IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 12 June 2022, accepted 16 July 2022, date of publication 26 July 2022, date of current version 1 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3194028

== survey

Evolution of NULL Convention Logic Based
Asynchronous Paradigm: An Overview
and Outlook

DANYLO KHODOSEVYCH AND ASHIQ A. SAKIB", (Member, IEEE)

Department of Electrical and Computer Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
Corresponding author: Ashiq A. Sakib (asakib@floridapoly.edu)

ABSTRACT The synchronous design paradigm dominates today’s semiconductor industry. However, this
clocked approach is facing major challenges with today’s high-speed, low-power design expectations,
using processes with ever-increasing physical level variability. Several clock related issues surface in
designs operating at higher frequencies, which make clock management increasingly difficult. Quasi-delay
insensitive (QDI) asynchronous (clockless) designs have proved to be effective in circumventing the major
limiting factors associated with the clocked designs. NULL Convention Logic (NCL) is one such QDI
asynchronous design paradigm, which presents itself as a promising alternative to conventional synchronous
circuits and has already found numerous commercial applications due to its low power, robust architecture,
and ease of design reuse. This paper presents the evolution of NCL based asynchronous paradigm over the
past two decades, primarily focusing on existing fundamental research in NCL design automation, spanning
over NCL synthesis, optimization, testing, and verification. The methods are systematically analyzed to
determine their limitations and future research directions.

INDEX TERMS Asynchronous circuits, design automation, logic optimization, null convention logic,

testing, verification.

I. INTRODUCTION

Within the field of digital VLSI, the demand for low-power,
high-speed, and miniaturized Integrated Circuits (ICs) is
ever increasing. Recent advancements in the conventional
synchronous (clocked) domain allow designs to operate at
Gigahertz (GHz) level frequency range while requiring lesser
area. However, nowadays most devices based on synchronous
digital designs are becoming extremely power-hungry, where
the clock accounts for a significantly large portion of the
power consumed in these designs. Several clock-related
issues, such as clock skew, clock jitter, complex timing anal-
ysis, etc., make clock management extremely challenging.
Additional driver circuitry required for clock distribution fur-
ther adds to the energy utilization and area overhead. More-
over, decreasing feature size and higher integration density
result in significant power dissipation per unit area as well as

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu

78650

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

more timing inconsistencies (e.g., stretching of timing mar-
gins) due to increased process variations at scaled technology
nodes.

Asynchronous designs [1] present themselves as a promis-
ing alternative to conventional synchronous circuits, which
are inherently robust against process, voltage, and temper-
ature (PVT) variations and have been effective in circum-
venting the major challenges associated with the clocked
designs [2]. This has resulted in the domain’s growing popu-
larity over the past few decades. The most recent 2013 inter-
national technology roadmap for semiconductors (ITRS)
predicts asynchronous logic to account for more than 50% of
IC global signaling in the multibillion-dollar semiconductor
industry by 2027 [3], and the more recent 2018 IEEE Interna-
tional Roadmap for Devices and Systems (IRDS) lists asyn-
chronous computing as a potential solution to reduce power
consumption [4]. Quasi-delay insensitive (QDI) is one of
the widely utilized implementation models of asynchronous
circuits with distributed switching (i.e., switching is not

VOLUME 10, 2022

https://orcid.org/0000-0001-7985-2449
https://orcid.org/0000-0001-7300-9215

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

IEEE Access

TABLE 1. Summarization of gate level delay insensitive methods.

Methods Delay Completion Full State Holding Performance Optimization

Analysis/ Detection Minterm Elements Possibilities
Matching Synthesis

[10] ‘ Not required Required Yes C-clements Average case Not possible

[11] ‘ Not required Required Yes C-elements Average case Not possible

[12] ‘ Not required Required Yes C-elements Average case Not possible

[13] Not required Required No C-elements Average case Limited

[14] Not required Required No C-elements Average case Limited

NCL Not required Required No Threshold gates Average case Significant

triggered simultaneously at the clock edge), which is achieved
through a well-defined control mechanism to preserve error-
free functionality and synchronization over the operation
period [2]. The unique architecture prevents any data from
being overwritten in the absence of external synchronizing
signals. QDI model utilizes a phased request-acknowledge
control mechanism along with certain timing assumptions
to ensure that the functionality is not compromised. It oper-
ates under the assumption that any wire or gate delay is
unbounded, i.e., unlike synchronous circuits, minimal timing
analysis needs to be performed as the worst-case scenario is
not assumed. However, the model requires the isochronic fork
assumption, which dictates that the wire delays are less than
the logic element delays within the components [2], [5], [6].
NULL Convention Logic (NCL) [7] is one of the major QDI
design paradigms, which has found numerous commercial
applications due to their inherent advantages, such as excel-
lent power performance, less electromagnetic interferences
(EMI), less noise, robust architecture, and ease of design
reuse [2], [8], [9]. Although NCL circuits have managed to
establish a growing industrial interest, the widescale adoption
has been primarily hindered due to 1) the lack of matured
computer aided design (CAD) tools to support automated
synthesis, optimization, testing, and verification, 2) area over-
head due to architectural constraints, and 3) lack of human
resources with related expertise. Over the last two decades,
several notable research works have focused on address-
ing these limitations, whereas several funding agencies (like
NSF) have supported projects that aimed at educating and
preparing the next generation workforce in the domain,
as well as facilitating cooperation between industry and
academia. This paper presents a comprehensive review and
comparative analysis of the existing fundamental research
in NCL design automation, spanning over NCL synthesis,
architecture and circuit level optimization, testing, and formal
verification. The objective of this work is to critically analyze
the existing works to determine their limitations and realize
future research opportunities to aid current researchers in
their efforts towards developing industry standard support
tools, which can greatly reduce the productivity gap, thus
reducing the time-to-market, and facilitate further industrial
adoption.

VOLUME 10, 2022

The article is divided into six main sections. A brief
overview of NCL circuits and their fundamentals are pre-
sented in Section II. The evolution of automated NCL design
flows is illustrated in Section III. Section IV details the
different transistor-level implementations of NCL threshold
gates proposed over the years, compares their performances,
and systematically analyzes the cost metrics associated with
each implementation. Different NCL testing and verification
schemes, their unique attributes, limitations, and overall chal-
lenges associated with NCL design validation is summarized
in Section V, followed by conclusions and directions for
future work in Section VI.

Il. NCL BACKGROUND

Prior to NCL, there were several other gate-level delay
insensitive (DI) methods [10]-[14]. Delay insensitivity was
attained in those methods by either generating a comprehen-
sive set of all minterms [10]-[12], constructing and combin-
ing smaller self-timed components [13], or utilizing multiple
subnets for self-timed logic construction [14]. The common
attribute in all these methods is the utilization of C-elements
as state-holding components along with Boolean gates to
implement delay-insensitive (DI) functionality [15]. NCL
circuits, on the other hand, utilize a library of threshold
gates to achieve delay-insensitivity and do not require the
generation of all minterms. Table 1 lists the attributes of all
the above-mentioned DI methods.

NCL utilizes multi-rail logic, most commonly the dual-
rail logic, to eliminate timing references, and a 4-phased
handshaking-protocol for synchronization and control.
A 2-phase protocol could also serve as an alternative hand-
shaking scheme [16]. Unlike Boolean logic, dual-rail encod-
ing requires two wires per variable to represent one bit
of information (i.e., logic ‘0’ or ‘I’), thus simultaneously
representing both literals of the variable. A dual-rail encoded
variable, X, comprising of two wires/rails, X° and X!, can
assume any of the three values from the set {NULL, DATAOQ,
DATA1}; where X° (and X1)e {0,1}. DATAO (X° = 1 and
X! = 0) and DATAI (X° = 0 and X' = 1) are equivalent to
Boolean logic ‘0’ and ‘1’, respectively. Both rails being equal
to ‘0’ corresponds to the NULL state, which serves as a spacer
value between two different data fronts. X = X! = 1 isan

78651

IEEE Access

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

illegal state as it violates the mutual exclusive principle of
the dual-rail protocol, which dictates that both rails cannot be
asserted simultaneously.

The NCL framework resembles the conventional syn-
chronous framework arranged in a micro-pipeline fash-
ion [17]. The framework consists of QDI NCL registers,
combinational logic unit, and completion detection unit as
depicted in Fig. 1. For combinational circuits, the NCL
paradigm requires at least two sets of QDI registers and one
completion detection unit per stage to generate the handshak-
ing control signals, which together enable the architecture to
maintain an alternating NULL and DATA sequence to dis-
tinguish between two different DATA wavefronts in absence
of the clock [2]. The completion detection unit, comprising
of a combination of NCL threshold gates with 2/3/4-input
C-element like functionality, uses the next stage registers’
acknowledge signals (Kos) to detect complete DATA/NULL
sets, and outputs a single-bit signal, which is fed into the
request input (Ki) of all previous stage registers to request
for the next NULL/DATA sets. The NCL logic, including
registers and completion detection, is comprised of 27 fun-
damental gates with hysteresis, i.e., state holding capability.
The threshold gates together can implement any function
of maximum four non-inverted variables. The 27 threshold
gates could be categorized into two groups: weighted and
non-weighted. A non-weighted gate is represented as THmn,
where m ([1, n]) and n are the threshold and number of
inputs, respectively. A weighted gate can be represented as
THmnWwi, wy ..., w,, where w, (1 < w, < m)isthe weight
corresponding to input r. A non-weighted gate with m = n
behaves like an n-input C-element and can be represented
as THnn. Fig. 2a depicts an NCL TH13 gate with 3 inputs
(A, B, C) and a threshold value of 1, which indicates that the
gate will assert its output only when at least one of the three
inputs is asserted. Therefore, the set equation of TH13 gate

Curent Data Channel — Next
Stage | | Stage
cee i NG Combinational NCL |:> soe
Register Logic Unit Register
Prev. N bi ;
Stage its | Handsahking N| N bits
| Channel I
N 1 " N 1
Completion
LN 1 i l I eee
K K ; Detection Unit i Koo K
FIGURE 1. NCL framework.
A A
B B 2
c C
D

(a) (b)
FIGURE 2. (a) TH13 gate, and (b) TH24W22 gate.

78652

becomes A + B + C. A weighted TH24w?22 gate is shown as
an example in Fig. 2b. Two of the four gate inputs to the gate
(A, B) have a weightage of 2, whereas the remaining inputs
(C, D) have a weightage of 1. Hence, if one of A or B gets
asserted, it will be sufficient to meet the threshold and assert
the output. However, C and D both must be asserted to assert
the output. Therefore, the set equation of TH24W?22 becomes
A 4+ B 4+ CD. NCL gates are primarily implemented using
static CMOS architecture [18], which is a subject of its own
optimization at the transistor level.

NCL circuits must adhere to two requirements to remain
delay insensitive: input-completeness and observability [2].
An NCL circuit is said to be input-complete if all its out-
puts transition from NULL-to-DATA/ DATA-to-NULL only
after all its inputs have transitioned from NULL-to-DATA/
DATA-to-NULL. There can be some exceptions to the input-
completeness requirement. For instance, some paths in the
NCL datapath can be relaxed by implementing some of the
gates as Boolean functions (without hysteresis). Under a
relaxed scenario, it is acceptable for some of the outputs
to transition without having a complete input set present,
as long as all the circuit outputs cannot transition before
all inputs transition. Input-completeness is the subject of
various research works as it introduces a lot of overhead
and restrictions to NCL circuits. This indicates that working
around the concept of input-completeness can yield potential
optimizations in NCL circuits, which will be discussed in
future sections. Observability requires that each gate in a
combinational circuit that transitions is required to make at
least one output transition, i.e., every gate transition needs
to be observable at the output. An unobservable circuit may
introduce orphans during operation [19]. An orphan is a
transition on a wire or a gate that is not acknowledged by
a transition on the primary output, which may result in erro-
neous functionality under some timing scenario (e.g., if the
transition is too slow).

Ill. EVOLUTION OF NCL DESIGN FLOWS: LOGIC
SYNTHESIS, OPTIMIZATION, AND

TECHNOLOGY MAPPING

A. EARLY DESIGN FLOWS AND RELATED OPTIMIZATIONS
Synchronous designs have been dominating the industry for
decades. As a result, the development of electronic design
automation (EDA) tools over the years mostly focused on
the clocked domain to cater the need of the industry. The
NCL framework resembles the conventional synchronous
framework, which enables designers to automate the syn-
thesis of NCL circuits following similar processes as exist-
ing synchronous design automation. This promotes easier
incorporation of NCL design flows into the semiconductor
industry. As a result, NCL has become a more prominent
asynchronous framework, especially since the inception of
the first commercial design flow called NCL_D [20] in early
2000. The NCL_D design flow can perform logic synthesis
using conventional CAD tools and primarily focuses on area

VOLUME 10, 2022

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

IEEE Access

optimization. The method implements two synthesis steps
starting from the circuits’ Register Transfer Level (RTL)
specifications. The Hardware Description Language (HDL)
implementation (VHDL) of the specification circuit first goes
through an initial RTL synthesis process, which results in a
3NCL gate level netlist. 3NCL netlist, consisting of 2-input
Boolean gates, is a single-rail representation of the circuit that
can accept one of the three values from the set {0, 1, N}. N is
equivalent to a NULL signal in NCL framework and is treated
as a don’t care value by the compiler (Synopsys or Cadence).
Therefore, the resulted 3NCL circuit is like a Boolean circuit,
where the only difference is that Boolean circuits do not deal
with three values in a single wire. In the second synthesis
step, each wire gets converted to dual-rails and each 3NCL
gate is expanded into a fully dual-rail 2NCL implementation
using delay insensitive minterm synthesis (DIMS) technique.
The 2NCL netlist mostly comprises of 2-input C-elements
(i.e., TH22 gates) and OR gates, which guarantees input-
completeness and observability by construction. Following
the conversion to a 2NCL DIMS [21] circuit, the compiler
prepares the circuit for further optimization, such as multi-
level minimization of the Boolean network, targeting an NCL
library.

Despite a significant step taken by the NCL_D design
flow towards making NCL a more viable alternative to
synchronous circuits, it suffered from large area overhead.
This is mostly due to the optimization scopes being limited
by the imposed delay-insensitivity constraints. NCL_X [22]
emerged as a successor to NCL_D, building up on the parent
design flow. NCL_X stands for NCL with explicit complete-
ness, which modifies the design flow to handle the functional-
ity and delay insensitivity separately. This partition allows for
less restrictive, simplified, and independent optimization of
logic and completion components. The NCL_X design flow
also starts with logic synthesis from the RTL specification
using synchronous CAD tools. After synthesis, the generated
logic network (Boolean) gets converted to a unate network
by replacing the direct value of a signal, x, by x! and inverse
of x by xY, followed by the dual-rail expansion. The unate
network evaluates rail' of the circuit. For each gate in the rail!
network, a dual gate is introduced in the rail® network as a
part of the dual-rail expansion procedure. The two output rails
of each dual gate pair in the combinational circuit are ORed
together and then fed into a C-element network to generate
the acknowledgement signals for previous register stages.
The OR gates are termed as ‘local completion detectors.
Unlike conventional NCL framework that contains a single
completion detection unit per DI stage, NCL_X contains
separate completion detectors for registers and logic unit per
stage, as depicted in Fig. 3. The resulting combinational NCL
circuit is delay-insensitive at each internal gate stage, thus
allowing more flexible optimizations. Furthermore, in case
some internal gates are acknowledged through the functional
parts, their local completion detectors (OR gates) remain no
longer required and can be removed for further area saving.
The NCL_X flow permits more aggressive optimization of

VOLUME 10, 2022

o Ack_b b.go

AN

=S for register and

i combinational logic
C — eee

Request / Request

| logic \ Register B
"/

FIGURE 3. NCL_X framework [22].

Ack_a ago Completion detectors

* o0 =3 Register A

the combinational circuit itself through explicit completeness
and significantly reduces the area overheard as compared to
NCL_D.

B. INPUT COMPLETENESS RELAXATION

[23] proposed two design flows targeting further area reduc-
tion of NCL circuits based on the concept of partial acknowl-
edgment. Any dual-rail signal within a circuit can be partially
acknowledged by the output of at least one of the input-
complete gates it fans into in both rising and falling transi-
tions (where rising refers to a NULL-to-DATA transition and
falling refers to a DATA-to-NULL transition). In NCL_D,
all gate functions are input-complete; hence, a gate-input
variable is acknowledged by all the outputs of the gates that it
fans into. In contrast to NCL_D, [23] indicates that having a
variable partially acknowledged in one of the fanout paths is
sufficient. This opens possibilities for the gates in other fanout
paths of the partially acknowledged variable to be considered
for relaxation. Having more relaxed gates can significantly
reduce the transistor count. Based on this concept, the first
design flow targets area optimization, while also considering
the induced overhead required for the verification of the
circuit. The latter part of the work proposes another closely
related design flow, which allows circuit design utilizing
custom cells. The synthesized function modules can partially
acknowledge signals in both rising and falling transitions.
Results demonstrate that both the design flows can achieve
a moderate reduction in area as compared to NCL_D and
NCL_X. The second design flow performs better than the first
in terms of area optimization but demands more aggressive
verification. The partial acknowledgment concept is further
extended in an automated synthesis flow in [24].

Chelcea et at. developed a method targeting area optimiza-
tion of NCL circuits utilizing relative-timing analysis [25].
The method first observes the isochronic fork assumption and
shifts to the notion that wire and gate delays are bounded
(unlike QDI assumption). A minimal timing analysis is per-
formed with the end goal of reducing the layout area through
minimizing the number of completion detection units. Based
on the timing interval calculations involving the comparison
of the gate and wire delays with global propagation delays,
several heuristic and optimal area optimization algorithms

78653

IEEE Access

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

were developed by the authors. The most advanced algorithm
finds the optimal number of strict gates (i.e., input-complete
gates) within the network. This indirectly improves the area
utilization by finding the right balance between the minimum
amount of completion detection units and input-complete
gates. [25] reports a 2.4x improvement in area-utilization (on
an average) based on their optimal algorithm, as compared
to NCL_X [22]. However, due to the bounded-delay assump-
tion, the synthesized circuits no longer remain QDI.

In many design flows, gate optimization by adding local
completion detection units was preferred over an implemen-
tation with all input-complete gates, as the latter is associ-
ated with higher area cost. Jeong and Nowick [26] argue
that a better optimization in terms of area utilization can be
achieved by their method of local relaxation (termed as Now-
ick’s relaxation), which does not require local completion
detection, and where the number of strict or input-complete
gates remains optimal. The method proposed in [26] has
a similar objective to that of the works presented in [23]
and [25]. In fact, the concept of local relaxation is very
similar to partial acknowledgment. However, in contrast to
those methods, which only focused on minimizing area, the
optimizing algorithms in [26] target three cost parameters:
number of input-complete gates, area, and critical path delay.

The algorithm minimizes the number of strict gates by
ensuring that each primary input and intermediate gate output
of the circuit is acknowledged only by a single fan-out point.
For instance, Fig. 4 shows a 2NCL implementation of a
2-input XOR function, which is translated from a 3NCL
representation. The 2NCL implementation starts as strict

(b)

FIGURE 4. (a) Strict and (b) Relaxed implementations [26].

78654

(Fig. 4a), where dual-rail input signals a and b are each
acknowledged on two distinct paths, through input complete
blocks X and Y. Fig. 4b depicts a less-restrictive implementa-
tion of the 2-input XOR function, where the input-complete
block Y is locally relaxed by removing the C-elements,
as acknowledging same inputs in multiple paths is redundant.
Additionally, the method illustrates the possibilities of having
multiple different choices for relaxation, which require con-
sideration for evaluating the overall cost-function. The cost
of expansion of each unique gate is also considered by the
algorithm to further improve the area utilization. Moreover,
the latency of the circuit can be optimized by identifying
the longest path(s) and relaxing as many gates as possible
in the path(s) to allow early evaluation (and reset) without
compromising the delay-insensitivity.

The concept of input completeness relaxation is extended
to hierarchical designs in [27]. Unlike [26], the relaxation
is not directly performed at the gate level, rather the tech-
nique aims to relax a block (comprised of multiple gates)
within a circuit. The use of block-level relaxation can relax
coarser-granularity nodes with more than one output, and
the relaxation of a particular block inherently induces relax-
ation on its gate level implementation. The significant differ-
ence between block-level relaxation and Nowick’s relaxation
(of gates) is in the perspective from which the relaxation
is performed. In addition to identifying the most suitable
block(s) for relaxation within a given circuit, the algorithm
in [27] finds the best ‘partially eager’ implementation of
each non-relaxed block. Partially eager indicates that within
a multi-output input-complete block, some of the outputs
can be eager (i.e., they can be evaluated early without
compromising the delay-insensitivity of the overall block).
Three partially eager approaches are used by the developed
method to find the optimal relaxation of each block. The first
approach is analogous to the Nowick’s gate-level relaxation
method [26]. The second approach is based on the idea that if
a multi-output block has at least one path where all its inputs
are acknowledged, then the remaining outputs in other paths
can perform eager (i.e., early) evaluation. Finally, the third
technique is a distributive approach towards implementing
a multi-output input-complete block. In this approach, all
outputs jointly ensure the input completeness for the block’s
inputs, where each output only acknowledges a subset of
inputs (and remain eager for other inputs). Like [26], the
algorithm decides how to implement each input complete
block based on the cost functions and trade-off analysis.

In [28], Toms and Edwards utilize Nowick’s gate-level
and block-level relaxation methods and further extend those
by incorporating them into an automated synthesis flow,
which allows for a more efficient relaxation of a circuit
network. The synthesis flow is initiated by forming clusters
of gates (blocks) within the network utilizing a clustering
algorithm to employ the block-level relaxation procedure as
an intermediate step. The aim is to maximize the number
of gates in a cluster while not going over the input limit
of gates. After the circuit has been partitioned into clusters

VOLUME 10, 2022

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

IEEE Access

of gates, the block-level relaxation synthesis starts off by
utilizing the prime indicant synthesis algorithm [29]. The
algorithm finds the minimal non-overlapping implementation
of input-complete gates that acknowledge the signals within
each cluster. The algorithm also determines the transitions
acknowledged by different functional blocks (i.e., the num-
ber of variables one block must acknowledge), followed by
a procedure to reduce indicants. As compared to [27], the
fully automated procedure can apply block-level relaxation at
much finer granularity, which results in further improvement
in terms of speed of operation as well as area and energy
utilization.

C. MORE RECENT NCL DESIGN FLOWS AND ADVNANCED
TECHNOLOGY MAPPING
UNCLE [30] (Unified NCL Environment) is a relatively
recently developed, custom, end-to-end toolset that facilitates
the automated synthesis of NCL circuits. The design flow is
very similar to NCL_D, in that the flow initiates from the RTL
description of the circuit, which is synthesized to a netlist of
Boolean gates using commercially available synthesis tools
(supports Synopsys and Cadence Encounter RTL compiler).
In case of NCL_D, the responsibility lies with the designer
to indicate the location of register components, which are
replaced with NCL registers during synthesis. However,
UNCLE flow does not require the designers to explicitly
locate the register components in the RTL description, which
makes it more flexible. The Boolean gate netlist, i.e., the
3NCL netlist, then undergoes dual-rail expansion, where
gates and registers are mapped to their equivalent dual-rail
NCL implementations. The handshaking signals (acknowl-
edge and request) are generated and connected as per the NCL
architecture and four-phased handshaking protocol, followed
by a series of optimization procedures (e.g., gate and block
level relaxation [26], [27], cell merging, etc.). UNCLE flow
is based on a data-driven approach, where there is no separate
control network, except one dedicated acknowledge network.
However, the flow could be extended to support control-
driven design style, like BALSA [31, 32], as demonstrated
in [30]. In contrast to the data-driven approach, the control-
driven approach has a dedicated control network, which is
separate from the datapath. The UNCLE design flow also
supports the synthesis of Multi-threshold NULL Convention
Logic (MTNCL), commonly referred to as SLEEP Conven-
tion Logic (SCL). SCL is a variant of NCL that targets low
power applications, where the concept of multi-threshold
CMOS is implemented to further reduce the leakage power
dissipation. SCL logic units, registers, and completion units
utilize an additional sleep signal that can immediately reset
a particular stage to NULL, i.e., unlike NCL, a separate
NULL wavefront is not required to be propagated through the
pipeline after each DATA propagation. [2] and [33] explain
the SCL architecture and its operation in detail.

Bhaskaran [34] developed another automated NCL design
flow, which is quite different from NCL_D and UNCLE. [34]
initiates from the synchronous RTL description of the circuit.

VOLUME 10, 2022

Like NCL_D (and unlike UNCLE), the method requires
the register locations to be explicitly specified. However,
in contrast to existing design flows, this flow requires the
combinational blocks to be partitioned into sub-modules by
imposing constraints, such that synthesized circuits remains
cost-effective in terms of area and delay. After partitioning,
the combinational modules are synthesized to Boolean sum-
of-product (SOP) representations, instead of generating the
Boolean gate netlist, which is the major distinguishing fea-
ture of this methodology. The single-rail SOP representation
is then expanded to dual-rail, ensuring input-completeness
and observability, followed by further custom optimiza-
tion procedures. A custom mapping algorithm is devel-
oped to map the fully optimized SOP expressions to NCL
gates. Fig. 5a and 5b highlight the distinctions between [30]
and [34].

In the abovementioned design flows, all methods
([20], [30], and [34]) implement their own grouping, map-
ping, and merging algorithms during synthesis to further
optimize the logic network. Few works exist in literature
that specifically focus on improving the gate-mapping and
cell-merging procedures. For example, Jeong and Nowick
proposed a technology mapping and cell-merging algorithm
in [35], which supports post-mapping optimizations. The
method successfully demonstrated its significance by fur-
ther improving the performance metrics (area, delay, and
power) when incorporated into the NCL_D design flow.
Parsan et al. [36] proposed a gate mapping automation tech-
nique, which they applied on the last stage of synthesis
of [34], by replacing the original grouping and mapping
algorithm. The proposed gate mapping could achieve up to
10% area improvement and up to 39% improvement over
delay, as compared to the original optimization algorithm
used in [34]. [36] made a case that the method could be
integrated or used as a stand-alone tool in any custom NCL
design flow.

All the NCL synthesis procedures mentioned before use
custom design flows. This is because NCL threshold gates
do not directly map to the conventional standard cell libraries
as provided by commercial design automation frameworks.
An emerging semi-custom design flow is proposed and dis-
cussed in detail in [37] to bridge this gap in technology
mapping. The design flow has its own approach to technology
mapping of a logic network, where a network, specified in
VHDL/Verilog, is mapped to a limited set of NCL gates
using the concept of Boolean Virtual Functions (BVFs). Each
NCL gate is defined based on its equivalent Boolean function
in its on-set as well as off-set, which masks the sequential
behavior (i.e., state holding capability) to tactfully employ
existing CAD tools. The method that is used to map a logic
network to a particular set of gates is based on an existing
work proposed in [38]. An NCL Virtual Library is then
generated from the Boolean netlist. It is at this point where
the design flow in [37] starts to differ significantly from the
other works from literature, in that it can use conventional
CAD tools to adjust the mapped network on the circuit level

78655

IEEE Access

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

e Logic Synthesis using
Cadence or Synopsys;

e Single rail multi-valued
Boolean representation
of NCL circuits.

e Dual-rail expansion
e Boolean gates replaced
with NCL equivalent gates

i Converted 3NCL l Converted 2NCL

e Gate mapping and further
optimization (e.g., relaxation
[26, 27], latch balancing, cell
merging [35])

!

RTL .
es s Synthesized NCL
(@ Specification —— Netlist Netlist Circuit
(Verilog)
e Partition combinational » Dual-rail expansion o Gate mapping and further
modules e Boolean SOP

e Synthesize to single rail
SOP expressions

RTL l Converted 3NCL

®) Specification Netlist

e Logic Synthesis and
optimization using NCL
Virtual Library and CAD

tools
Input complete l

(c) QDI circuit using = Mapped X-Netlist ——p

BVF

expressions are
converted to dual-rail

l

e Fixing X-Netlist using e Further optimization by
NCL+ Virtual Library

optimization (dual-rail
expression mapping [36])

l

Converted 2NCL
Netlist

Synthesized NCL
Circuit

tuning NCL and NCL+

l Optimized
Mapped SDDS-
NCL Netlist . SDDS-NCL
Circuit

FIGURE 5. Automated NCL Flows: a) UNCLE [30], b) Bhaskaran et al. [34], and c) SDDS-NCL[41].

to account for timing and power constraints. However, pre-
vious works (e.g., [23], [26], and [27]) extensively discussed
and warned about the possibility of generating gate orphans
during technology mapping and logic optimization using
commercial CAD tools, which could potentially generate
a corrupted netlist. [37] addresses and tackles the issue of
corrupted netlist generation using a library of NCL+ gates,
which is a variant of NCL gates, and is based on the authors’
previous work [39]. Unlike NCL gates that use Return-to-
Zero (RTZ) handshake protocol, NCL+ gates are designed
to work with Return-to-One (RTO) handshake protocol [40].
RTO and RTZ protocols are conceptually similar. The only
difference is that the rail values are inverted. [37] establishes
the possibility of a mixed implementation of NCL and NCL+
gates within the same network and demonstrates that the
replacement of NCL gates with NCL+4- gates within the logic
network does not compromise the observability, since the on-
sets of NCL+ (NCL) gates cover all the inputs coming from
an RTO (RTZ) domain. The work is further extended in [41],
where both NCL and NCL+ are employed to form a template
called Spatially Distributed Dual Spacer NCL (SDDS-NCL).
A synthesis flow is further developed based on the SDDS-
NCL template.

In [41], a distinction is made between NCL and NCL+
gates to be able to differentiate them better based on the
concepts of unate functions [42]. As per [41], “for each
positive unate NCL (NCL+) gate, a negative unate gate can
be defined, where the latter has its OFF-SET defined as the
ON-SET of the former”. A negative unate NCL (NCL+)
gate is termed as inverted-NCL or INCL (INCL+). The NCL
Virtual Library, consisting of NCL and INCL gates, is used

78656

to synthesize an NCL circuit. In case the synthesized circuit
exhibits incorrect functionality, it is then fixed by the NCL-+
Virtual Library, consisting of NCL+ and INCL+- gates.

The corruption of the netlist often stems from designs that
contain inverting elements. The inverting elements may invert
the internal signals, thus creating certain signal domains that
are more suitable for RTO protocol. Moreover, the change
in the internal signal domain causes the traditional NCL
gates with hysteresis to not transition in their primary outputs
as their off-sets did not account for those transitions. For
instance, let us assume that the half-adder circuit in Fig. 6a is
in NULL state, i.e., all its input rails (A.0, A.1, B.0, and B.1)
and output rails (8.0, S.1, C.0, C.1) are ‘0’. If A and B both
transition to DATA1 (i.e., A.I=B.I=1 and A.0=B.0=0), then
the NAND gate (G3) will compute ‘0’, which will make
C.1=1 due to the NCL inverter. However, the gate G8 that
receives the output of G3 as input, will not transition to ‘1’
due to the hysteresis of 2W11 gate (equivalent to an inverted
TH22 (TH22n) gate). That indicates that the netlist has been
corrupted as S.0 will not become ‘1°.

As per the logic synthesis flow of SDDS-NCL, NCL+
Virtual Library is utilized to ‘fix’ the corrupted netlists by
replacing each NCL (INCL) gate, which contains an odd
number of inverting elements on the path to one of its inputs,
with an NCL+ (INCL+) gate. As a result, G2, G6, G7, and
G8 gates from the NCL Virtual Library in the corrupted netlist
(Fig. 6a) get replaced by their NCL+ counterparts (as shown
in Fig. 6b). For the same combination of inputs, i.e., for A
and B both being DATAI, the fixed half-adder (Fig. 6b) now
computes correctly by enabling S.0 to be ‘1°. Finally, the flow
takes advantage of being compatible with commercial CAD

VOLUME 10, 2022

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

IEEE Access

G6

G7

O C1
— S.1
— S.0

A

B.iro—

> =
Ao @
<2W|1
BO> n4

G3 G6
Al

+
@wn nz —@»—5 c1
B

o S.1

o+
A0 @ O 5.0
n4

B.O>

FIGURE 6. NCL mapped netlist: a) Corrupted netlist (X_netlist), and
b) Fixed netlist [41].

tools to perform sophisticated timing and power optimiza-
tions as opposed to many other flows, which are limited in
their circuit level optimization post mapping. The overview
of the SDDS-NCL logic synthesis flow is depicted in Fig. 5c.
A physical synthesis flow that synthesizes NCL circuits down
to layout is also presented in [41]. However, the flow can only
support the automated design of combinational NCL circuits.

Fig. 7 depicts a timeline to show the advancements in
automated design of NCL circuits over the last two decades
and summarizes the salient features, contributions, and limi-
tations of these methods.

IV. EVOLUTION OF NCL BUILDING BLOCKS: OVERVIEW
OF DIFFERENT NCL GATE IMPLEMENTATIONS

NCL threshold gates are the building blocks of NCL circuits.
The combinational logic, storage elements, and completion
detection units comprise of NCL threshold gates. Therefore,
optimizations at the gate level can significantly reduce the
overall area and energy utilization, as well as improve the
speed of operation of NCL circuits. Various implementations
of NCL gates have been proposed over the past two decades,
such as static, semi-static, differential, etc. Additionally, sev-
eral variants of these implementations also exist in the litera-
ture, which are discussed, compared, and analyzed herein.

A. STATIC NCL IMPLEMENTATIONS (S-NCL)

The static CMOS implementation [18] of NCL gates is most
widely utilized as it offers robustness and better tradeoffs
in terms of crucial performance parameters (area, power,
latency, etc.) [43]. A static NCL threshold gate is comprised
of four blocks: one SET block, one RESET block, and two
HOLD blocks (Hold0 and Holdl) [2], [18], [44], [45]. The
output threshold function of a gate is determined by its
SET block, which asserts the output based on the Boolean

VOLUME 10, 2022

equation. The RESET block de-asserts the output when all
inputs are de-asserted. Hold0 and Holdl blocks are addi-
tional pull-up and pull-down networks, respectively, which
account for hysteresis when neither SET nor RESET are
true [2]. Fig. 8a shows a non-minimal CMOS implementation
of TH23 gate. The SET function of TH23, Fsgr = AB +
AC+BC, is implemented by the SET block. The RESET block
implements a function, where all inputs are complemented
and ANDed together. HoldO and Holdl functions are the
complements of SET and RESET functions, respectively.

The static NCL gates can operate correctly at very low
supply voltages [43], [44], [45], and are efficient in terms
of power and delay. However, these advantages come at a
cost of area overhead, which is due to the additional HOLD
blocks for state-holding. [45] demonstrates that transistors
in SET and Holdl blocks (pull-down network) as well as
RESET and Hold0 blocks (pull-up network) can be shared
to reduce the area utilization. Fig. 8b shows the minimal
implementation of TH23 gate with shared transistors. [45]
further identifies that in the actual static NCL implementation
only the transistors in SET and RESET blocks contribute
to switching (termed as switcher transistors). HOLD block
transistors, termed as keepers, do not contribute to output
switching. [45] introduces a new static implementation (we
have termed it as new static NCL (New S-NCL) herein),
which integrates pull-up (RESET and Hold0) and pull-down
(SET and Holdl) network transistors to increase the number
of switchers for faster operation. Fig. 8c. shows the speed-
optimized static implementation of TH23 gate (keepers are
in boldface), which enables higher speed of operation due to
lower equivalent resistance in SET and RESET paths of the
gate. Although this implementation improves the speed of
operation and has symmetric rise and fall times, it generally
has more transistors (on average ~2.3 more transistors/gate)
than the minimal (transistor-shared) implementation. How-
ever, the authors indicate that the resulting structure of the
gates can allow better transistor sizing compared to the origi-
nal implementation, thus reducing the area overhead imposed
by the extra transistors.

B. SEMI-STATIC NCL IMPLEMENTATIONS (SS-NCL)

Fig. 8d shows a generic implementation of NCL gate in semi-
static configuration. Instead of the HOLD blocks (Hold0
and Holdl), the semi-static implementation utilizes a weak-
inverter arrangement to maintain the current state of output
when both SET and RESET are inactive. The elimination
of the HOLD blocks significantly reduces the transistor
count [2], [18], [43], [44]. However, the implementation
requires complicated transistor sizing to ensure correct func-
tionality. For instance, the weak inverters need to be strong
enough to tolerate the noise in internal nodes, but not too
strong to restrict the pull-up network from overpowering the
feedback inverters. Therefore, determining the correct sizing
of transistors in weak-inverters, SET, and RESET arrange-
ments is non-trivial and requires extensive simulation. The
PMOS transistors are required to be sized up considerably,

78657

IEEE Access

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

Recent Advancements
Towards Commercial
NCL Synthesis

Following Efforts Towards
Cost-Aware Synthesis

Initial Efforts
In NCL Synthesis

Year

2000

Proposed work

SDDS-NCL Design Flow
Moreira et al. [41]

UNCLE
Reese et al. [30]

Toms and Edwards [28]

Zhou et al. [23]

NCL_X:
Kondratyev
and Lwin [22]

NCL_D:
Ligthart et al.[20]

Salient Features, Contributions, and Limitations

Semi-custom design flow for logic and physical synthesis.

Supports technology mapping of logic network using SDDS-NCL template.

Uses NCL virtual library for logic synthesis; tackles mapped netlist corruption using NCL+ virtual library.
Supports post mapping timing and power optimizations using CAD tools.

Limitation: supports automated synthesis of combinational NCL blocks only.

Further builds on the Partial Acknowledgment concept in [23].
Develops a systematic synthesis and optimization flow based on Partial Acknowledgment mapping.
Targets area and delay optimization.

Initiates from an RTL specification, followed by a logic synthests to generate a Boolean netlist.
Dual-rail expansion; Boolean gates are replaced with equivalent NCL gates.
Based on data-driven approach; however, can support control-driven style.
Integrates several optimization schemes (e.g., gate merging, relaxation, latch balancing, etc.).

Extends gate & block level relaxation; allows automated synthesis using Prime Indicant Synthesis algorithm.
Focuses on maximizing the shared acknowledgment; applies block-level relaxation at a much finer granularity.

Extends input completeness relaxation at block-level, comprising of multiple gates.
Introduces Partial Eagerness, allowing some of the outputs of an input-complete block to early evaluate.
Better area optimization as compared to local relaxation.

Combinational blocks are partitioned into sub-modules and synthesized to Boolean SOP expressions.
Boolean SOP expression is expanded to dual-rail, input completeness and observability is ensured.
Dual-rail SOP expression is further optimized and mapped to NCL gates.

Targets area and delay optimization.

Formulates a novel method of Local Relaxation, termed as Nowick relaxation.

Very similar to the concept of Partial Acknowledgment.

Maintains an optimal number of strict gates without the requirement of local completion detection units.
Offers greater flexibility in terms of multi-parameter optimization (area as well as critical path delay).
Area-aware optimization using relative timing analysis.

Heuristics based optimization algorithms: finds the minimum number of strict gates and completion units.
2.4x smaller implementation, on an average, as compared to NCL_X.

Assumes gate and wire delays are bounded; hence, synthesized circuits are non-QDI.

Targets area optimization utilizing a newly introduced concept of Pamal Acknowledgment.
Allows more gates in a circuit to be refaxed, which results in significant area reduction.
Limitation: increased verification demand.

Implements functionality and delay insensitivity separately within the design flow.

Allows optimization of individual gates by adding local completion detectors.

Separate completion detectors for combinational logic unit and registration unit in each stage.
Flexible for optimization; ~30% area reduction on average as compared to NCL_D.

Custom synthesis of NCL circuits from RTL specification; relies on DIMS.
Simple translation scheme.

Less flexible for optimization; sharing signal acknowledgment is not allowed.
Significant area overhead.

FIGURE 7. Evolution of NCL design flows.

=

Weak-Inverter
Feedback

—
53]
%]
jun)
a4

SET

(d) ()

FIGURE 8. a) Non-optimized S-NCL TH23, b) Optimized TH23 with shared transistors, c) New S-NCL implementation of TH23 [45], d) SS-NCL [44], and
e) SSDC-NCL [44].

which can significantly increase the overall silicon area, transistors (SSDC-NCL) is a variant of SS-NCL [44], where
despite the lesser transistor count in SS-NCL implementa- two additional transistors are introduced in the weak-inverter
tion. Semi-static NCL implementation with diode-connected arrangement (Fig. 8e). These transistors behave like resistors,

78658

VOLUME 10, 2022

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

IEEE Access

1 1
24 (%]
o o
) (9}

SET
RESET

(a) (b)

FIGURE 9. a) SS-DNCL, and b) S-DNCL.

which limit the current to weaken the inverters. SSDC-NCL
implementation significantly improves the gate delay and
energy consumption per operation, as compared to SS-NCL.
However, SSDC-NCL gates are highly sensitive to noise.
Several other weakening methods, such as resistive method
and supply feedback method, have also been discussed and
analyzed in [44]. SSDC-NCL implementation outperforms
those methods in terms of power, delay, and energy consump-
tion. Therefore, they have not been discussed herein.

C. DIFFERENTIAL NCL IMPLEMENTATIONS (D-NCL)
[46]-[48] explore a differential implementation of NCL gates
(DNCL) based on differential cascode voltage switch logic
(DCVSL) family of circuits [49]. There are primarily two dis-
tinguishing features that separate DCVSL from conventional
logic: 1) there are two pull-down (NMOS) networks, where
one implements the function, and another implements the
complemented function; and 2) the pull-up network contains
only two cross-coupled PMOS transistors. Both inverted and
non-inverted inputs are required for functioning, and inputs
are accepted only on the pull-down network. The differ-
ential NCL design implements SET and RESET blocks as
the two pull-down networks [46]. Additionally, two NMOS
transistors are combined with the pull-up PMOS transistors
to form a cross-coupled inverter arrangement, as shown in
Fig. 9a. Like SS-NCL, the cross-coupled inverters account
for hysteresis; therefore, the implementation presented in [46]
is termed as semi-static differential NCL (SS-DNCL). SS-
DNCL design can operate at supply voltages comparable
to the static design, requires less transistors, and maintains
excellent performance and noise resistance [43]. However,
the power dissipation remains high due to the large con-
tention current between the cross-coupled inverters and the
pull-down networks while setting or resetting the gates.

Lee and Kim proposed a modification over [46], where the
two NMOS transistors forming the inverters were removed
yielding a more conventional DCVSL implementation [47].
Although the design reduces the power dissipation, it fails
to maintain hysteresis throughout the operation. A more
recent work proposes a novel static DNCL design (S-DNCL),
as depicted in Fig. 9b, which addresses the contention issues

VOLUME 10, 2022

during switching in the SS-DNCL implementation [48]. The
S-DNCL design adds two additional PMOS pull-up networks
to the circuit, which aid the pull-down networks to change
the gate output by disabling the inverters during switching.
Like S-NCL, the S-DNCL structure also has four blocks,
SET, RESET, COS (complement of SET), and COR (com-
plement of RESET), where COS and COR assert the com-
plement of output and de-assert the output, respectively. Due
to the additional blocks, the S-DNCL implementation has
higher transistor count as compared to SS-DNCL. However,
S-DNCL manages to deliver lower delay and better power
performance.

D. BEYOND CMOS NCL IMPLEMENTATIONS

All the different NCL implementations discussed before were
based on MOSFET Technology. MOSFET technology has
delivered improved performance with every level of scaling
and integration, until recently when more aggressive scaling
introduced major challenges in the deep-submicron region
due to device level limitations. Multi-gate designs, like Fin-
FETs, have the potential to tackle issues beyond conventional
planar-bulk CMOS technology [50]. Sakib et al. explores the
possibility of FinFET based NCL implementations to uti-
lize FinFET’s superior gate-controllability, low-voltage oper-
ation, and improved power performance at scaled technology
nodes [51]. [51] utilizes double-gate FinFETSs, which can
function in one of three modes: 1) shorted gate (SG) mode,
where both the gates are shorted; 2) independent gate (IG)
mode, where both the gates can be used independently as if
they are connected in parallel; and 3) low-power (LP) mode,
where one gate’s threshold can be modulated by the other.
These three configurations of FinFET present interesting
optimization opportunities. [51] explores these opportunities,
analyzes different combinations of FinFET based static NCL
threshold gates in different modes of FinFET operations, and
formulates a generic design rule based on the simulation
results. The design guideline suggests that the SG mode is
the more suitable choice for switchers (SET/RESET block
transistors) as it provides the lowest delay values due to
high drain current. The high-power dissipation of SG mode
could be compensated by configuring non-parallel keepers
(HOLD block transistors) in LP mode. As the keepers do
not contribute to switching, the lesser drive strength of LP
configuration does not affect the overall speed much. The
parallel keepers could be merged using IG mode to further
reduce area overhead. [51] demonstrates that FINFET-NCL
implementation improves the propagation delay, energy con-
sumption, and require ~2 fewer transistors per gate on an
average. Fig. 10a depicts the optimized FinFET implemen-
tation of static TH23 gate.

[52] proposed a carbon nanotube field effect transis-
tor (CNTFET) based implementation of static NCL gates
(CNTFET-NCL). CNTFETs have several unique advantages
over CMOS, which make them a promising alternative
for digital designs, especially at scaled technology nodes.
For instance, CNTFETs provide higher drain currents and

78659

IEEE Access

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

e

g— -

G1

L

(a)

FIGURE 10. a) FinFET S-NCL implementation of TH23 [51], and b) CNTFET S-NCL implementation of TH23 [52].

demonstrate significantly better leakage power performance
at deep-submicron level. Additionally, CNTFETSs allow for
easier threshold voltage adjustment by altering the diameter
or the chirality vector of the nanotubes. The easier modula-
tion of threshold voltage provides some design advantages,
which are explored in [52]. In [52], a multi-threshold design
approach was proposed, where the switchers were imple-
mented with low threshold voltage CNTFETSs for improving
speed of operation, and keepers were implemented with high
threshold voltage CNTFETsS for limiting the off current for
further leakage power reduction. The CNTFET implementa-
tion of static TH23 gate is shown in Fig. 10b. [52] validates
that static CNTFET-NCL outperforms static CMOS-NCL in
terms of speed, energy utilization, and leakage power dissi-
pation. Both CNTFET and CMOS implementations have the
same transistor count.

Bai et al. [53] proposed an NCL implementation, named
spin torque enabled NCL (STENCL), based on emerging
spintronic technology. The implementation is based on mag-
netic domain wall (DW) logic [54], which demonstrates fast
switching and minimal off current. In STENCL, the authors
exploit the inherent hysteresis property of DW devices to
remove additional transistors in HOLD blocks in CMOS
static implementation. Fig. 11 depicts a STENCL implemen-
tation of TH23 gate, where the DW shifts laterally from d;
to d3 (or d3 to dq) during a SET (or RESET) operation due
to a current generated by the architecture. Details about the
device physics can be found in [53]-[55]. Although STENCL
implementation significantly improves the area utilization
and energy consumption, the speed of operation is much
slower as compared to static CMOS implementations. The
design attributes and performance tradeoffs of the above
mentioned NCL threshold gate implementations have been
summarized and listed in Table 2.

V. EVOLUTION OF TESTING AND VERIFICATION
METHODOLOGIES FOR NCL BASED

ASYNCHRONOUS DESIGNS

Testing and verification is an integral component of any
ASIC design flow. As discussed in Section III, automated

78660

High threshold
CNTFET

" Lowthreshold
CNTFET

2 TR

]]
High threshold

keepers Z—|
ZJ
o

(b)

I

Jz.
]

i

]
i
]

d*AJ

FIGURE 11. STENCL implementation of TH23 gate [53].

synthesis, optimization, and ease of simulation using CAD
tools are crucial for widescale incorporation of NCL based
asynchronous designs. However, that alone cannot ensure
commercial adoption if the synthesized circuits do not pro-
vide efficient means for design validation. While numerous
testing frameworks exist for the synchronous domain, test-
ing of asynchronous circuits remains an area less explored.
Moreover, conventional synchronous testing frameworks are
not readily applicable to the asynchronous domain due to
their unique architecture. Developing testing methodologies
for NCL based asynchronous circuits has been historically
challenging due to the following reasons:

o NCL circuits contain sequential components (e.g., gates
with hysteresis, registration, etc.). As a result, NCL
circuits, even the combinational ones, behave like syn-
chronous pipelines, which creates a complicated testing
environment.

NCL based asynchronous circuits are nondeterministic
in nature due to the absence of clock, which makes test
timing management extremely challenging.

The handshaking control paths within the NCL circuits
contain feedback loops for synchronization, which dete-
riorate the test controllability and observability, and fur-
ther complicate the design for testing.

VOLUME 10, 2022

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

IEEE Access

TABLE 2. Different NCL threshold gate implementations.

Design Tradeoffs*

Design Tech. Attributes Transistor reed Energy Remark
ee
Count P Consumption
° e Four blocks: SET/RESET implements gate Robust; can operate
3 % CMOS assertion/de-assertion; Hold0) and Holdl High Fast Moderate at lower supply
“ maintain hysteresis. voltages
~ e Pullup (RESET-Hold0) and pull-down . .
2 QO . Slightly Higher Faster than S-
2 Z CMOS (SET—HQldl) networks are integrated to have than S-NCL NCL Moderate -
“ more switchers.
hTenl L Transistor’s sizin,
3 e No HOLD blocks. S-NCL. Significantly Significantly is crucial: Te uire§
= CMOS e Weak inverter arrangement provides for (Sized up Slower than S- Higher than S- exter’lsiv(z:
8 state-holding. PMOS~> NCL NCL XIS
. simulation
increases area)
O e Requires 2 additional transistors in the weak- . Fast : . .
a % CMOS inverter arrangement of SS-NCL to limit LesIs\Itgin S (Comparable Low;;‘ctlllan S nghlt}; Srllls;lszp tible
“ current; larger PMOS are not required. to S-NCL)
ﬁ e Both SET and RESET are in the pull-down Lse_sl\sl (tj}}im Slower rise Transistor sizing is
z CMOS network. (Sized u. time, but much ~ Higher than S- crucial.
S DCVSL e Hysteresis is provided by the weak inverter B faster fall time NCL Unbalanced rise
) transistors—> .
“ arrangement. ; than S-NCL and fall time
increases area)
~ e 2 additional pull-up networks are added to Slower rise
% CMOS the SS-DNCL implementation. Higher than S- time, but much Higher than S- Unbalanced rise
QI DCVSL e Complicated transistor sizing is no longer NCL faster fall time NCL and fall time
e required. than S-NCL
& Double e Different FInFET modes of operation are Comparison Comparison Improved
NN . Less than
S Gate explored to improve speed, area, and energy data was not data was not performance at
s 2 . CMOS S-NCL . .
i FinFET parameters. available available scaled nodes.
o e Easier modulation of CNTFET threshold Significantly
R voltage (Vy) is explored for a multi-threshold Much Faster Much Lower
& S | ONTFET implementation. Samg_;ﬁcciv[os than CMOS S- than CMOS S- ;if;cgfiﬁa‘;z%ee q
% o Switchers and keepers are implemented with NCL NCL p erfomaﬁce
low and high V, CNTFETs, respectively. p
\ . . . o Significantly
~ .
E O | spintronic e Based on emerging spintronic technology: Significantly Much Slower Lower than _
v 2 magnetic DW logic. less area CMOS S-NCL

S-NCL = Static NCL; SS-NCL= Semi-static NCL; SSDC-NCL= Semi-static Diode Connected NCL, SS-DNCL= Semis-static Differential NCL; S-
DNCL-= Static Differential NCL; STE-NCL= Spin-Torque Enabled NCL.
* Design tradeoffs are reported based on the comparison of each listed implementation with the CMOS S-NCL implementation.

o Several stuck at faults in NCL gates’ internal feedback
paths do not necessarily result in incorrect outputs or
deadlock, which may cause some of the faults to go
undetected. Enhancing the controllability and observ-
ability to detect such faults is a non-trivial task.

Several researchers have developed testing methodologies
addressing these limitations to some extent. Kondratyev et al.
proposed one of the earlier testing methodologies to detect
stuck-at faults using conventional CAD tool for test vector
generation [56]. The work addressed the testing of both
acyclic and cyclic NCL pipelines. The testing methodology
for acyclic NCL pipelines was straightforward and utilized
conventional fault analysis methods, such as fault grading
and fault collapsing. Conventional automated test pattern
generation (ATPG) tool was used to generate efficient test
vectors. For test pattern generation, the acyclic NCL pipeline

VOLUME 10, 2022

was converted to a single combinational network by removing
the registration and completion units. The threshold gates
were replaced with their equivalent Boolean gates. A set
of test vectors were derived for the equivalent Boolean
network to detect stuck-at-faults. The generated test vec-
tors were applied to the original NCL pipeline following a
sequence, where each DATA test vector was interleaved by
a NULL to check stuck-at-O and stuck-at-1 faults in SET
and RESET phases, respectively. Dominance based fault col-
lapsing was implemented separately to eliminate the faults
in registration stage [57]. The authors demonstrated that
stuck-at faults in the completion detection units are easy to
detect; hence, the completion circuitry was not considered for
testing.

The methodology to test cyclic NCL pipelines was more
complicated due to the presence of feedback loops within the

78661

IEEE Access

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

datapath. The authors utilized a partial scan-based approach
to break the cycles and insert test vectors. The design of
an NCL scan register was presented in [56], where each
scan register comprised of one D-latch, one C-element, and
an AND gate. Each scan register had two inputs for mode
configuration (serial, parallel, load, and normal), one scan
input for testing, one data input for normal operation, one
enables signal coming from the acknowledge output of the
next registration stage, 2 non-overlapping clocks (resembling
level sensitive scan design (LSSD) type clocking), one data,
and one scan output. Some regular NCL registers within the
test datapath were selectively replaced with scan registers
for testing. Determination of insertion points was not an
automated process and was required to be done manually
by the test engineers. The proposed methodology was tested
on various NCL circuits, and results confirmed almost 100%
stuck-at fault coverage for all the test circuits with moderate
area overhead.

The methodology in [56] only considered the global feed-
back loops within an NCL circuit and did not address the pos-
sibility of faults in the internal feedbacks of NCL gates (local
feedback), which is a major limitation from testing view-
point. In [58], Satagopan et al. proposed an automatic design-
for-test (DFT) insertion flow (ADIF) methodology, which
addressed the abovementioned limitation. To break the global
feedback loops, XOR gates, controlled by an external test
input, were inserted in the feedback paths, which provided
additional test points to enhance controllability. A balanced
XOR tree structure was used to enhance the observability
of unobservable faults at the output. However, the XOR tree
structure can exponentially grow for circuits with larger set
of unobservable faults, eventually adding to the design cost
in terms of area. [58] proposed an alternative scan-based
approach to enhance observability by inserting scannable
observable latches in unobservable fault nets. The scan-based
approach does not require the XOR tree structure. To break
the local feedback, a clocked scan D-latch was inserted in
the internal feedback path of each NCL gate, and a custom
NCL gate library was formed for ATPG. The clocked NCL
ATPG gate library facilitates the application of synchronous
scan-based approach for test pattern generation. Although
the methodology yields high test coverage, the design-for-
test significantly increases the area overhead, mostly due to
the additional hardware in each threshold gate. [59] modifies
the ADIF methodology further to address the area overhead
issue. The scan D-latch is removed in the internal gate feed-
back path and an external input is introduced to increase
the controllability and observability. The D-latch removal
significantly reduces the gate area overhead. Like [58], XOR
gates, controlled by the latched test input signal, were intro-
duced to break the global feedback paths. Test points were
inserted by grouping the remaining unobservable fault nets,
as identified by SCOAP analysis (Sandia Controllability and
Observability Program), using a XOR gate tree structure
followed by a scannable-observation-latch. While the overall
area utilization of the test circuits in [59] was less than that

78662

of [58], the overhead was still significant due to the addition
of clocked latches and XOR trees.

All the above-mentioned methods ([56], [58], and [59])
use synchronous testing frameworks, which mandate the
incorporation of additional circuitry for the synchronous-
asynchronous interfacing. This interfacing comes at the cost
of significant area overhead. [60] argues that reintroducing
clocks in clockless designs defeats the purpose and lim-
its the potential of asynchronous designs. This argument is
backed by Cheng and Li’s assessment in [61], where they
have warned about the possibility of reliability issues and
timing violations within an NCL system due to the inclusion
of clocked hardware. To overcome these limitations, [60]
proposed a completely homogenous design-for-test (DFT)
methodology for NCL circuits. Instead of clocked DFT ele-
ments, the methodology modified an existing NCL read/write
(R/W) circuit as DFT element [19] to insert controllability
and observability test points into the previously uncontrol-
lable and unobservable nodes. Global feedback loops were
broken by replacing NCL registers in the feedback path with
scan registers, where the scan registers were designed by
modifying the NCL R/W circuit. The unique contribution of
this work was the development of a completely asynchronous
testing framework, which was not addressed before. How-
ever, the work did not consider the testing of gate internal
feedback paths.

The same research group of [60] proposed an asyn-
chronous interleaved scan architecture to facilitate on-line
built-in self-test (BIST) of NCL circuits [62]. On-line implies
testing the circuit during the idle phases instead of halting
the operation of the circuit. The interleaved scan architecture
ensures that the alternating NULL/DATA pattern of NCL
circuit is maintained during on-line testing. Two scan paths
were implemented by establishing a connection between the
input (output) registers of each combinational block and the
output (input) registers of the next (previous) combinational
block. Couple of test pattern generators and output response
analyzers were utilized for applying correct DATA/NULL
wavefronts. [62] avoids utilizing clock trees and sync-async
interfacing circuitries, which significantly reduces the area
overhead (on an average) as compared to other schemes. This
work later acted as a motivation for the development of a
BIST scheme for SCL circuits [63].

[64] proposed the first ever self-timed ATPG for testing
NCL circuits along with quiescent current testing to detect
stuck-at faults in gate internal feedbacks. As discussed earlier,
faults in gate internal feedback may not interfere with the
circuit operation. However, it may affect the timing, which
is very difficult to detect in NCL circuits as NCL circuits are
indeterminate. Therefore, [64] argued in favor of current test-
ing, since a fault in the internal feedback of gates are expected
to increase the leakage current of the circuit, which, if traced,
can detect a fault. The method did not add additional circuitry
in individual gates for testing and minimized area overhead
significantly, which was a major concern in prior methods.
However, sophisticated sensing and measuring device was

VOLUME 10, 2022

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

IEEE Access

TABLE 3. Different NCL testing methodologies.

Testing Considerations

Related Testing Area
Work Year Framework Global Gate Internal Test Point Sync-Async Overhead
Feedback Feedback Insertion Interfacing
Scan based synch. . Not .
X
[56] 2002 DFT Considered Considered Required Moderate
[58] 2007 I;I)(;?ézc:;lnirﬁd]s;]?? Considered Considered v Required Very High
Scan based synch.
[59] 2008 DFT Considered Considered Required High
. Not . .
[60] 2014 Asynch. DFT Considered Considered v Not Required High
Asynch. Not
[62] 2016 Interleaved Scan Considered Considered v Not Required Moderate
for on-line BIST
Clockless Self-
[64] 2018 timed ATPG + Considered Considered v Not Required Low
current testing

required to measure the current. Additionally, testing was
comparatively slower as the current measurement had to wait
until the quiescent current settled. A summarization of the
abovementioned NCL testing schemes is listed in Table 3.

The testing methodologies discussed herein rely on exten-
sive simulations for detecting faults and ensuring correctness.
Although simulation-based testing has been predominantly
used in the IC design industry, only simulation may not
guarantee complete correctness. There still can be untestable
bugs that escape and remain undetected. Formal verification
is an alternate approach to establish design correctness, where
the correctness properties are formulated as mathematical
proofs. Mathematical proofs, covering a larger and com-
prehensive set of faults, can detect corner-case errors that
generally go undetected in simulations. Nowadays, formal
verification is considered as an integral component of any
commercial design flow. However, not many works, which
focus on formal verification of asynchronous designs, can
be found in literature. There are some methods that focus
on the verification of bounded-delay model of asynchronous
paradigm [65], [66]. The verification schemes involve trace
theory and timed petri-nets to verify the timing constraints
imposed by the bounded-delay model. On the other hand, cir-
cuits based on QDI model do not require any timing analysis.
Therefore, these timed verification models are not suitable for
the validation of QDI circuits.

A deadlock verification scheme for QDI circuits was pro-
posed by Verbeek et al. in [67]. In [67], the circuits to be
verified were based on click library [68], which is signifi-
cantly different from NCL. Moreover, the method could only
validate the liveness (absence of deadlock) of the circuits, not
safety (functional correctness). Wijayasekara et al. proposed
a verification scheme for NCL circuits based on equivalence
checking [69]. [69] modeled the synchronous specification

VOLUME 10, 2022

(input to the synthesis tool) as well as the NCL asynchronous
implementation (synthesized output) as transition systems
(TSs), which were checked for equivalence utilizing the the-
ory of well-founded equivalence bisimulation (WEB) refine-
ment [70]. Both specification and implementation TSs had
to satisfy the refinement properties, which was ensured by a
decision procedure. The methodology checked for both safety
and liveness. However, scalability was a major limitation.
This is because, modeling actual QDI circuits as TSs is not
ideal. QDI circuits, such as NCL and PCHB [6], are highly
nondeterministic in nature, which results in extremely com-
plicated TSs. Moreover, due to the hysteresis of individual
gates, the state space increases almost exponentially for larger
circuits, resulting in an infeasible verification time. This issue
with scalability was also encountered by [71]. In [71], the
authors developed a model-checking based approach to verify
QDI combinational PCHB circuits, where the circuits were
also modeled as TSs.

Sakib et al. [72] developed an alternate verification
approach for combinational as well as sequential NCL cir-
cuits, where the circuits were not required to be modeled
as TSs. This was based on the authors’ previous verification
works applicable for asynchronous PCHB circuits [73], [74].
To tackle the state space explosion, [72] requires the syn-
thesized NCL circuit to undergo a structural transforma-
tion/abstraction. The actual NCL circuit is converted into its
corresponding Boolean/synchronous netlist as an intermedi-
ate process of the verification flow. The converted netlist is
then checked against the synchronous specification utilizing
the notion of WEB refinement to ensure the safety of the
circuit. The abstraction significantly improves the functional
verification time. The liveness check is a separate process,
which can be conducted parallelly. As a part of the liveness
check, the actual (non-converted) NCL circuit is converted

78663

IEEE Access

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

into a graph structure to efficiently trace component-to-
component handshaking connections. The method proves to
be highly scalable and significantly faster than previous ver-
ification methods. A variant of the method was proposed by
Hossain et al. to verify SCL circuits [75].

In case of NCL circuits, only checking for safety and live-
ness is not sufficient. Input-completeness and observability
are also crucial and must be considered as a part of the com-
plete verification process. While an input-incomplete and/or
unobservable NCL circuit may exhibit correct functionality
under normal circumstances, the circuit may malfunction
under some unexpected scenarios, such as changing operating
conditions caused by PVT variations, and/or environmental
radiations. Few verification schemes exist with specific focus
on the verification of NCL circuits’ input-completeness and
observability [2], [72], and [76]. [2] entails a manual pro-
cedure to check input-completeness, which is not scalable
and cannot ensure input-completeness of relaxed circuits.
Both [72] and [76] involve similar approach for input-
completeness and observability verification. In [76], each
gate and input are individually checked to verify the observ-
ability and input-completeness; whereas [72] formulates two
proof obligations to simultaneously verify the observability
and input-completeness of all gates and inputs.

VI. CONCLUSION AND SCOPES OF FUTURE WORK
NCL is one of the major QDI asynchronous design
paradigms, which presents itself as a promising alternative
to conventional synchronous circuits and has already found
numerous commercial applications due to its low power,
robust architecture, and ease of design reuse. This paper
presents the evolution of NCL based asynchronous domain
over the past two decades, primarily focusing on existing
fundamental research in NCL design automation, spanning
over NCL synthesis, optimization, testing, and verification.
It is evident that there has been a significant advance-
ment in NCL design automation over the past two decades,
especially in logic synthesis and optimization methodologies.
NCL framework, being very similar to synchronous frame-
work, allows automated NCL circuit design to follow similar
design automation steps as synchronous circuits. As a result,
many of the existing works focused on leveraging conven-
tional synchronous CAD tools for NCL circuit synthesis.
Earlier design flows built on each other and focused mostly on
area optimization of the synthesized circuits, while preserv-
ing the delay-insensitivity requirements. In contrast, more
recent design flows prioritized on utilizing the full potential
and capacity of commercial CAD tools for technology map-
ping and cost-aware synthesis in terms of power, area, and
delay. However, physical synthesis, i.e., synthesizing NCL
circuits down to layout, is an area that remains underexplored.
Design validation of NCL circuits has also been widely
investigated. Although various testing and verification
schemes for NCL based asynchronous circuits have been
developed over the years, there are certain limitations. Several
testing methods rely on synchronous testing frameworks and

78664

require the introduction of clocked elements in the clock-
less design, which defeats the purpose. Moreover, the addi-
tional synchronous-asynchronous interfacing circuitry results
in significant test overhead. Few promising research works
focused on developing fully asynchronous DFT schemes.
However, those relied on extensive simulations alone, which
might not be sufficient to detect corner-case bugs. Some
recent works focused on the formal modeling and verification
of NCL circuits based on widely utilized verification tech-
niques. However, scalability was a major concern in many of
those methods. Couple of works addressed this issue and suc-
cessfully developed unified and highly scalable verification
schemes for different QDI design paradigms, including NCL.
However, the completeness arguments of those verification
schemes were not established formally, which may not ensure
the comprehensive nature of the considered erroneous sce-
narios. Finally, different transistor-level implementations of
NCL threshold gates are also discussed, analyzed, and com-
pared in this paper, which can guide designers to choose the
best suitable implementation depending on the application
requirements.

REFERENCES

[1] D.E.Miiller, “A theory of asynchronous circuits,” Univ. Illinois, Graduate
College, Digit. Comput. Lab., Urbana, IL, USA, Tech. Rep., 75, 1955.

[2] S. C. Smith and J. Di, Designing Asynchronous Circuits Using NULL
Convention Logic (NCL). San Rafael, CA, USA: Morgan & Claypool,
2009.

[3] International Technology Roadmap Sfor Semiconductors.
Accessed: May 2022. [Online]. Available: https://www.dropbox.com/sh/
6xq737bg6pww9gq/AACQWcdHLffUeVloszVY6Bkla?dl=0&preview
=2013_Design-v3.pdf

[4] IEEE International Roadmap for Devices and Systems, Medical
Devices Market Driver. Accessed: May 2022. [Online]. Available:
https://irds.ieee.org/editions/2018/medical-devices-market-driver

[5] J. T. Udding, “Classification and composition of delay-insensitive cir-
cuits,” Ph.D. dissertation, Dept. Math. Comput. Sci., Eindhoven Univ.
Technol., Eindhoven, The Netherlands, 1984.

[6] A.J. Martin and M. Nystrom, “Asynchronous techniques for system-on-
chip design,” Proc. IEEE, vol. 94, no. 6, pp. 1089-1120, Jun. 2006, doi:
10.1109/JPROC.2006.875789.

[7] K. M. Fant and S. A. Brandt, “NULL convention Logic™: A complete
and consistent logic for asynchronous digital circuit synthesis,” in Proc.
Int. Conf. Appl. Specific Syst., Archit. Processors, Aug. 1996, pp. 261-273,
doi: 10.1109/ASAP.1996.542821.

[8] S. C. Smith, “Gate and throughput optimizations for NULL convention
self-timed digital circuits,” Ph.D. Dissertation, School Elect. Eng. Comput.
Sci., Univ. Central Florida, Orlando, FL, USA, May 2001.

[9] S.C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb, “Opti-
mization of NULL convention self-timed circuits,” Integration, vol. 37,
no. 3, pp. 135-165, 2004.

[10] C. L. Seitz, “System timing,” in Introduction to VLSI Systems. Reading,
MA, USA: Addison-Wesley, 1980, pp. 218-262.

[11] T.S. Anantharaman, “A delay insensitive regular expression recognizer,”
IEEE VLSI Tech. Bull., vol. 1, no. 2, pp. 3—15, 1986.

[12] J.Sparso,J. Staunstrup, and M. Dantzer-Sorensen, ‘“‘Design of delay insen-
sitive circuits using multi-ring structures,” in Proc. Eur. Design Automat.
Conf., 1992, pp. 15-20, doi: 10.1109/EURDAC.1992.246271.

[13] N.P. Singh, “A design methodology for self-timed systems,” M.S. thesis,
MIT/LCS/TR258, Lab. Comput. Sci., MIT, Cambridge, MA, USA, 1981.

[14] 1. David, R. Ginosar, and M. Yoeli, “An efficient implementation of
Boolean functions as self-timed circuits,” IEEE Trans. Comput., vol. 41,
no. 1, pp. 2-11, Jan. 1992, doi: 10.1109/12.123377.

[15] A. A. Sakib, “Formal modeling and verification methodologies for quasi-
delay insensitive asynchronous circuits,” Ph.D. dissertation, Dept. Elect.
Comput. Eng., ProQuest, North Dakota State Univ., Fargo, ND, USA,
2019.

VOLUME 10, 2022

http://dx.doi.org/10.1109/JPROC.2006.875789
http://dx.doi.org/10.1109/ASAP.1996.542821
http://dx.doi.org/10.1109/EURDAC.1992.246271
http://dx.doi.org/10.1109/12.123377

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

IEEE Access

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

L. D. Tran, T. C. Pham, O. Kavehei, and G. I. Matthews, ‘“Asynchronous
2-phase level-encoded convention logic (LCL),” in Proc. Int. Symp. Electr.
Electron. Eng. (ISEE), Oct. 2019, pp. 1-6.

I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6,
pp. 720-738, Jun. 1989.

G. E. Sobelman and K. Fant, “CMOS circuit design of threshold gates
with hysteresis,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 2,
Mar. 1998, pp. 61-64, doi: 10.1109/ISCAS.1998.706841.

K. M. Fant, Logically Determined Design: Clockless System Design With
Null Convention Logic. Hoboken, NJ, USA: Wiley, 2005.

M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asyn-
chronous design using commercial HDL synthesis tools,” in Proc. 6th Int.
Symp. Adv. Res. Asynchronous Circuits Syst., Apr. 2000, pp. 114-125, doi:
10.1109/ASYNC.2000.836983.

I. E. Sutherland and J. K. Lexau, “Designing fast asynchronous circuits,”
in Proc. 7th Int. Symp. Asynchronous Circuits Syst. (ASYNC), 2001,
pp. 184-193, doi: 10.1109/ASYNC.2001.914082.

A. Kondratyev and K. Lwin, “Design of asynchronous circuits using
synchronous CAD tools,” IEEE Design Test Comput., vol. 19, no. 4,
pp. 107-117, Jul. 2002, doi: 10.1109/MDT.2002.1018139.

Y. Zhou, D. Sokolov, and A. Yakovlev, “Cost-aware synthesis of asyn-
chronous circuits based on partial acknowledgement,” in Proc. IEEE/ACM
Int. Conf. Comput. Aided Design, Nov. 2006, pp. 158-163.

Y. Zhou, C. Shi, Z. Deng, and A. Yakovlev, “Synthesis and optimization
of asynchronous dual rail encoded circuits based on partial acknowl-
edgement,” in Proc. IEEE 12th Int. Conf. ASIC (ASICON), Oct. 2017,
pp. 496-503, doi: 10.1109/ASICON.2017.8252522.

T. Chelcea, G. Venkataramani, and S. C. Goldstein, “‘Area optimizations
for dual-rail circuits using relative-timing analysis,” in Proc. 13th IEEE
Int. Symp. Asynchronous Circuits Syst. (ASYNC), Mar. 2007, pp. 117-128,
doi: 10.1109/ASYNC.2007.10.

C. Jeong and S. M. Nowick, “Optimization of robust asynchronous
circuits by local input completeness relaxation,” in Proc. Asia
South Pacific Design Autom. Conf., Jan. 2007, pp.622-627, doi:
10.1109/ASPDAC.2007.358055.

C. Jeong and S. M. Nowick, “Block-level relaxation for timing-robust
asynchronous circuits based on eager evaluation,” in Proc. 14th IEEE
Int. Symp. Asynchronous Circuits Syst., Apr. 2008, pp.95-104, doi:
10.1109/ASYNC.2008.25.

W. B. Toms and D. A. Edwards, “A complete synthesis method for block-
level relaxation in self-timed datapaths,” in Proc. 10th Int. Conf. Appl.
Concurrency Syst. Design, 2010, pp. 24-34, doi: 10.1109/ACSD.2010.29.
W. Toms and D. Edwards, “Prime indicants: A synthesis method
for indicating combinational logic blocks,” in Proc. 15th IEEE
Symp. Asynchronous Circuits Syst., May 2009, pp. 139-150, doi:
10.1109/ASYNC.2009.24.

R. B. Reese, S. C. Smith, and M. A. Thornton, “Uncle—An RTL approach
to asynchronous design,” in Proc. IEEE 18th Int. Symp. Asynchronous
Circuits Syst., May 2012, pp. 65-72.

A. Bardsley, ‘“Balsa: An asynchronous circuit synthesis system,”
M.S. thesis, Dept. Comp. Sci., Univ. Manchester, Manchester, U.K., 1998.
D. Edwards, A. Bardsley, L. Janin, L. Plana, and W. Toms, “Balsa: A tuto-
rial guide,” M.S. thesis, Dept. Comp. Sci., Univ. Manchester, Manchester,
U.K., 2006.

L. Zhou, R. Parameswaran, F. Parsan, S. Smith, and J. Di, ‘“Multi-threshold
NULL convention logic (MTNCL): An ultra-low power asynchronous
circuit design methodology,” J. Low Power Electron. Appl., vol. 5, no. 2,
pp. 81-100, May 2015.

B. Bhaskaran, “Automated synthesis and cycle reduction optimization
for asynchronous NULL convention circuits using industry-standard CAD
tools,” Ph.D. dissertation, Dept. Comp. Eng., Univ. Missouri, Columbia,
MO, USA, 2007.

C. Jeong and S. M. Nowick, “Technology mapping and cell merger for
asynchronous threshold networks,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 27, no. 4, pp. 659—672, Apr. 2008.

F. A. Parsan, W. K. Al-assadi, and S. C. Smith, “Gate mapping
automation for asynchronous NULL convention logic circuits,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 1, pp. 99-112,
Jan. 2014.

M. Moreira, A. Neutzling, M. Martins, A. Reis, R. Ribas, and N. Calazans,
“Semi-custom NCL design with commercial EDA frameworks: Is it
possible?” in Proc. 20th IEEE Int. Symp. Asynchronous Circuits Syst.,
May 2014, pp. 53-60, doi: 10.1109/ASYNC.2014.15.

VOLUME 10, 2022

(38]

(39]

(40]

[41]

[42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

[50]

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

A. Neutzling, M. G. A. Martins, R. P. Ribas, and A. I. Reis, “Syn-
thesis of threshold logic gates to nanoelectronics,” in Proc. 26th
Symp. Integr. Circuits Syst. Design (SBCCI), Sep. 2013, pp. 1-6, doi:
10.1109/SBCCI1.2013.6644871.

M. T. Moreira, C. H. M. Oliveira, R. C. Porto, and N. L. V. Calazans,
“NCL+: Return-to-one null convention logic,” in Proc. IEEE 56th Int.
Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2013, pp. 836-839, doi:
10.1109/MWSCAS.2013.6674779.

M. T. Moreira, R. A. Guazzelli, and N. L. V. Calazans, ‘‘Return-to-one
protocol for reducing static power in C-elements of QDI circuits employing
m-of-n codes,” in Proc. 25th Symp. Integr. Circuits Syst. Design (SBCCI),
Aug. 2012, pp. 1-6, doi: 10.1109/SBCCI.2012.6344444.

M. T. Moreira, P. A. Beerel, M. L. L. Sartori, and N. L. V. Calazans,
“NCL synthesis with conventional EDA tools: Technology mapping and
optimization,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 6,
pp. 1981-1993, Jun. 2018, doi: 10.1109/TCS1.2017.2772206.

S. L. Hurst, “An introduction to threshold logic: A survey of present theory
and practice,” Radio Electron. Engineer, vol. 37, no. 6, pp. 339-351, 1969.
K. Haulmark, W. Khalil, W. Bouillon, and J. Di, “Comprehensive
comparison of NULL convention logic threshold gate implementa-
tions,” in Proc. New Gener. CAS (NGCAS), Nov. 2018, pp. 37-40, doi:
10.1109/NGCAS.2018.8572223.

F. A. Parsan and S. C. Smith, “CMOS implementation comparison of NCL
gates,” in Proc. IEEE 55th Int. Midwest Symp. Circuits Syst. (MWSCAS),
Aug. 2012, pp. 394-397, doi: 10.1109/MWSCAS.2012.6292040.

F. A. Parsan and S. C. Smith, “CMOS implementation of static threshold
gates with hysteresis: A new approach,” in Proc. IEEE/IFIP 20th Int. Conf.
VLSI System-Chip (VLSI-SoC), Oct. 2012, pp. 41-45.

S. Yancey and S. C. Smith, “A differential design for C-elements and NCL
gates,” in Proc. 53rd IEEE Int. Midwest Symp. Circuits Syst., Aug. 2010,
pp. 632-635, doi: 10.1109/MWSCAS.2010.5548905.

H. J. Lee and Y.-B. Kim, “Low power null convention logic cir-
cuit design based on DCVSL,” in Proc. IEEE 56th Int. Mid-
west Symp. Circuits Syst. (MWSCAS), Aug. 2013, pp.29-32, doi:
10.1109/MWSCAS.2013.6674577.

M. T. Moreira, M. Arendt, F. G. Moraes, and N. L. V. Calazans,
“Static differential NCL gates: Toward low power,” IEEE Trans. Cir-
cuits Syst. II, Exp. Briefs, vol. 62, no. 6, pp. 563-567, Jun. 2015, doi:
10.1109/TCSI1.2015.2407198.

L. Heller, W. Griffin, J. Davis, and N. Thoma, “Cascode voltage
switch logic: A differential CMOS logic family,” in IEEE Int. Solid-
State Circuits Conf., Dig. Tech. Papers, Feb. 1984, pp. 16-17, doi:
10.1109/ISSCC.1984.1156629.

R. S. Pal, S. Sharma, and S. Dasgupta, “Recent trend of FinFET devices
and its challenges: A review,” in Proc. Conf. Emerg. Devices Smart Syst.
(ICEDSS), Mar. 2017, pp. 150-154.

A. A. Sakib, A. A. Akib, and S. C. Smith, “Implementation of FinFET
based static NCL threshold gates: An analysis of design choice,” in Proc.
IEEE 63rd Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2020,
pp. 3740, doi: 10.1109/MWSCAS48704.2020.9184629.

A. A. Sakib and S. C. Smith, “Implementation of static NCL thresh-
old gates using emerging CNTFET technology,” in Proc. 27th IEEE
Int. Conf. Electron., Circuits Syst. (ICECS), Nov. 2020, pp. 1-4, doi:
10.1109/ICECS49266.2020.9294823.

Y. Bai, R. F. DeMara, J. Di, and M. Lin, “Clockless spintronic logic:
A robust and ultra-low power computing paradigm,” IEEE Trans. Comput.,
vol. 67, no. 5, pp. 631-645, May 2018.

M. Feigenson, J. W. Reiner, and L. Klein, “Efficient current induced
domain-wall displacement in StTRuO3,” Phys. Rev. Lett., vol. 98, Jun. 2007,
Art. no. 247204.

D. Fan, Y. Shim, A. Raghunathan, and K. Roy, “STT-SNN: A spin-transfer-
torque based soft-limiting non-linear neuron for low-power artificial neural
networks,” IEEE Trans. Nanotechnol., vol. 14, no. 6, pp. 1013-1023,
Nov. 2015.

A. Kondratyev, L. Sorensen, and A. Streich, “Testing of asynchronous
designs by ‘inappropriate’ means. Synchronous approach,” in Proc.
8th Int. Symp. Asynchronous Circuits Syst., 2002, pp. 171-180, doi:
10.1109/ASYNC.2002.1000307.

M. Abramovici, M. Breuer, and A. Friedman, Digital Systems Testing and
Testable Design. New York, NY, USA: Computer Science, 1990.

V. Satagopan, B. Bhaskaran, W. K. Al-Assadi, S. C. Smith, and S. Kakarla,
“DFT techniques and automation for asynchronous NULL conventional
logic circuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15,
no. 10, pp. 1155-1159, Oct. 2007.

78665

http://dx.doi.org/10.1109/ISCAS.1998.706841
http://dx.doi.org/10.1109/ASYNC.2000.836983
http://dx.doi.org/10.1109/ASYNC.2001.914082
http://dx.doi.org/10.1109/MDT.2002.1018139
http://dx.doi.org/10.1109/ASICON.2017.8252522
http://dx.doi.org/10.1109/ASYNC.2007.10
http://dx.doi.org/10.1109/ASPDAC.2007.358055
http://dx.doi.org/10.1109/ASYNC.2008.25
http://dx.doi.org/10.1109/ACSD.2010.29
http://dx.doi.org/10.1109/ASYNC.2009.24
http://dx.doi.org/10.1109/ASYNC.2014.15
http://dx.doi.org/10.1109/SBCCI.2013.6644871
http://dx.doi.org/10.1109/MWSCAS.2013.6674779
http://dx.doi.org/10.1109/SBCCI.2012.6344444
http://dx.doi.org/10.1109/TCSI.2017.2772206
http://dx.doi.org/10.1109/NGCAS.2018.8572223
http://dx.doi.org/10.1109/MWSCAS.2012.6292040
http://dx.doi.org/10.1109/MWSCAS.2010.5548905
http://dx.doi.org/10.1109/MWSCAS.2013.6674577
http://dx.doi.org/10.1109/TCSII.2015.2407198
http://dx.doi.org/10.1109/ISSCC.1984.1156629
http://dx.doi.org/10.1109/MWSCAS48704.2020.9184629
http://dx.doi.org/10.1109/ICECS49266.2020.9294823
http://dx.doi.org/10.1109/ASYNC.2002.1000307

IEEE Access

D. Khodosevych, A. A. Sakib: Evolution of NULL Convention Logic Based Asynchronous Paradigm: An Overview and Outlook

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

W. K. Al-Assadi and S. Kakarla, “Design for test of asynchronous NULL
convention logic (NCL) circuits,” in Proc. IEEE Int. Test Conf., Oct. 2008,
pp. 1-9.

N. Nemati, M. C. Reed, and M. R. Frater, “Asynchronous test hardware
for null convention logic,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Jun. 2014, pp. 1744-1747.

C.-H. Cheng and J. C.-M. Li, “An asynchronous design for testability
and implementation in thin-film transistor technology,” J. Electron. Test.,
vol. 27, no. 2, pp. 193-201, Apr. 2011.

N. Nemati, M. C. Reed, K. Fant, and P. Beckett, “Asynchronous inter-
leaved scan architecture for on-line built-in self-test of null convention
logic,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016,
pp. 746-749.

B. Sparkman, S. C. Smith, and J. Di, “Built-in self-test for multi-
threshold NULL convention logic asynchronous circuits,” in
Proc. IEEE 38th VLSI Test Symp. (VTS), Apr. 2020, pp.1-6, doi:
10.1109/VTS48691.2020.9107627.

N. Nemati, P. Beckett, M. C. Reed, and K. Fant, “Clock-less DFT-less test
strategy for null convention logic,” IEEE Trans. Emerg. Topics Comput.,
vol. 6, no. 4, pp. 460-473, Oct. 2018.

C. J. Myers, Asynchronous Circuit Design. New York, NY, USA: Wiley,
2001.

A. Semenov and A. Yakovlev, ““Verification of asynchronous circuits using
time Petri net unfolding,” in Proc. 33rd Design Autom. Conf., Las Vegas,
NV, USA, 1996, pp. 59-62.

F. Verbeek and J. Schmaltz, ““Verification of building blocks for asyn-
chronous circuits,” in Proc. Int. Workshop ACL2 Theorem Prover Appl.,
vol. 114, R. Gamboa and J. Davis, Eds., 2013, pp. 70-84.

A. Peeters, F. T. Beest, M. de Wit, and W. Mallon, “Click elements:
An implementation style for data-driven compilation,” in Proc. IEEE
Symp. Asynchronous Circuits Syst., May 2010, pp. 3-14.

V. M. Wijayasekara, S. K. Srinivasan, and S. C. Smith, “Equivalence
verification for NULL convention logic (NCL) circuits,” in Proc. IEEE
32nd Int. Conf. Comput. Design (ICCD), Oct. 2014, pp. 195-201.

P. Manolios, “Correctness of pipelined machines,” in Formal Meth-
ods in Computer-Aided Design (Lecture Notes in Computer Science),
vol. 1954, W. A. Hunt, Jr., and S. D. Johnson, Eds., New York, NY, USA:
Springer-Verlag, 2000, pp. 161-178.

A. A. Sakib, S. C. Smith, and S. K. Srinivasan, ‘“‘Formal modeling and ver-
ification for pre-charge half buffer gates and circuits,” in Proc. IEEE 60th
Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2017, pp. 519-522.
A. A. Sakib, S. Le, S. C. Smith, and S. K. Srinivasan, “Formal verification
of NCL circuits,” in Asynchronous Circuit Applications. Edison, NJ, USA:
1ET, 2019, pp. 309-338.

A. A. Sakib, S. C. Smith, and S. K. Srinivasan, “An equivalence verifi-
cation methodology for combinational asynchronous PCHB circuits,” in
Proc. IEEE 61st Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2018,
pp. 767-770.

78666

(74]

[75]

[76]

A. A. Sakib, S. C. Smith, and S. K. Srinivasan, ‘“Formal modeling and
verification of PCHB asynchronous circuits,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 27, no. 12, pp. 2911-2924, Dec. 2019.

M. Hossain, A. A. Sakib, S. K. Srinivasan, and S. C. Smith, “An equiva-
lence verification methodology for asynchronous sleep convention logic
circuits,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019,
pp. 1-5, doi: 10.1109/ISCAS.2019.8702098.

A. Kondratyev, L. Neukom, O. Roig, A. Taubin, and K. Fant, “Checking
delay-insensitivity: 10* gates and beyond,” in Proc. 8th Int. Symp. Asyn-
chronous Circuits Syst., 2002, pp. 149-157.

DANYLO KHODOSEVYCH received the B.S.
degree in computer engineering from Florida Poly-
technic University, Lakeland, FL, USA, in 2020,
where he is currently pursuing the M.S. degree
in computer engineering. His research interests
include asynchronous digital designs, NULL con-
vention logic (NCL) design, and optimization. The
main objective of his current research work is to
develop enhanced optimization methodologies for
NCL circuits.

ASHIQ A. SAKIB (Member, IEEE) received the
B.Tech. degree in electronics and communica-
tion engineering from the West Bengal Univer-
sity of Technology, Kolkata, India, in 2013, and
the Ph.D. degree in computer engineering from
the North Dakota State University, Fargo, ND,
USA, in 2019. He is currently an Assistant Pro-
fessor with the Department of Electrical and Com-
puter Engineering, Florida Polytechnic University,
Lakeland, FL, USA. His current research interests

include asynchronous digital designs, which spans over asynchronous logic,
circuit/architecture optimization, low-power designs, resilience, and formal
verification. He is a member of IEEE-HKN and Phi Kappa Phi. He is a
Handling Editor for Journal of Circuits, Systems, and Computers.

VOLUME 10, 2022

http://dx.doi.org/10.1109/VTS48691.2020.9107627
http://dx.doi.org/10.1109/ISCAS.2019.8702098

