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ABSTRACT The smart grid accessibility over the Internet of Things (IoT) is becoming attractive to electrical
grid operators as it brings considerable operational and cost efficiencies. However, this in return creates
significant cyber security challenges, such as fortification of state estimation data such as state variables
against false data injection attacks (FDIAs). In this paper, a clustered partitioning state estimation (CPSE)
technique is proposed to detect FDIA by using static state estimation, namely, weighted least square (WLS)
method in conjunction with dynamic state estimation usingminimum variance unscented Kalman filter (MV-
UKF) which improves the accuracy of state estimation. The estimates acquired from the MV-UKF do not
deviate like WLS as these are purely based on the previous iteration saved in the transition matrix. The
deviation between the corresponding estimations of WLS and MV-UKF are utilised to partition the smart
grid into smaller sub-systems to detect FDIA and then identify its location. To validate the proposed detection
technique, FIDAs are injected into IEEE 14-bus, IEEE 30-bus, IEEE 118-bus, and IEEE 300-bus distribution
feeder using MATPOWER simulation platform. Our results clearly demonstrate that the proposed technique
can locate the attack area efficiently compared to other techniques such as chi square.

INDEX TERMS Smart grid, unscented Kalman filter, state estimation, FDIA.

I. INTRODUCTION
IoT refers to a network of smart devices where each device is
assigned a unique IP address that helps with its identification
and connectivity over the global network [1]. A smart grid
is an intricate intelligent network of power lines and equip-
ment connecting buses, nodes, generators, control center, and
meters [2]. It provides electricity and power to the consumers
using smart techniques, ranging from a single user to critical
businesses such as defense facilities, hospitals, and airports
[3]. Within an IoT based smart grid, cyber-attack to a certain
part of the grid means the intruder will not limit itself to one
bus or a phasor measurement unit (PMU) but will aim to take
control of the complete infrastructure and drive the smart grid
towards shutdown [4].

The fact that smart grid interconnects generation resources
such as renewable, thermal, hydro, and solar, a cyber-attack
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on IoT based smart grids may risk all the facilities and thus
could result in cascaded blackouts, overloading and service
disruptions to its consumers and critical infrastructures [5].
Therefore, the protection of smart grid and IoT systems from
cyber-attacks and FDIAs is critical and should be addressed
with utmost urgency [6]. FDIAs are the most studied cyber-
physical attacks in smart grid security. One of the key targets
of FDIA is state estimation data [7].

State estimations collect measurements through the use of
sensors and metering devices for voltage magnitudes, line
flows, and power to monitor the operational status of the grid
[8]. State estimation also helps to indicate the presence of
false data within these measurements [9]. In traditional state
estimation such as WLS, the measurement data is collected
from various buses to estimate the state of the grid. A hypoth-
esis test known as chi-square test or residual test is then
applied to collected measurements where a measured value
is tested against a threshold value to determine the presence
of false data. However, since cyber-attacks have becomemore
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intricate in recent times,WLS alone fail to detect FDIA, espe-
cially, when the attackers possess the knowledge of network
configuration [10]. Furthermore, the chi-square tests are no
longer effective when applied to a complete gird due to large
number of redundant measurements [11].

One drawback of WLS is that it only considers one set
of measurements. Although it provides satisfactory results
[12], but detection accuracy needs improvement in counter-
ing cyber-attacks like FDIAs. Static state estimation cannot
capture the time history of the state estimates; therefore,
it cannot predict the future estimates of the system [13].
The other problem with static WLS estimator is that it must
be reinitialised for every new set of measurements without
using any state prediction from previous estimations and this
increases the computational complexity [14]. For this reason,
dynamic state estimation such as Kalman filter is a better
alternative [15].

Additionally, the MV-UKF improves the estimation results
compared to ordinary UKF when used in combination with
WLS.MV-UKF is mainly intended for nonlinear systems and
has the potential to tackle the problem of FDIA detection
sinceWLS alone has failed to do so [16]. Therefore, we inves-
tigated the detection of FDIA by measuring the deviation
of corresponding estimations using the MV-UKF and WLS
based state estimations. We found that the state variables
under attack deviated significantly between theMV-UKF and
WLS based state estimations.

In this research, we propose a method to enhance the
reliability of the existing WLS estimates to ensure secure
operations by estimating the state variables such as voltage
magnitudes of the system accurately even in the presence of
a cyber-attack. The proposed algorithm utilises the measure-
ments collected from the sensors, and metering devices to
accurately estimate the state of the system. The combination
of state prediction, based on linearization of the power flow
equations, WLS and Kalman filter formulation improves the
results of FDIA detection. Note that our use of MV-UKF
makes the detection system computationally efficient.

Overall, in this work, we exploit the deviation of state
variables estimation by WLS and MV-UKF to detect FDIA
using CPSE. Our contributions are as follows.
• A false data detection technique based on MV-UKF is
proposed which has not been used previously in con-
junction with WLS state estimation;

• An attack magnitude that can deceive ordinary Kalman
filter is tested on MV-UKF and has shown promising
results;

• Our technique partitions the smart grid into smaller sub-
systems when necessary to identify attack location, and
thereby reduces computational complexity as a smaller
number of measurements are taken into account for
WLS calculation;

• Scalability study of the proposed technique with small to
large size IEEE bus systems shows promising results and
better detection performance than competing existing
work.

The remainder of the paper is organized as follows. The
Related work is in Section II. The State Estimation and FDIA
is explained in Section III. The Proposed Attack Detection
Methodology is explained in Section IV. The Case studies &
results are discussed in Section V. The paper concludes in
Section VI.

II. RELATED WORKS
In [17], a robust massively parallel dynamic (RMPD) state
estimation approach utilizing extended Kalman filter is pro-
posed using graphics processing units (GPU) that can detect
FDIA using a trusted set of measurements from optimized
PMUs. Further, a Markov model was proposed considering
the stochastic nature of the power system and the historic
measurements of the system’s dynamic behavior to improve
the accuracy of the estimation results using the Euclidean
distance metric. The detection accuracy of this work can
be improved by increasing the number of GPU cores and
processing power. However, further analysis of this work
is required to identify multiple attacks as this will lead to
computational complexity.

In [18], Ganjkhani et al. presented a nonlinear autore-
gressive exogenous (NARX), a specific configuration of an
artificial neural network (ANN), based bad data detection
processor to identify the FDIAs on static state estimation. The
estimates were predicted usingNARXnetwork and compared
with the computed state variables to identify the FDIA. The
NARX network demonstrated high accuracy for the detection
of the FDIAs on state estimation. However, the presented
method was only tested on DC state estimation and needs
to be extended for AC state estimation and tested by adding
reactive power measurements.

Chen et al. in [19] proposed an online detection method of
data injection attacks against dynamic state estimation in a
smart grid by solving an optimal model using particle swarm
optimization (PSO). The system’s performance was tested
by developing a data injection attack strategy with minimum
attack residual increment. Based on the test results, an online
chi-square detection method associated with two kinds of
state estimates was proposed to make up for the system
vulnerability. However, it is difficult to analyze the attack
residual increment in multiple cyber-attacks which could lead
to a much more complex residual model in a dynamic power
system, which makes it difficult to detect the attack vectors
directly.

In [20], a GPU enabled adaptive robust state estimator was
proposed comprising of deep learning algorithm, long short-
term memory, and a non-linear extended Kalman filter to
deal with the massive connections and states generated by the
state estimation data. It provides an online parametric state
estimate based on software defined IoT controller. Two levels
of online parametric state estimation were used to improve
the reliability and security of the communication. However,
the implementation of the proposed methodology requires
6G enabled smart grids to achieve a minimum latency for
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countering the transients to minimize the chances of cascad-
ing failures within both static and dynamic state estimation.

In [21], Pei et al. suggest that FDIAs can be detected
by a set of strategically selected measurements. The authors
proposed a deviation-based detection method (DBDM) based
on an additional Kalman filter estimator for dynamic state
estimation with the historical states transition. The FDIAs
were detected by using an exponential weighting function to
enhance the robustness of the Kalman filter against attacks,
however, the type of the Kalman filter was not mentioned.
Since there exists a continuous variation of load and genera-
tion, methods that can capture those variations such as time
variant state transition methods needs to be incorporated in
this work to improve the detection accuracy.

In [22], Zhao and Mili proposed to handle non-gaussian
noise and outliers with the use of generalized maximum
likelihood unscented Kalman filter which allows the sigma
points to reliably approximate themean and covariancematri-
ces of the predicted and corrected state vectors. Numerical
results were collected using the IEEE 39-bus 10-machine
system which demonstrated the effectiveness of the proposed
method.

In [23], Junbo et al. proposed a generalized maximum
likelihood iterated extended Kalman filter for tracking the
dynamic states of a power system. Simulations were carried
out on the IEEE-39-bus test system that demonstrated the
statistical efficiency of the proposedmethod. The authors also
highlighted the vulnerability to system parameters, topology
errors and unreliable estimates under strong nonlinearities of
the power system model.

III. STATE ESTIMATION AND FDIA
The state estimation uses meter measurements to formu-
late state variables that can be expressed by a nonlinear
model [24]–[27] as

z(k) = h (x)+ e (1)

where z is the meter measurement, k is the iteration index,
h(x) is the function of state variable x that constructs a Jaco-
bian matrix that depends on the impedance of the network
topology, and e is the measurement noise that follows a
Gaussian distribution of zero mean.

Attackers inject the FDIA vector by manipulating the
measurements of metering devices at any bus. The system
measurement then becomes:

za(k) = Hx + a+ e (2)

a = Hc (3)

a = [a1, a2, . . ., am]T (4)

where a = [a1, a2, . . . , am] T denotes the attack vector at each
bus, H is the Jacobian matrix and it depends on the topology
structure of power grid, and c=[c1,c2,. . . ,cn]T is an arbitrary
vector.

The meter measurements can be rewritten as

za(k) = Hx + Hc+ e (5)

za(k) = H (x + c)+ e (6)

When the next measurement z(k+1) is injected with false
vector such as a(k+1), the measurement z(k+1) and estimate
ẑ(k + 1) becomes false measurement za(k+1) and false esti-
mates ẑa(k + 1).
The difference for data injection attacks against dynamic

state estimation can be written by the norm of measurement
residuals as: ∥∥za(k + 1)− ẑa(k + 1)

∥∥ = 0 (7)

To successfully launch FDIA against state estimation, the
above conditions must be met.

This attack is undetectable in the chi-square detector as the
manipulated state (x+c) (Eq. (6)) is treated as the real value in
the state estimator. The hypothesis test such as chi-square test
identifies bad data only if the absolute value of the residual
exceeds a certain threshold value [11]. However, in this case,
the residue test fails to detect the carefully designed FDIAs
because this will not affect the residue.

Therefore, the partitioning of the grid into smaller subsys-
tems is necessary and effective for the successful detection of
FDIA as it reduces the number of redundant measurements,
hence making the chi-square tests more effective.

The below objective function J
(
x̂
)
is first computed to

solve the WLS estimation problem:

J
(
x̂
)
=

∑m

i=1

(zi − hi (x))2

σ 2
i

(8)

where m is the number of measurements, σ 2
i is the standard

deviation, and zi is the i-th measurement from a meter.
The next step is the use of a hypothesis test within the state

estimator known as chi-square test on normalized residual
formed using collected state measurements. The chi-square
test will use the following two conditions.{

H0 : J
(
x̂
)
≥ χ2

(m−n),p bad data

H0 : J
(
x̂
)
≤ χ2

(m−n),p no bad data
(9)

where J
(
x̂
)
is the normalised-sum square residual that fol-

lows χ2
(m−n) distribution pattern based on the load profile,

x̂ is an estimate of x solved by WLS algorithm, χ2
(m−n),p is

the detection threshold corresponding to p, where p is the
detection confidence which is taken as 95%, and n is the
number of state variables.

The objective function J (x̂) ≥ χ2
(m−n),p is tested against the

value in a distribution table. If the resulting value is greater,
then false data is detected; otherwise, if the value is below the
threshold, then it is assumed to be free of false data.

IV. PROPOSED ATTACK DETECTION METHODOLOGY
As shown in Fig. 1, our algorithm comprises (i) a traditional
WLS estimator, (ii) an MV-UKF dynamic estimator, and (iii)
a graph establishment based on state variables and further
partitioning of the grid using k-means clustering.

MV-UKF uses statistical linearization known as unscented
transformation. In this method, the probability distribution
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FIGURE 1. Proposed deviation based FDIA detection flow chart.

is approximated using a set of deterministic chosen points
called sigma points [24], [28]–[33]. The MV-UKF achieves
better performance when used in combination with dis-
tributed state estimation. As shown in Fig. 2, the main pur-
pose of unscented transformation is to choose multiple sigma
points with weights that are used to create a mean and covari-
ance matrix of the estimates.

In MV-UKF, no calculation of Jacobian matrices is
required for every new iteration which saves computational

FIGURE 2. Mean and covariance propagation using MV-UKF.

complexity, reduces time, and makes it superior to other
Kalman filters.

Unlike Kalman filter which uses a constant gain based on
a single measurement, UKF in [28]–[33] chooses multiple
sigma points around a mean to compute gain as shown in
Fig. 2, hence making it superior to the ordinary Kalman
filter. This technique can track errors more accurately and
the false data detection becomes more precise. Once the
smart grid is subjected to an attack, the false data within the
measurements gradually becomes significant over time and
an attacker can take advantage of this by keeping injecting
false data to make the previous data look real to the ordinary
Kalman filter. However, this is not the casewithMV-UKF due
to its multiple sigma measurements. Secondly, the unbiased
minimum-variance state estimation is derived by minimizing
the trace of the state error in the covariance matrix [28].

A nonlinear system can be described as:

xk = f (xk−1, uk )+ Gkdk + wk (10)

zk = h(xk , uk )+ vk (11)

where xk ∈ R is the state vector, zk ∈ R is the measure-
ment at time instant k , f and h are vector valued nonlinear
functions that depend on network configuration and number
of buses, Gk is a known matrix, dk is the unknown input,
uk is the known input, wk is the process noise, and vk is the
measurement noise.

For 2n sigma point weights in,
ωi = 1/(2n), i = 1, . . . , 2n,
and the state vector χ ik−1|k−1 can be expressed as:

χ ik−1|k−1 = x̂k−1|k−1 ± (
√
nPk−1|k−1)i (12)
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where x̂k−1|k−1 is the estimate at time instant k-1 and
Pk−1|k−1 is its covariance matrix.

The predicted state x̂k|k−1 and its covariance matrix
Pk−1|k−1 are computed as follows:

x̂k|k−1 =
∑2n

i=1
ωif (χ ik−1|k−1, uk ) (13)

Pk−1|k−1 =
∑2n

i=1
ωi(χ ik|k−1 − x̂k|k−1)(χ

i
k|k−1 − x̂k|k−1)

T

+Qk (14)

where Q is the covariance of the process noise.

χ ik|k−1 = f (χ ik−1|k−1, uk ) (15)

The new sigma points for the predicated estimate and its
covariance matrix are generated as follows:

χ ik|k−1 = x̂k|k−1 ± (
√
nPk|k−1)i (16)

The predicted measurement vector ẑk|k−1 and its covariance
matrix Pzzk|k−1 are calculated as follows:

ẑk|k−1 =
∑2n

i=1
ωih(χ ik|k−1, uk ) (17)

Pzzk|k−1 =
∑2n

i=1
ωi(Zik|k−1−ẑk|k−1)(Z

i
k|k−1 − ẑk|k−1)

T
+Rk
(18)

Z ik|k−1 = h(χ ik|k−1, uk ) (19)

where Rk is the covariance matrix for measurement noise.
The nonlinear measurement function is the given by:

zk = Hk (xk − x̂k|k−1)+ ẑk|k−1 + εk (20)

where εk is the error vector due to statistical linearization.
For MV-UKF, the state vector can be estimated using the

following equations:

x̂k|k = x̂k|k−1 + Kk (zk − ẑk|k−1) (21)

Pk|k = Pk|k−1 − HkPk|k−1 (22)

where K is Kalman gain.
The estimates generated by the MV-UKF in Eq. (21) are

comparedwith theWLS estimates derived fromEq. (9). In the
case of an FDIA at a sensor or ametering device, there is a sig-
nificant deviation observed between the estimates generated
by the MV-UKF and the WLS estimates. Once the deviation
exceeds the pre-set threshold, our proposed methodology
triggers the system graph to partition the smart grid into
smaller sub-systems and then the chi-square test is applied
within each sub-system. The test becomes more effective
within the scope of these sub-systems because the number
of redundant measurements is reduced hence reducing both
χ2 and J (x).

In order to develop a pre-set threshold for the detection of
false data within the estimates, we performed chi-square test
on WLS estimates for several iterations. When the false data
is not present, the pre-set threshold smoothed to a stable value
which can only be exceeded when false data is present.

While knowing the initial network condition at iteration
k-1, an MV-UKF is used to determine the network condition

on the basis of the available meter measurements. A transition
and covariance matrix are created using forecasted state data
for future time instant k .

Algorithm 1: Bad Data Detection Using CPSE & MV-
UKF
Result: Initial estimation of estimate x and covariance p
Initialize MV-UKF to acquire estimates;
while Collect sensor measurements do

Develop graph based on collected measurements;
Compute WLS using eq (8) J

(
x̂
)
=
∑m

i=1
(zi−hi(x))2

σ 2i
;

if deviation between measurements and MV-UKF

estimates rk =

∣∣∣xWLSk −xMV−UKFk

∣∣∣
√
Ck

exceeds the pre-set

threshold J
(
x̂
)
≥ χ2

(m−n),p; then
Partition Graph G= { |V| → Bus number };
Perform chi-square tests J (x) on a distributed cluster
Subsystems using eq (9);
Reduce the weights for the MV-UKF and give more
weight to collected measurement;
If weighted residual exceeds the threshold;
then
subdivide the graph and perform the chi-square test
on subsystems and locate the FDIA;
If Bad data detected ;
Update the graph;

else
Send the estimates to MV-UKF for status update;

end
end

Algorithm 1 describes howWLS, MV-UKF and graph par-
titioning are used in an iterative manner to detect FDIA in our
proposed method. When a successful FDIA is launched, the
state measurements disturb the estimates of the WLS based
algorithm. However, on the contrary, the estimates acquired
from the MV-UKF do not deviate as these are purely based
on the previous iteration saved in the transition matrix. There-
fore, a normalized residual rk is calculated by measuring an
absolute difference between a state variable acquired by the
WLS based method xWLSk and the MV-UKF xMV−UKFk . The
result is divided by the standard deviation

√
Ck ; which is

obtained from the covariance matrix. The residual rk is thus
calculated as:

rk =

∣∣∣xWLSk − xMV−UKFk

∣∣∣
√
Ck

(23)

The graph is established based on voltage magnitudes as well
as bus numbers as follows:

G = {|V | → Busnumber } (24)

where |V| is voltage magnitude, and Bus number is the bus
number from where the measurement is received.

Root mean square error (RMSE) compares a predicted
value with an observed or known values. This represents an
error between two data sets, hence smaller values illustrate
improvement in the estimates.
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TABLE 1. State estimates by wls and mv-ukf.

TABLE 2. Chi-square test Chi-square test J(x) when calculated over the
complete system. Note: the value of J(x) and threshold χ2 are same as
this is calculated over the entire system.

V. CASE STUDIES AND RESULTS
To demonstrate the performance of the proposed method,
the simulations were performed using MATPOWER with a
computer specification, 3.2 GHz Intel Core i5 processor and
4GB memory with a Window 10 system. The simulations
were performed on smart grid IEEE 14-bus, IEEE 30-bus,
IEEE 118-bus, & IEEE 300-bus. Below, we first present our
detailed experiments with IEEE 30-bus and then show results
with other IEEE systems.

As shown in Table 1; column 1 lists all the WLS estimates
obtained through the meter measurements along with the
dynamic estimates generated by MV-UKF in column 2. The
decision to partition the grid is listed in column 4 which
is only made once the deviation between the two estimates
exceeds a certain threshold and FDIA detected.

In case of no FDIA, theweighted sum squared residual J (x)
stays below the threshold value for IEEE-30 bus system as
per Eq. (9). The power flow on the transmission lines from
bus 15 was modified from 130 kW to 280 kW to launch an
FDIA shown in Fig. 3. The chi-square test is applied on all
the measurements using MATPOWER. As shown in Table 2,
the value of J (x) doesn’t exceed the threshold, indicating
no FDIA on the system which is not true. The weighted
sum-squared residual is calculated as J (x) = 79.05 which
is lower than the threshold of the IEEE-30 bus system χ2

=

102.5, therefore no FIDA could be detected.
The incorrect measurement received by the estimator is

280 kW which is not the estimate generated by MV-UKF
(130 kW), therefore system triggers the partitioning, as the
deviation between the two estimates is high. The algorithm

FIGURE 3. Partitioning over IEEE-30 bus system.

TABLE 3. Chi-square test J(x) performed on the partitioned subsystem.

TABLE 4. Chi-square test J(x) over partitioned subsystem 4.

triggers the need for partitioning the system into smaller
subsystems and develops a graph. The graph is partitioned
using a k-means clustering algorithm and initially the system
is partitioned into subsystems 1, 2, 3 & 4 as shown in Fig. 3.
It performs chi-square test on all the subsystems separately in
order to make it more effective.

The number of redundant measurements is reduced with
the reduction in the size of subsystems and the threshold
drops to χ2

= 34.16. The weighted sum square residual J (x)
is shown in Table 3 calculated as J (x) = 30 for subsystem 1,
2 and 3, except for subsystem 4, where the FDIA is launched.
In subsystem 4, J (x) = 38.85 exceeds the threshold χ2

=

34.16, hence, implying there is a presence of an FDIA in
subsystem 4.

In order to locate the FDIA, the graph of subsystem 4 is fur-
ther subdivided into subsystem 41, 42 & 43. The chi-square
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FIGURE 4. Further partitioning of subsystem 4.

test is applied on all these subsystems and the results are
shown in Table 4. The threshold drops to χ2

= 15.85 for
each subsystem and J (x) = 14 for subsystem 41 & 42. In the
case of subsystem 43, where the FDIA is launched, weighted
sum square residual is calculated as J (x) = 28.73, which
exceeds the threshold χ2

= 15.85, indicating the attack is
in subsystem 43.

For a large IEEE bus system, it is computationally complex
to locate the attack because of the large number of redundant
measurements.

To explore the efficiency further, estimates were obtained
using the proposed method in Fig. 5 (a) IEEE 14-bus,
(b) IEEE 30-bus, (c) IEEE 118-bus, and (d) IEEE 300-bus.
The estimates obtained through the MV-UKF are plotted for
RMPD [17] and DBDM [21] estimates where an additional
Kalman filter was used. The real values in p.u. indicate that
no FDIA has been launched.

FDIAswere injected at the following bus numbers (Bus no.
5, Bus no. 10, . . . , Bus no. 100) as shown in Fig. 6 (a) IEEE-
118 bus and (b)IEEE-300 bus. The estimates obtained using
the proposed algorithm are plotted at each bus with DBDM
estimates. It can be easily seen that the MV-UKF estimates
are improved as compared to the DBDM estimates.

As shown in Fig. 6 (a) IEEE-118 bus and (b) IEEE-300 bus,
the voltage estimates obtained using the proposed method
are much improved and closer to the real values than those
produced by RMPD and DBDM methods. The simulation
results prove the effectiveness of the proposed method over
the other estimation results.

Our approach relies on generating estimates based on
MV-UKF and the detection results which depend on a speci-
fied threshold. The threshold computed in Eq. (8) and (9) and
its selection should be done carefully as lower and higher than
necessary value increases the probability of false detections.

The careful selection of quality threshold can be improved
by generating daily load curves for multiple days such as
weekday, weekend and public holidays with the time, day and
night specification. Adjustment to the threshold value can be
done based on the load curves and use of daily load curves to

FIGURE 5. State estimates under no FDIA.

improve the results of MV-UKF. Our results clearly show that
combining graph partitioning with MV-UKF can be highly
useful in this scenario.
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FIGURE 6. State estimates under FDIA.

TABLE 5. Comparison of RMSE values for different methods.

Root Mean Square Error (RMSE) can be used to calculate
the error in an estimation method by taking the differences
between the estimated values and the real values. The RMSE
values of the proposed method are calculated and compared

with those of RMPD and DBDM as shown in Table 5. The
proposed method values show the least error in the estimates.

VI. CONCLUSION
In this work, we have proposed a novel detection method for
FDIA in a smart grid. Considering that the traditional chi-
square detection fails in many cases in detecting the attacks,
so we proposed a hybrid technique using WLS and MV-UKF
state estimations in conjunction with a graph establishment
and subsystem partitioning of the grid. The detection of
FDIA improves significantly when estimates from MV-UKF
are used to measure the deviation with the results obtained
fromWLS. A graph is developed when the deviation exceeds
preset threshold and the state data from different buses are
classified using clustering-based algorithm. Our method is
also able to locate the subsystem where FDIA was launched.
To showcase the effectiveness of the proposed algorithm, the
simulations were conducted on IEEE-14 bus, IEEE-30 bus,
IEEE-118 bus, and IEEE-300 bus.

Finally, the MV-UKF can obtain priori results of state
estimation based on historical values. Hence, if some meter
or sensor measurements are lost, these missingmeasurements
can be replaced by the estimates to improve the reliability
of the state estimation. Exploiting the proposed method’s
capability to usemultiple sigma points, future workwill focus
on extending the method to handle multiple cyber-attacks.
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