱ, we increase
the mismatch frequency between θ and θ̂ , consequently
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FIGURE 3. One trajectory of θ(t) (full black line) and θ̂(t) (dashed gray
line) sampled from the Monte Carlo simulation of 200 rounds.

FIGURE 4. One trajectory of x2(t) and its estimation zf (t) obtained with
the sample path of θ and θ̂ shown in Figure 3 (nf = 3, ᾱ = 0.9).

increasing the costs γ , with the biggest value of γ given
for ᾱ = 0.5, that is, when it is equally likely to obtain the
correct and the incorrect information from the detector. For
this situation the filter matrices are the same for N1 = {1}
and N2 = {2, 3}, which corresponds to the cluster case.
We now run a Monte Carlo simulation of 200 rounds for
the filter calculated for the case nf = 3 (a reduced order
filter) and ᾱ = 0.9. We consider θ (0) = θ̂ (0) = 1 and the
exogenous input as w(t) = 0.01

[
1 0 0

]′
, 0 ≤ t < 40 s,

and w(t) = 03×1, t ≥ 40. We get that ‖z‖∞/‖w‖2 ≈
85.3 < 440.1, as expected. Figure 2 shows the actual state
E(x2(t)) and its estimation E(ẑ(t)) against the time). We note
that, after the initial transient, the reduced order filter is able
to successfully track the desired state. Besides, in order to
illustrate the behavior of θ (t) and θ̂ (t), we plot one trajectory
of both curves against the time obtained from theMonte Carlo
simulation used to plot Figure 3. We note that the Markov
chain, which represents the fault process, transitions between
two of the three possible states. Whenever there is a transition
of θ (t), there is a 90% of chance that θ̂ (t) will go to the same
state, provided θ (t) = 2 or θ (t) = 3. Thus there is a 10%
of chance of a mismatch between θ (t) and θ̂ (t) after a jump
from states 2 and 3. For instance, from Figure 3 we notice
that, at around 4 s, the Markov chain goes to ‘‘2’’, but the
detector goes to ‘‘3’’. We plot in Figure 4 the actual state x2(t)
and its estimation zf (t) associated with the sample path of θ (t)
and θ̂ (t) shown in Figure 3, obtained through theMonte Carlo
simulation.We note that the filter is able to satisfactorily track

the state x2(t), even with the reduced order structure and the
mismatch effect.

VII. FINAL COMMENTS
In this paper we investigated the energy-to-peak reduced-
order filtering problem for continuous-time Markov jump
linear systems considering that the Markov state cannot be
directly measured. To cope with this partial information set-
up, it is assumed that there exists another stochastic process,
called a detector, which provides the only information
regarding the Markov chain, so that the joint process follows
the so-called exponential hidden Markov model. A sufficient
design condition, written in terms of LMIs, is given for
obtaining the filter matrices that depend only on the detector
process and such that the ratio of the expected value of the
Euclidean norm of the estimation error by the energy of
the exogenous input signal is bounded for all time. Finally,
we present an illustrative example in the context of an
unmanned aircraft subject to faulty sensor readings.

As a future work, the design of energy-to-peak output
dynamic controllers with partial information on the state
variable as well as the jump variable is an interesting line of
research which, as far as the authors are aware of, was not
tackled in the literature yet. Another possible promising field
of research would be to apply the obtained results in filtering
issues related to communication protocols or cyber-attacks,
as considered, for instance, in [33], [34].
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